Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
Curr Opin Immunol ; 81: 102288, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36848746

RESUMO

Anaphylaxis is an acute life-threatening systemic allergic reaction that can have a wide range of clinical manifestations. The most common triggers for anaphylaxis include food, medication, and venom. What is curious regarding anaphylaxis is how so many different agents can induce a severe systemic clinical response but only in a select subgroup of patients. Over the past decade, several important advances have been made in understanding the underlying cellular and molecular mechanisms contributing to anaphylaxis, with mast cells (MCs) being an essential component. Classically, cross-linked immunoglobulin E (IgE) bound to its high- affinity receptor induces MC mediator release. However, toll-like, complement, or Mas-related G-protein-coupled receptors also activate mouse and human MCs. While anaphylaxis secondary to foods historically has been more extensively characterized clinically and mechanistically, more recent studies have shifted focus toward understanding drug-induced anaphylaxis. The focus of this review is to highlight recent basic science developments and compare what is currently known regarding anaphylaxis to food, medications, and venom.


Assuntos
Anafilaxia , Hipersensibilidade a Drogas , Humanos , Camundongos , Animais , Anafilaxia/metabolismo , Imunoglobulina E/metabolismo , Hipersensibilidade a Drogas/metabolismo , Mastócitos , Receptores Acoplados a Proteínas G/metabolismo , Alérgenos
2.
J Allergy Clin Immunol ; 151(6): 1585-1594.e9, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36804596

RESUMO

BACKGROUND: Drug-induced anaphylaxis is triggered by the direct stimulation of mast cells (MCs) via Mas-related G protein-coupled receptor X2 (MRGPRX2; mouse ortholog MRGPRB2). However, the precise mechanism that links MRGPRX2/B2 to MC degranulation is poorly understood. Dedicator of cytokinesis 2 (DOCK2) is a Rac activator predominantly expressed in hematopoietic cells. Although DOCK2 regulates migration and activation of leukocytes, its role in MCs remains unknown. OBJECTIVE: We aimed to elucidate whether-and if so, how-DOCK2 is involved in MRGPRX2/B2-mediated MC degranulation and anaphylaxis. METHODS: Induction of drug-induced systemic and cutaneous anaphylaxis was compared between wild-type and DOCK2-deficient mice. In addition, genetic or pharmacologic inactivation of DOCK2 in human and murine MCs was used to reveal its role in MRGPRX2/B2-mediated signal transduction and degranulation. RESULTS: Induction of MC degranulation and anaphylaxis by compound 48/80 and ciprofloxacin was severely attenuated in the absence of DOCK2. Although calcium influx and phosphorylation of several signaling molecules were unaffected, MRGPRB2-mediated Rac activation and phosphorylation of p21-activated kinase 1 (PAK1) were impaired in DOCK2-deficient MCs. Similar results were obtained when mice or MCs were treated with small-molecule inhibitors that bind to the catalytic domain of DOCK2 and inhibit Rac activation. CONCLUSION: DOCK2 regulates MRGPRX2/B2-mediated MC degranulation through Rac activation and PAK1 phosphorylation, thereby indicating that the DOCK2-Rac-PAK1 axis could be a target for preventing drug-induced anaphylaxis.


Assuntos
Anafilaxia , Hipersensibilidade a Drogas , Humanos , Camundongos , Animais , Anafilaxia/induzido quimicamente , Degranulação Celular , Mastócitos/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Hipersensibilidade a Drogas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
3.
Front Immunol ; 13: 1033794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275683

RESUMO

Mas-related G protein-coupled receptor-X2 (MRGPRX2) expressed on mast cells (MCs) contributes to hypersensitivity reactions to cationic US-Food and Drug Administration (FDA) approved drugs such as the neuromuscular blocking agent, rocuronium. In addition, activation of MRGPRX2 by the neuropeptide substance P (SP) and the pro-adrenomedullin peptide (PAMP-12) is associated with a variety of cutaneous conditions such as neurogenic inflammation, pain, atopic dermatitis, urticaria, and itch. Thus, small molecules aimed at blocking MRGPRX2 constitute potential options for modulating IgE-independent MC-mediated disorders. Two inverse MRGPRX2 agonists, named C9 and C9-6, have recently been identified, which inhibit basal G protein activation and agonist-induced calcium mobilization in transfected HEK293 cells. Substance P serves as a balanced agonist for MRGPRX2 whereby it activates both G protein-mediated degranulation and ß-arrestin-mediated receptor internalization. The purpose of this study was to determine if C9 blocks MRGPRX2's G protein and ß-arrestin-mediated signaling and to determine its specificity. We found that C9, but not its inactive analog C7, inhibited degranulation in RBL-2H3 cells stably expressing MRGPRX2 in response to SP, PAMP-12 and rocuronium with an IC50 value of ~300 nM. C9 also inhibited degranulation as measured by cell surface expression of CD63, CD107a and ß-hexosaminidase release in LAD2 cells and human skin-derived MCs in response to SP but not the anaphylatoxin, C3a or FcϵRI-aggregation. Furthermore, C9 inhibited ß-arrestin recruitment and MRGPRX2 internalization in response to SP and PAMP-12. We found that a G protein-coupling defective missense MRGPRX2 variant (V282M) displays constitutive activity for ß-arrestin recruitment, and that this response was significantly inhibited by C9. Rocuronium, SP and PAMP-12 caused degranulation in mouse peritoneal MCs and these responses were abolished in the absence of MrgprB2 or cells treated with pertussis toxin but C9 had no effect. These findings suggest that C9 could provide an important framework for developing novel therapeutic approaches for the treatment of IgE-independent MC-mediated drug hypersensitivity and cutaneous disorders.


