Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurogenetics ; 22(2): 105-115, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33937968

RESUMO

Dravet syndrome (DS) is a rare and severe epileptic syndrome of childhood with prevalence between 1/22,000 and 1/49,900 of live births. Approximately 80% of patients with this syndrome present SCN1A pathogenic variants, which encodes an alpha subunit of a neural voltage-dependent sodium channel. There is a correlation between PCDH19 pathogenic variants, encodes the protocadherin 19, and a similar disease to DS known as DS-like phenotype. The present review aims to clarify the differences between DS and DS-like phenotype according to the SCN1A and PCDH19 variants. A systematic review was conducted in PubMed and Virtual Health Library (VHL) databases, using "Dravet Syndrome" and "Severe Myoclonic Epilepsy in Infancy (SMEI)" search words, selecting cohort of studies published in journal with impact factor of two or greater. The systematic review was according to the Preferred Reporting Items for Systematic Review and Meta-Analysis recommendations. Nineteen studies were included in the present review, and a significant proportion of patients with DS-carrying SCN1A was greater than patients with DS-like phenotype-harboring PCDH19 variants (76.6% versus 23.4%). When clinical and genetic data were correlated, autism was predominantly observed in patients with DS-like-carrying PCDH19 variants compared to SCN1A variant carriers (62.5% versus 37.5%, respectively, P-value = 0.044, P-value corrected = 0.198). In addition, it was noticed a significant predisposition to hyperthermia during epilepsy crisis in individuals carrying PCDH19 variants (P-value = 0.003; P-value corrected = 0.027). The present review is the first to point out differences between the DS and DS-like phenotype according to the SCN1A and PCDH19 variants.


Assuntos
Epilepsias Mioclônicas/genética , Heterogeneidade Genética , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Protocaderinas/genética , Transtorno Autístico/genética , Humanos , Hipertermia/genética , Canal de Sódio Disparado por Voltagem NAV1.1/deficiência , Estudos Observacionais como Assunto , Fenótipo , Protocaderinas/deficiência , Convulsões Febris/genética , Síndrome
2.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972431

RESUMO

Febrile seizures (FSs) are the most common convulsion in infancy and childhood. Considering the limitations of current treatments, it is important to examine the mechanistic cause of FSs. Prompted by a genome-wide association study identifying TMEM16C (also known as ANO3) as a risk factor of FSs, we showed previously that loss of TMEM16C function causes hippocampal neuronal hyperexcitability [Feenstra et al., Nat. Genet. 46, 1274-1282 (2014)]. Our previous study further revealed a reduction in the number of warm-sensitive neurons that increase their action potential firing rate with rising temperature of the brain region harboring these hypothalamic neurons. Whereas central neuronal hyperexcitability has been implicated in FSs, it is unclear whether the maximal temperature reached during fever or the rate of body temperature rise affects FSs. Here we report that mutant rodent pups with TMEM16C eliminated from all or a subset of their central neurons serve as FS models with deficient thermoregulation. Tmem16c knockout (KO) rat pups at postnatal day 10 (P10) are more susceptible to hyperthermia-induced seizures. Moreover, they display a more rapid rise of body temperature upon heat exposure. In addition, conditional knockout (cKO) mouse pups (P11) with TMEM16C deletion from the brain display greater susceptibility of hyperthermia-induced seizures as well as deficiency in thermoregulation. We also found similar phenotypes in P11 cKO mouse pups with TMEM16C deletion from Ptgds-expressing cells, including temperature-sensitive neurons in the preoptic area (POA) of the anterior hypothalamus, the brain region that controls body temperature. These findings suggest that homeostatic thermoregulation plays an important role in FSs.