Assuntos
Hipersensibilidade a Drogas , Neuropeptídeos , Camundongos , Animais , Humanos , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Degranulação Celular , Adrenomedulina/metabolismo , Receptores de IgE/metabolismo , Substância P/farmacologia , Cálcio/metabolismo , Rocurônio , Toxina Pertussis/farmacologia , Células HEK293 , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Mastócitos/metabolismo , Neuropeptídeos/metabolismo , Hipersensibilidade a Drogas/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , beta-Arrestinas/metabolismo , beta-Arrestinas/farmacologia , Anafilatoxinas/metabolismo , Imunoglobulina E/metabolismo
4.
Sci Rep ; 12(1): 6650, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459883

RESUMO

MAS-related G protein-coupled receptor X2 (MRGPRX2), expressed in human mast cells, is associated with drug-induced pseudo-allergic reactions. Dogs are highly sensitive to the anaphylactoid reactions induced by certain drugs including fluoroquinolones. Recently, dog MRGPRX2 was identified as a functional ortholog of human MRGPRX2, with dog MRGPRX2 being particularly sensitive to fluoroquinolones. The aim of this study was to determine key residues responsible for the enhanced activity of fluoroquinolone-induced histamine release associated with MRGPRX2. Firstly, a structure model of human and dog MRGPRX2 was built by homology modeling, and docking simulations with fluoroquinolones were conducted. This model indicated that E164 and D184, conserved between human and dog, are essential for the binding to fluoroquinolones. In contrast, F78 (dog: Y) and M109 (dog: W) are unconserved residues, to which the species difference in fluoroquinolone sensitivity is attributable. Intracellular calcium mobilisation assay with human MRGPRX2 mutants, in which residues at positions 78 and 109 were substituted to those of dog MRGPRX2, revealed that M109 and F78 of human MRGPRX2 are crucial residues for enhancing the fluoroquinolone-induced histamine release. In conclusion, these key residues have important clinical implications for revealing the mechanisms and predicting the risks of fluoroquinolone-mediated pseudo-allergic reactions in humans.


Assuntos
Anafilaxia , Hipersensibilidade a Drogas , Anafilaxia/metabolismo , Animais , Degranulação Celular , Cães , Hipersensibilidade a Drogas/genética , Hipersensibilidade a Drogas/metabolismo , Fluoroquinolonas/efeitos adversos , Fluoroquinolonas/metabolismo , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo
5.
Bull Exp Biol Med ; 172(3): 283-287, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34997875

RESUMO

We studied laboratory parameters of patients with COVID-19 against the background of chronic pathologies (cardiovascular pathologies, obesity, type 2 diabetes melitus, and cardiovascular pathologies with allergy to statins). A decrease in pH and a shift in the electrolyte balance of blood plasma were revealed in all studied groups and were most pronounced in patients with cardiovascular pathologies with allergy to statin. It was found that low pH promotes destruction of lipid components of the erythrocyte membranes in patients with chronic pathologies, which was seen from a decrease in Na+/K+-ATPase activity and significant hyponatrenemia. In patients with cardiovascular pathologies and allergy to statins, erythrocyte membranes were most sensitive to a decrease in pH, while erythrocyte membranes of obese patients showed the greatest resistance to low pH and oxidative stress.


Assuntos
COVID-19/complicações , Hiponatremia/etiologia , Hipóxia/complicações , ATPase Trocadora de Sódio-Potássio/fisiologia , Idoso , COVID-19/metabolismo , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/virologia , Estudos de Casos e Controles , Doença Crônica , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/virologia , Hipersensibilidade a Drogas/complicações , Hipersensibilidade a Drogas/metabolismo , Hipersensibilidade a Drogas/virologia , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Feminino , Deslocamentos de Líquidos Corporais/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Hiponatremia/metabolismo , Hiponatremia/virologia , Hipóxia/metabolismo , Peroxidação de Lipídeos/fisiologia , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/metabolismo , Obesidade/virologia , Estresse Oxidativo/fisiologia , SARS-CoV-2/fisiologia , Sódio/metabolismo , Estresse Fisiológico/fisiologia
6.
Front Immunol ; 13: 1026304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726977

RESUMO

Background: Occupancy of MRGPRX2 heralds a new era in our understandings of immediate drug hypersensitivity reactions (IDHRs), but a constitutive expression of this receptor by basophils is debated. Objective: To explore the expression and functionality of MRGPRX2 in and on basophils. Methods: Basophils from patients with birch pollen allergy, IDHRs to moxifloxacin, and healthy controls were studied in different conditions, that is, in rest, after stimulation with anti-IgE, recombinant major birch pollen allergen (rBet v 1), moxifloxacin, fMLP, substance P (SP), or other potential basophil secretagogues. In a separate set of experiments, basophils were studied after purification and resuspension in different media. Results: Resting whole blood basophils barely express MRGPRX2 on their surface and are unresponsive to SP or moxifloxacin. However, surface MRGPRX2 is quickly upregulated upon incubation with anti-IgE or fMLP. Pre-stimulation with anti-IgE can induce a synergic effect on basophil degranulation in IgE-responsive subjects after incubation with SP or moxifloxacin, provided that basophils have been obtained from patients who experienced an IDHR to moxifloxacin. Cell purification can trigger a "spontaneous" and functional upregulation of MRGPRX2 on basophils, not seen in whole blood cells, and its surface density can be influenced by distinct culture media. Conclusion: Basophils barely express MRGPRX2 in resting conditions. However, the receptor can be quickly upregulated after stimulation with anti-IgE, fMLP, or after purification, making cells responsive to MRGPRX2 occupation. We anticipate that such "conditioned" basophils constitute a model to explore MRGPRX2 agonism or antagonism, including IDHRs originating from the occupation of this receptor.


Assuntos
Hipersensibilidade a Drogas , Hipersensibilidade Imediata , Humanos , Basófilos , Imunoglobulina E , Moxifloxacina , Alérgenos/metabolismo , Hipersensibilidade Imediata/metabolismo , Hipersensibilidade a Drogas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo
7.
Front Immunol ; 12: 654190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497600

RESUMO

Delayed-type drug hypersensitivity reactions (dtDHR) are immune-mediated reactions with skin and visceral manifestations ranging from mild to severe. Clinical care is negatively impacted by a limited understanding of disease pathogenesis. Though T cells are believed to orchestrate disease, the type of T cell and the location and mechanism of T cell activation remain unknown. Resident memory T cells (TRM) are a unique T cell population potentially well situated to act as key mediators in disease pathogenesis, but significant obstacles to defining, identifying, and testing TRM in dtDHR preclude definitive conclusions at this time. Deeper mechanistic interrogation to address these unanswered questions is necessary, as involvement of TRM in disease has significant implications for prediction, diagnosis, and treatment of disease.


Assuntos
Hipersensibilidade a Drogas/etiologia , Hipersensibilidade Tardia/diagnóstico , Hipersensibilidade Tardia/etiologia , Memória Imunológica , Pele/imunologia , Linfócitos T/imunologia , Animais , Suscetibilidade a Doenças , Hipersensibilidade a Drogas/diagnóstico , Hipersensibilidade a Drogas/metabolismo , Humanos , Hipersensibilidade Tardia/metabolismo , Ativação Linfocitária , Pele/efeitos dos fármacos , Pele/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/metabolismo
8.
Front Immunol ; 12: 668962, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385999

RESUMO

Neuromuscular blocking agents (NMBAs) like atracurium and rocuronium as well as fluoroquinolones (FQs) cause mast cell-mediated anaphylaxis by activating Mas-related G protein-coupled receptor X2 (MRGPRX2), but many questions remain unanswered. Here, we address three of them, namely whether primary human mast cells show similar activation by these drugs as murine mast cells and mast cell lines, how sugammadex protects from atracurium-induced MRGPRX2-mediated mast cell activation, and why some but not all patients treated with rocuronium develop anaphylaxis. We used peripheral blood-derived cultured mast cells from healthy donors and patients, assessed mast cell activation and degranulation by quantifying intracellular calcium and CD63 expression, respectively, and made use of MRGPRX2-silencing, via electroporation with Dicer-substrate small interfering RNAs, and single cell flow cytometric analyses. Atracurium, ciprofloxacin, and levofloxacin activated and degranulated primary human mast cells, but only MRGPRX2-positive and not MRGPRX2-negative or -silenced mast cells. Sugammadex attenuated the atracurium-induced and MRGPRX2-mediated activation and degranulation of human mast cells by reducing free atracurium levels. The mast cells of patients with IgE-independent anaphylaxis to rocuronium were similar, in their MRGPRX2 expression and function, to those of patients with IgE-mediated anaphylaxis. These findings further improve our understanding of the role and relevance of MRGPRX2-driven mast cell activation in anaphylactic reactions to NMBAs and FQs and may help to improve their prediction, prevention, and treatment.