Assuntos
Regulação da Temperatura Corporal/genética , Canais de Cloreto/genética , Febre/genética , Hipertermia/genética , Área Pré-Óptica/metabolismo , Convulsões Febris/genética , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Canais de Cloreto/deficiência , Feminino , Febre/induzido quimicamente , Febre/metabolismo , Febre/fisiopatologia , Expressão Gênica , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Hipertermia/metabolismo , Hipertermia/fisiopatologia , Ácido Caínico/administração & dosagem , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Área Pré-Óptica/fisiopatologia , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Ratos , Convulsões Febris/induzido quimicamente , Convulsões Febris/metabolismo , Convulsões Febris/fisiopatologia
3.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805094

RESUMO

Tristetraprolin (TTP), an RNA-binding protein, controls the stability of RNA by capturing AU-rich elements on their target genes. It has recently been identified that TTP serves as an anti-inflammatory protein by guiding the unstable mRNAs of pro-inflammatory proteins in multiple cells. However, it has not yet been investigated whether TTP affects the inflammatory responses in the hypothalamus. Since hypothalamic inflammation is tightly coupled to the disturbance of energy homeostasis, we designed the current study to investigate whether TTP regulates hypothalamic inflammation and thereby affects energy metabolism by utilizing TTP-deficient mice. We observed that deficiency of TTP led to enhanced hypothalamic inflammation via stimulation of a variety of pro-inflammatory genes. In addition, microglial activation occurred in the hypothalamus, which was accompanied by an enhanced inflammatory response. In line with these molecular and cellular observations, we finally confirmed that deficiency of TTP results in elevated core body temperature and energy expenditure. Taken together, our findings unmask novel roles of hypothalamic TTP on energy metabolism, which is linked to inflammatory responses in hypothalamic microglial cells.


Assuntos
Hipertermia/genética , Hipotálamo/patologia , Microglia/metabolismo , Tristetraprolina/deficiência , Elementos Ricos em Adenilato e Uridilato , Animais , Temperatura Corporal , Peso Corporal , Citocinas/metabolismo , Homeostase , Inflamação , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estabilidade de RNA , RNA Mensageiro/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo
4.
J Neurochem ; 156(5): 604-613, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32858780

RESUMO

De novo heterozygous mutations in the STX1B gene, encoding syntaxin 1B, cause a familial, fever-associated epilepsy syndrome. Syntaxin 1B is an essential component of the pre-synaptic neurotransmitter release machinery as a soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein that regulates the exocytosis of synaptic vesicles. It is also involved in regulating the functions of the SLC6 family of neurotransmitter transporters that reuptake neurotransmitters, including inhibitory neurotransmitters, such as γ-aminobutyric acid (GABA) and glycine. The purpose of the present study was to elucidate the molecular mechanisms underlying the development of febrile seizures by examining the effects of syntaxin 1B haploinsufficiency on inhibitory synaptic transmission during hyperthermia in a mouse model. Stx1b gene heterozygous knockout (Stx1b+/- ) mice showed increased susceptibility to febrile seizures and drug-induced seizures. In cultured hippocampal neurons, we examined the temperature-dependent properties of neurotransmitter release and reuptake by GABA transporter-1 (GAT-1) at GABAergic neurons using whole-cell patch-clamp recordings. The rate of spontaneous quantal GABA release was reduced in Stx1b+/- mice. The hyperthermic temperature increased the tonic GABAA current in wild-type (WT) synapses, but not in Stx1b+/- synapses. In WT neurons, recurrent bursting activities were reduced in a GABA-dependent manner at hyperthermic temperature; however, this was abolished in Stx1b+/- neurons. The blockade of GAT-1 increased the tonic GABAA current and suppressed recurrent bursting activities in Stx1b+/- neurons at the hyperthermic temperature. These data suggest that functional abnormalities associated with GABA release and reuptake in the pre-synaptic terminals of GABAergic neurons may increase the excitability of the neural circuit with hyperthermia.


Assuntos
Temperatura Corporal/fisiologia , Líquido Extracelular/metabolismo , Convulsões/metabolismo , Sinapses/metabolismo , Sintaxina 1/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Hipocampo/metabolismo , Hipertermia/genética , Hipertermia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pentilenotetrazol/toxicidade , Convulsões/induzido quimicamente , Convulsões/genética , Sinapses/genética , Sintaxina 1/genética
5.
Biochem J ; 478(1): 179-196, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33346336