Assuntos
Anafilaxia/induzido quimicamente , Antibacterianos/toxicidade , Degranulação Celular/efeitos dos fármacos , Hipersensibilidade a Drogas/etiologia , Mastócitos/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Fármacos Neuromusculares não Despolarizantes/toxicidade , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Anafilaxia/imunologia , Anafilaxia/metabolismo , Atracúrio/toxicidade , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Ciprofloxacina/toxicidade , Hipersensibilidade a Drogas/imunologia , Hipersensibilidade a Drogas/metabolismo , Humanos , Imunoglobulina E/imunologia , Levofloxacino/toxicidade , Mastócitos/imunologia , Mastócitos/metabolismo , Proteínas do Tecido Nervoso/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética , Rocurônio/toxicidade , Fatores de Tempo
9.
J Immunol Methods ; 496: 113098, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216607

RESUMO

Drug hypersensitivity reactions (DHRs) occur in certain people and are often not predictable. DHRs can be classified as immediate and delayed reactions regarding to onset of clinical manifestations. Both reactions are considered to be an important public health problem because they can lead to life-threatening conditions; however, this review article will focus on delayed DHRs. The most important points for diagnosis of delayed DHRs are the recognition of drug hypersensitivity characteristics and culprit drug identification. While it is usually difficult to identify a culprit drug; clinical evaluation using the causality assessment method, a non-invasive process, can identify the culprit drug without the need for intensive investigation. Delayed DHRs can cause life-threatening conditions; therefore, in vivo skin tests, as well as drug provocation tests, have to be cautiously performed by a drug allergist and have not been recommended in uncontrolled conditions. ENDA/EAACI has recommended that in vitro tests (if available) be performed prior to any in vivo tests. Therefore, in vitro diagnostic tests can be alternative methods to identify a culprit drug for delayed DHR diagnosis as there is no or very low risk for patients under investigation. There are many testing approaches to identify causative agents for delayed DHRs such as: the lymphocyte transformation test (LTT), cytokine/mediator detection assays (i.e. ELISA and flow cytometry-based bead assays), multiplex bead-based immunoassay and ELISpot. The LTT is the most standardized method whereas it has been available in medical schools affiliated with university hospitals. Other in vitro tests, like cytokine detection assays, have also been used, even though they are still being evaluated. They could supplement LTT results that would provide drug allergist's with documentary evidence and prevent risk to patients by avoiding in vivo or drug provocation testing. Hence, the in vitro tests have been promising tests contributing to the management of the delayed DHR work-up process in clinical practice.


Assuntos
Citocinas/metabolismo , Hipersensibilidade a Drogas/imunologia , Hipersensibilidade Tardia/diagnóstico , Testes Imunológicos , Ativação Linfocitária/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Hipersensibilidade a Drogas/diagnóstico , Hipersensibilidade a Drogas/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Hipersensibilidade Tardia/imunologia , Hipersensibilidade Tardia/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Fatores de Risco
10.
Front Immunol ; 12: 692569, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248989

RESUMO

Anaphylaxis is a life-threatening systemic hypersensitivity reaction. During anaphylaxis, mediator release by effector cells causes endothelial barrier breakdown, increasing vascular permeability and leakage of fluids, which may lead to tissue edema. Although endothelial cells (ECs) are key players in this context, scant attention has been paid to the molecular analysis of the vascular system, and further analyses of this cell type are necessary, especially in humans. The protein expression pattern of human microvascular ECs was analyzed in response to sera from anaphylactic patients (EC-anaphylaxis) and sera from non-allergic subjects (EC-control) after 2 hours of contact. Firstly, a differential quantitative proteomic analysis of the protein extracts was performed by mass spectrometry using an isobaric labeling method. Second, the coordinated behavior of the identified proteins was analyzed using systems biology analysis (SBA). The proteome of the EC-anaphylaxis system showed 7,707 proteins, of which 1,069 were found to be significantly altered between the EC-control and EC-anaphylaxis groups (p-value < 0.05). Among them, a subproteome of 47 proteins presented a high rate of change (|ΔZq| ≥ 3). This panel offers an endothelial snapshot of the anaphylactic reaction. Those proteins with the highest individual changes in abundance were hemoglobin subunits and structural support proteins. The interacting network analysis of this altered subproteome revealed that the coagulation and complement systems are the main biological processes altered in the EC-anaphylactic system. The comprehensive SBA resulted in 5,512 functional subcategories (biological processes), 57 of which were significantly altered between EC-control and EC-anaphylaxis. The complement system, once again, was observed as the main process altered in the EC system created with serum from anaphylactic patients. Findings of the current study further our understanding of the underlying pathophysiological mechanisms operating in anaphylactic reactions. New target proteins and relevant signaling pathways operating in the in vitro endothelial-serum system have been identified. Interestingly, our results offer a protein overview of the micro-EC-anaphylaxis environment. The relevance of the coagulation, fibrinolytic, contact and complement systems in human anaphylaxis is described. Additionally, the untargeted high-throughput analysis used here is a novel approach that reveals new pathways in the study of the endothelial niche in anaphylaxis.


Assuntos
Anafilaxia/metabolismo , Hipersensibilidade a Drogas/metabolismo , Células Endoteliais/metabolismo , Pulmão/irrigação sanguínea , Proteoma , Proteômica , Adulto , Idoso , Anafilaxia/induzido quimicamente , Anafilaxia/tratamento farmacológico , Anafilaxia/imunologia , Antialérgicos/uso terapêutico , Biomarcadores/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Cromatografia Líquida , Hipersensibilidade a Drogas/tratamento farmacológico , Hipersensibilidade a Drogas/imunologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mapas de Interação de Proteínas , Biologia de Sistemas , Espectrometria de Massas em Tandem , Fatores de Tempo
11.
Front Immunol ; 12: 695815, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305932

RESUMO

Non-steroidal Anti-inflammatory drugs (NSAID)-exacerbated respiratory disease (N-ERD) is characterized by nasal polyposis, chronic rhinosinusitis, adult-onset asthma and hypersensitive reactions to cyclooxygenase-1 (COX-1) inhibitors. Among the available treatments for this disease, a combination of endoscopic sinus surgery followed by aspirin desensitization and aspirin maintenance therapy has been an effective approach. Studies have shown that long-term aspirin maintenance therapy can reduce the rate of nasal polyp recurrence in patients with N-ERD. However, the exact mechanism by which aspirin can both trigger and suppress airway disease in N-ERD remains poorly understood. In this review, we summarize current knowledge of aspirin effects in N-ERD, cardiovascular disease, and cancer, and consider potential mechanistic pathways accounting for the effects of aspirin in N-ERD.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Aspirina/uso terapêutico , Asma Induzida por Aspirina/terapia , Dessensibilização Imunológica , Hipersensibilidade a Drogas/terapia , Pulmão/efeitos dos fármacos , Pólipos Nasais/terapia , Rinite/terapia , Sinusite/terapia , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/imunologia , Aspirina/efeitos adversos , Aspirina/imunologia , Asma Induzida por Aspirina/diagnóstico , Asma Induzida por Aspirina/imunologia , Asma Induzida por Aspirina/metabolismo , Progressão da Doença , Hipersensibilidade a Drogas/diagnóstico , Hipersensibilidade a Drogas/imunologia , Hipersensibilidade a Drogas/metabolismo , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Pólipos Nasais/diagnóstico , Pólipos Nasais/imunologia , Pólipos Nasais/metabolismo , Rinite/diagnóstico , Rinite/imunologia , Rinite/metabolismo , Transdução de Sinais , Sinusite/diagnóstico , Sinusite/imunologia , Sinusite/metabolismo , Resultado do Tratamento
12.
Front Immunol ; 12: 658593, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995375

RESUMO

HLA-B*13:01-positive patients in Thailand can develop frequent co-trimoxazole hypersensitivity reactions. This study aimed to characterize drug-specific T cells from three co-trimoxazole hypersensitive patients presenting with either Stevens-Johnson syndrome or drug reaction with eosinophilia and systemic symptoms. Two of the patients carried the HLA allele of interest, namely HLA-B*13:01. Sulfamethoxazole and nitroso sulfamethoxazole specific T cell clones were generated from T cell lines of co-trimoxazole hypersensitive HLA-B*13:01-positive patients. Clones were characterized for antigen specificity and cross-reactivity with structurally related compounds by measuring proliferation and cytokine release. Surface marker expression was characterized via flow cytometry. Mechanistic studies were conducted to assess pathways of T cell activation in response to antigen stimulation. Peripheral blood mononuclear cells from all patients were stimulated to proliferate and secrete IFN-γ with nitroso sulfamethoxazole. All sulfamethoxazole and nitroso sulfamethoxazole specific T cell clones expressed the CD4+ phenotype and strongly secreted IL-13 as well as IFN-γ, granzyme B and IL-22. No secretion of IL-17 was observed. A number of nitroso sulfamethoxazole-specific clones cross-reacted with nitroso dapsone but not sulfamethoxazole whereas sulfamethoxazole specific clones cross-reacted with nitroso sulfamethoxazole only. The nitroso sulfamethoxazole specific clones were activated in both antigen processing-dependent and -independent manner, while sulfamethoxazole activated T cell responses via direct HLA binding. Furthermore, activation of nitroso sulfamethoxazole-specific, but not sulfamethoxazole-specific, clones was blocked with glutathione. Sulfamethoxazole and nitroso sulfamethoxazole specific T cell clones from hypersensitive patients were CD4+ which suggests that HLA-B*13:01 is not directly involved in the iatrogenic disease observed in co-trimoxazole hypersensitivity patients.