RESUMO

Human body temperature limits below 40°C during heat stroke or fever. The implications of prolonged exposure to the physiologically relevant temperature (40°C) on cellular mechanobiology is poorly understood. Here, we have examined the effects of heat stress (40°C for 72 h incubation) in human lung adenocarcinoma (A549), mouse melanoma (B16F10), and non-cancerous mouse origin adipose tissue cells (L929). Hyperthermia increased the level of ROS, γ-H2AX and HSP70 and decreased mitochondrial membrane potential in the cells. Heat stress impaired cell division, caused G1 arrest, induced cellular senescence, and apoptosis in all the tested cell lines. The cells incubated at 40°C for 72 h displayed a significant decrease in the f-actin level and cellular traction as compared with cells incubated at 37°C. Also, the cells showed a larger focal adhesion area and stronger adhesion at 40°C than at 37°C. The mitotic cells at 40°C were unable to round up properly and displayed retracting actin stress fibers. Hyperthermia down-regulated HDAC6, increased the acetylation level of microtubules, and perturbed the chromosome alignment in the mitotic cells at 40°C. Overexpression of HDAC6 rescued the cells from the G1 arrest and reduced the delay in cell rounding at 40°C suggesting a crucial role of HDAC6 in hyperthermia mediated responses. This study elucidates the significant role of cellular traction, focal adhesions, and cytoskeletal networks in mitotic cell rounding and chromosomal misalignment. It also highlights the significance of HDAC6 in heat-evoked senile cellular responses.


Assuntos
Senescência Celular/fisiologia , Citoesqueleto/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Desacetilase 6 de Histona/metabolismo , Hipertermia/metabolismo , Fibras de Estresse/metabolismo , Acetilação , Actinas/metabolismo , Apoptose/fisiologia , Adesão Celular/fisiologia , Divisão Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Forma Celular , Tamanho Celular , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Desacetilase 6 de Histona/genética , Humanos , Hipertermia/genética , Potencial da Membrana Mitocondrial/fisiologia , Microtúbulos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
6.
J Therm Biol ; 92: 102666, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32888569

RESUMO

Although Litopenaeus vannamei is a widely studied species, the information on how the organisms respond to natural daily variations of environmental conditions such as temperature and dissolved oxygen, and how such conditions alter the physiological responses, is scarce. In the present work, the strategies used by shrimps to cope with temperature and dissolved oxygen fluctuations during 24 days were investigated through the evaluation of oxygen consumption and heat shock proteins (HSP) gene expression. During daily fluctuations, no change in oxygen consumption in the short-term, but a significant increase in the long-term during hyperthermia conditions was registered, whereas a significant decrease during hypoxia was observed during all the bioassay. On the other hand, HSP70 and HSP90 gene expression increased in gills under thermal stress but was down-regulated under hypoxia, in both the short- and the long-term. This study highlights that to counteract environmental variations of temperature and dissolved oxygen, the shrimps use molecular compensatory mechanisms (HSP gene expression) that are different to those used under constant hypoxic conditions, suggesting that hypoxia can compromise physiological cytoprotection.


Assuntos
Proteínas de Artrópodes/genética , Proteínas de Choque Térmico/genética , Oxigênio/metabolismo , Penaeidae/fisiologia , Estresse Fisiológico , Animais , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/genética , Hipertermia/genética , Hipertermia/veterinária , Hipóxia/genética , Hipóxia/veterinária , Consumo de Oxigênio , Penaeidae/genética
7.
J Biol Chem ; 295(45): 15226-15235, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32826313

RESUMO

Mutations in the skeletal muscle ryanodine receptor gene (RYR1) can cause susceptibility to malignant hyperthermia (MH), a potentially lethal genetic condition triggered by volatile anesthetics. MH is associated with hypermetabolism, which has directed research interest into oxidative phosphorylation and muscle bioenergetics. The most common cause of MH in the United Kingdom is the c.7300G>A RYR1 variant, which is present in ∼16% of MH families. Our study focuses on the MH susceptible G2435R-RYR1 knock-in mouse model, which is the murine equivalent of the human c.7300G>A genotype. Using a combination of transcriptomics, protein expression, and functional analysis, we investigated adult muscle fiber bioenergetics in this mouse model. RNA-Seq data showed reduced expression of genes associated with mitochondria and fatty acid oxidation in RYR1 mutants when compared with WT controls. Mitochondrial function was assessed by measuring oxygen consumption rates in permeabilized muscle fibers. Comparisons between WT and homozygous G2435R-RYR1 mitochondria showed a significant increase in complex I-facilitated oxidative phosphorylation in mutant muscle. Furthermore, we observed a gene-dose-specific increase in reactive oxygen species production in G2435R-RYR1 muscle fibers. Collectively, these findings provide evidence of metabolic defects in G2435R-RYR1 knock-in mouse muscle under basal conditions. Differences in metabolic profile could be the result of differential gene expression in metabolic pathways, in conjunction with mitochondrial damage accumulated from chronic exposure to increased oxidative stress.