Assuntos
Hipersensibilidade a Drogas/etiologia , Expressão Gênica , Antígeno HLA-B13/genética , Antígeno HLA-B13/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Combinação Trimetoprima e Sulfametoxazol/efeitos adversos , Adulto , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Hipersensibilidade a Drogas/metabolismo , Feminino , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Especificidade do Receptor de Antígeno de Linfócitos T
13.
J Immunol Methods ; 495: 113072, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34000289

RESUMO

This article aims to envisage future perspectives of the lymphocyte transformation test (LTT). We describe the select innovative techniques, which can be integrated at different stages of the LTT to potentially improve the sensitivity, specificity, or practicability of the LTT. We first focus upon the cell sorting techniques comprising immunomagnetic cell separation and flow cytometry, which can be implemented prior and after the LTT culturing step to concentrate and quantify specific immune cell types. Further, we elaborate upon three important omics techniques such as transcriptomics, proteomics, and metabolomics, which can be integrated downstream of the LTT to analyze molecular changes in specific immune cells following drug induced activation and proliferation. We also develop visions, how state of the art techniques used in other scientific fields, can be transferred and applied in the context of in-vitro detection of drug allergy.


Assuntos
Hipersensibilidade a Drogas/diagnóstico , Perfilação da Expressão Gênica , Genômica , Testes Imunológicos , Ativação Linfocitária/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Metabolômica , Biomarcadores/metabolismo , Células Cultivadas , Hipersensibilidade a Drogas/genética , Hipersensibilidade a Drogas/imunologia , Hipersensibilidade a Drogas/metabolismo , Citometria de Fluxo , Humanos , Separação Imunomagnética , Linfócitos/imunologia , Linfócitos/metabolismo , Valor Preditivo dos Testes , Proteômica , Reprodutibilidade dos Testes
14.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922606

RESUMO

Recent research on mast cell biology has turned its focus on MRGPRX2, a new member of the Mas-related G protein-coupled subfamily of receptors (Mrgprs), originally described in nociceptive neurons of the dorsal root ganglia. MRGPRX2, a member of this group, is present not only in neurons but also in mast cells (MCs), specifically, and potentially in other cells of the immune system, such as basophils and eosinophils. As emerging new functions for this receptor are studied, a variety of both natural and pharmacologic ligands are being uncovered, linked to the ability to induce receptor-mediated MC activation and degranulation. The diversity of these ligands, characterized in their human, mice, or rat homologues, seems to match that of the receptor's interactions. Natural ligands include host defense peptides, basic molecules, and key neuropeptides such as substance P and vasointestinal peptide (known for their role in the transmission of pain and itch) as well as eosinophil granule-derived proteins. Exogenous ligands include MC secretagogues such as compound 48/80 and mastoparan, a component of bee wasp venom, and several peptidergic drugs, among which are members of the quinolone family, neuromuscular blocking agents, morphine, and vancomycin. These discoveries shed light on its capacity as a multifaceted participant in naturally occurring responses within immunity and neural stimulus perception, as in responses at the center of immune pathology. In host defense, the mice Mrgprb2 has been proven to aid mast cells in the detection of peptidic molecules from bacteria and in the release of peptides with antimicrobial activities and other immune mediators. There are several potential actions described for it in tissue homeostasis and repair. In the realm of pathologic response, there is evidence to suggest that this receptor is also involved in chronic inflammation. Furthermore, MRGPRX2 has been linked to the pathophysiology of non-IgE-mediated immediate hypersensitivity drug reactions. Different studies have shown its possible role in other allergic diseases as well, such as asthma, atopic dermatitis, contact dermatitis, and chronic spontaneous urticaria. In this review, we sought to cover its function in physiologic processes and responses, as well as in allergic and nonallergic immune disease.