Assuntos
Hipertermia/genética , Hipertermia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Feminino , Masculino , Camundongos
8.
Sci Rep ; 10(1): 8799, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472067

RESUMO

Thermal homeostasis in mammalians is a self-regulating process by which biological systems maintain an internal thermal stability, even under different temperature conditions; however, the molecular mechanisms involved under warm ambient temperature remain unclear. Here, we aimed to clarify functional significance of transient receptor potential vanilloid receptor 1 (TRPV1) under warm ambient temperature. TRPV1 KO mice exhibited transient hyperthermia when exposed to 30.0 and 32.5 °C, whereas wild-type (WT) mice did not. TRPV1 KO mice exhibited prolonged and prominent hyperthermia upon exposure to 35.0 °C, whereas WT mice showed transient hyperthermia. Hyperthermia also occurs in WT mice that received intracerebroventricular injection of TRPV1 antagonist AMG9810 upon exposure to 35.0 °C. Heat loss behaviors, sleeping and body licking, were deficient in TRPV1 KO mice exposed to warm temperatures. Therefore, the present results indicate that central TRPV1 is crucial for maintaining a constant body temperature via the initiation of heat loss behaviors under warm ambient temperature.


Assuntos
Acrilamidas/efeitos adversos , Comportamento Animal/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/efeitos adversos , Hipertermia/genética , Canais de Cátion TRPV/genética , Acrilamidas/farmacologia , Animais , Regulação da Temperatura Corporal/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Técnicas de Inativação de Genes , Homeostase , Hipertermia/induzido quimicamente , Hipertermia/metabolismo , Infusões Intraventriculares , Masculino , Camundongos , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Temperatura
9.
Int J Mol Med ; 46(1): 58-66, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32377716

RESUMO

Hyperthermia (HT) is considered to be of value as a treatment modality in various cancers. However, the acquisition of thermotolerance in cancer cells due to the induction of heat shock proteins (HSPs) makes HT less effective. Recent findings have indicated that heat shock protein nuclear import factor hikeshi (HIKESHI), also referred to as C11orf73, acts as a nuclear import carrier of Hsp70 under heat stress conditions. The aim of the present study was to determine whether knockdown (KD) of HIKESHI by small interfering RNA (siRNA) can potentiate mild HT (MHT) sensitivity in human oral squamous cell carcinoma (OSCC) HSC­3 cells. The mRNA and protein expression of HIKESHI was found to be markedly suppressed in HSC­3 cells treated with siRNA for HIKESHI (siHIKE). Silencing HIKESHI significantly decreased the cell viability under MHT conditions (42˚C for 90 min). Immunocytochemical and western blot analyses clearly demonstrated that Hsp70 protein translocated from the cytoplasm to the nucleus under MHT conditions, and this translocation was significantly inhibited in cells treated with siHIKE. Treatment of the cells with MHT transiently increased the phosphorylation level of extracellular signal­regulated kinase (ERK)2. Furthermore, the phosphorylation was sustained in HIKESHI­KD cells under MHT conditions, and this sustained phosphorylation was abolished by pretreatment with U0126, an inhibitor of mitogen­activated protein kinase/ERK. In addition, U0126 significantly decreased the viability of cells treated with the combination of HIKESHI­KD and MHT. The data of the present study suggest that HIKESHI silencing enhanced the sensitivity of human OSCC HSC­3 cells to MHT.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Proteínas de Transporte/metabolismo , Hipertermia/metabolismo , Hipertermia/patologia , Neoplasias Bucais/metabolismo , Western Blotting , Carcinoma de Células Escamosas/genética , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Eletroforese em Gel de Poliacrilamida , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Hipertermia/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Neoplasias Bucais/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...