Assuntos
Asma/patologia , Hipersensibilidade a Drogas/patologia , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Animais , Asma/etiologia , Asma/metabolismo , Hipersensibilidade a Drogas/etiologia , Hipersensibilidade a Drogas/metabolismo , Humanos
15.
Curr Opin Immunol ; 72: 65-71, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33857758

RESUMO

Anaphylaxis is caused by a variety of triggers including Food and Drug Administration (FDA)-approved antibiotics, contrast media and neuromuscular blocking drugs (NMBDs). Traditionally, drug-induced anaphylaxis was thought to result mainly from IgE-mediated histamine release from mast cells. Recently, a G protein-coupled receptor known as MRGPRX2 has been identified and shown to be highly expressed on human skin but not lung mast cells. The demonstration that many NMBDs induce degranulation in human mast cells via MRGPRX2 led to the idea that this receptor contributes to NMBD-induced hypersensitivity reactions. However, other studies have raised doubts regarding its role in drug-induced hypersensitivity. This review discusses the current status and controversy on MRGPRX2's role on NMBD-induced hypersensitivity.


Assuntos
Suscetibilidade a Doenças , Hipersensibilidade a Drogas/etiologia , Proteínas do Tecido Nervoso/genética , Bloqueadores Neuromusculares/efeitos adversos , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética , Anafilaxia/etiologia , Anafilaxia/metabolismo , Animais , Biomarcadores , Cálcio/metabolismo , Degranulação Celular/imunologia , Hipersensibilidade a Drogas/metabolismo , Predisposição Genética para Doença , Humanos , Imunoglobulina E/imunologia , Mastócitos/imunologia , Mastócitos/metabolismo , Mutação , Receptores de IgE/metabolismo
16.
Neurosci Lett ; 751: 135746, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33610674

RESUMO

Symptoms that resemble allergic reactions, such as pruritus, flushing, and hypotension, are common side effects of therapeutic drugs. In a true allergic reaction, Immunoglobulin E (IgE) antibodies recognize the drug and trigger mediator release from mast cells through cross-linking of IgE receptors. However, many drugs can bypass this pathway and can activate mast cells directly through MRGPRX2, a G protein-coupled receptor that responds to a wide range of small molecules, peptides, and proteins that have little in common except for a net positive charge. This review will provide an overview of MRGPRX2, including its expression pattern, studies of its pharmacology, and its orthologs. It also will review evidence for MRGPRX2 activation by many drugs closely associated with these reactions.


Assuntos
Hipersensibilidade a Drogas/metabolismo , Mastócitos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Antipruriginosos/farmacologia , Antipruriginosos/uso terapêutico , Hipersensibilidade a Drogas/tratamento farmacológico , Humanos , Mastócitos/efeitos dos fármacos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Neuropeptídeos/genética
17.
Immunopharmacol Immunotoxicol ; 43(1): 77-84, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33327824

RESUMO

BACKGROUND: Clozapine is one of the most widely used second-generation antipsychotics in clinic. However, allergy-like symptoms such as rash and angioedema have been reported frequently, and the mechanism is still not clear. Mas-related G protein-coupled receptor X2 (MRGPRX2) expressed on mast cells is a crucial receptor for drug induced pseudo-allergic reactions. Therefore, we explored whether the symptoms induced by clozapine were associated with allergic reaction through MRGPRX2. METHODS: The effects of clozapine on pseudo-allergic reactions were evaluated by mast cells degranulation and calcium mobilization assay in vitro, and mice hindpaw swelling, serum histamine detection, avidin and H&E staining assay in vivo. The overexpressed MRGPRX2 cells membrane chromatography (MRGPRX2-HEK293/CMC), MRGPRX2-HEK293 cells calcium mobilization assay and molecular docking were applied to research the correlation between clozapine and MRGPRX2. RESULTS: The study showed that clozapine induced the release of ß-hexosaminidase, histamine and monocyte chemoattractant protein-1 (MCP-1), and trigged calcium mobilization in mast cells. In vivo, clozapine induced paw swelling, degranulation and vasodilation. Furthermore, clozapine could activate the calcium mobilization obviously in MRGPRX2-HEK293 cells, not in NC-HEK293 cells. Clozapine also had a good retention characteristic on MRGPRX2-HEK293/CMC column and the K D value is (2.33 ± 0.21)×10-01M. CONCLUSIONS: Our findings demonstrated that clozapine could induce pseudo-allergic reactions and MRGPRX2 might be the critical receptor for it.


Assuntos
Degranulação Celular/efeitos dos fármacos , Clozapina/efeitos adversos , Clozapina/metabolismo , Hipersensibilidade a Drogas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Animais , Cálcio/metabolismo , Degranulação Celular/fisiologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antagonistas da Serotonina/efeitos adversos , Antagonistas da Serotonina/metabolismo
18.
Front Immunol ; 11: 584966, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193403

RESUMO

Intravenous injection of nanopharmaceuticals can induce severe hypersensitivity reactions (HSRs) resulting in anaphylactoid shock in a small percentage of patients, a phenomenon explicitly reproducible in pigs. However, there is a debate in the literature on whether the pig model of HSRs can be used as a safety test for the prediction of severe adverse reactions in humans. Given the importance of using appropriate animal models for toxicity/safety testing, the choice of the right species and model is a critical decision. In order to facilitate the decision process and to expand the relevant information regarding the pig or no pig dilemma, this review examines an ill-fated clinical development program conducted by Baxter Corporation in the United States 24 years ago, when HemeAssist, an αα (diaspirin) crosslinked hemoglobin-based O2 carrier (HBOC) was tested in trauma patients. The study showed increased mortality in the treatment group relative to controls and had to be stopped. This disappointing result had far-reaching consequences and contributed to the setback in blood substitute research ever since. Importantly, the increased mortality of trauma patients was predicted in pig experiments conducted by US Army scientists, yet they were considered irrelevant to humans. Here we draw attention to that the underlying cause of hemoglobin-induced aggravation of hemorrhagic shock and severe HSRs have a common pathomechanism: cardiovascular distress due to vasoconstrictive effects of hemoglobin (Hb) and reactogenic nanomedicines, manifested, among others, in pulmonary hypertension. The main difference is that in the case of Hb this effect is due to NO-binding, while nanomedicines can trigger the release of proinflammatory mediators. Because of the higher sensitivity of cloven-hoof animals to this kind of cardiopulmonary distress compared to rodents, these reactions can be better reproduced in pigs than in murine or rat models. When deciding on the battery of tests and the appropriate models to identify the potential hazard for nanomedicine-induced severe HSR, the pros and cons of the various species must be considered carefully.


Assuntos
Hipersensibilidade a Drogas/metabolismo , Hipersensibilidade a Drogas/prevenção & controle , Hemoglobinas/metabolismo , Oxigênio/metabolismo , Anafilaxia/metabolismo , Anafilaxia/prevenção & controle , Animais , Modelos Animais de Doenças , Humanos , Hipertensão Pulmonar/metabolismo , Nanomedicina/métodos , Choque Hemorrágico/metabolismo , Choque Hemorrágico/prevenção & controle
19.
Sci Rep ; 10(1): 16146, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999394

RESUMO

MAS-related G protein coupled receptor-X2 (MRGPRX2), expressed in human mast cells, is associated with drug-induced pseudo-allergic reactions. Dogs are highly susceptible to drug-induced anaphylactoid reactions caused by various drugs; however, the distribution and physiological function of canine MRGPR family genes, including MRGPRX2, remain largely unknown. In the present study, we clarified the distribution of dog MRGPR family genes by real-time quantitative PCR and in situ hybridisation. We also investigated the stimulatory effects of various histamine-releasing agents, including fluoroquinolones, on HEK293 cells transiently transfected with dog MRGPR family genes to identify their physiological function. Dog MRGPRX2 and MRGPRG were distributed in a limited number of tissues, including the skin (from the eyelid, abdomen, and cheek), whereas MRGPRD and MRGPRF were extensively expressed in almost all tissues examined. Histochemical and in situ hybridisation analyses revealed that MRGPRX2 was expressed in dog connective tissue-type mast cells in the skin. Intracellular Ca2+ mobilisation assay revealed that HEK293 cells, expressing dog MRGPRX2 or human MRGPRX2, but not dog MRGPRD, MRGPRF, and MRGPRG, responded to histamine-releasing agents. Our results suggest that dog MRGPRX2 is the functional orthologue of human MRGPRX2 and plays an essential role in drug-induced anaphylactoid reactions in dogs.


Assuntos
Anafilaxia/genética , Cães/genética , Proteínas do Tecido Nervoso/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética , Anafilaxia/metabolismo , Animais , Cálcio/metabolismo , Degranulação Celular/efeitos dos fármacos , Hipersensibilidade a Drogas/genética , Hipersensibilidade a Drogas/metabolismo , Células HEK293 , Humanos , Mastócitos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo
20.
Chem Commun (Camb) ; 56(80): 11973-11976, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33033809

RESUMO

The synthesis of structurally new haptens and the development of suitable antigens are essential for boosting the sensitivity of drug allergy diagnostic testing. Unprecedented structural antigens for benzylpenicillin and amoxicillin are characterised and evaluated in a cohort of 70 subjects with a turnkey solution based on consumer electronics.


Assuntos
Testes Diagnósticos de Rotina/métodos , Hipersensibilidade a Drogas/metabolismo , Haptenos/química , Lactamas/metabolismo , beta-Lactamas/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Amoxicilina/química , Antibacterianos/química , Aztreonam/química , Carbonatos/química , Estudos de Coortes , Diaminas/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Penicilina G/química , Albumina Sérica Humana/química , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...