Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167178, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636614

RESUMO

Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by haploinsufficiency of transcription factor 4 (TCF4). In this work, we focused on the cerebral cortex and investigated in detail the progenitor cell dynamics and the outcome of neurogenesis in a PTHS mouse model. Labeling and quantification of progenitors and newly generated neurons at various time points during embryonic development revealed alterations affecting the dynamic of cortical progenitors since the earliest stages of cortex formation in PTHS mice. Consequently, establishment of neuronal populations and layering of the cortex were found to be altered in heterozygotes subjects at birth. Interestingly, defective layering process of pyramidal neurons was partially rescued by reintroducing TCF4 expression using focal in utero electroporation in the cerebral cortex. Coincidentally with a defective dorsal neurogenesis, we found that ventral generation of interneurons was also defective in this model, which may lead to an excitation/inhibition imbalance in PTHS. Overall, sex-dependent differences were detected with more marked effects evidenced in males compared with females. All of this contributes to expand our understanding of PTHS, paralleling the advances of research in autism spectrum disorder and further validating the PTHS mouse model as an important tool to advance preclinical studies.


Assuntos
Córtex Cerebral , Modelos Animais de Doenças , Hiperventilação , Deficiência Intelectual , Neurogênese , Fator de Transcrição 4 , Animais , Fator de Transcrição 4/metabolismo , Fator de Transcrição 4/genética , Feminino , Masculino , Camundongos , Hiperventilação/metabolismo , Hiperventilação/genética , Hiperventilação/patologia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Deficiência Intelectual/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Fácies , Caracteres Sexuais , Interneurônios/metabolismo , Interneurônios/patologia , Células Piramidais/metabolismo , Células Piramidais/patologia , Haploinsuficiência
2.
J Exp Biol ; 225(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35603458

RESUMO

In nature, the green crab exhibits emersion and terrestrial activity at low tide. Treadmill exercise in air (20-23°C) of crabs acclimated to 32 ppt seawater (13°C) revealed an inverse relationship between velocity and duration: 2.0 body lengths (BL) s-1 was sustainable for several minutes, and 0.25 BL s-1 was sustainable for long periods. Fatigue was not due to dehydration. Physiological responses over an 18 h recovery in seawater after near-exhaustive exercise (0.25 BL s-1, 1 h) in air were compared with responses after quiet emersion (1 h) in air. Exercising crabs exhibited transient scaphognathite slowing and progressive increases in heart rate, whereas emersed crabs exhibited persistent inhibition of ventilation and transient heart slowing. Upon return to seawater, all these rates increased above both control and treatment levels. Post-exercise disturbances were more marked and/or longer lasting (e.g. EPOC, hyperventilation, tachycardia, metabolic acidosis, lactate elevation, ionic disturbances) than those after simple air exposure. However, an increase in net acidic equivalent excretion to the environment occurred after emersion but not after exercise. Instead, post-exercise crabs relied on carapace buffering, signalled by elevated haemolymph Ca2+ and Mg2+. Prolonged lowering of haemolymph PCO2 associated with hyperventilation also played a key role in acid-base recovery. EPOC after exercise was 3-fold greater than after emersion, sufficient to support resting MO2 for >14 h. This reflected clearance of a large lactate load, likely by glycogen re-synthesis rather than oxidation. We conclude that the amphibious green crab uses a combination of aquatic and terrestrial strategies to support exercise in air, emersion in air and recovery in seawater.


Assuntos
Braquiúros , Animais , Braquiúros/fisiologia , Hemolinfa/metabolismo , Hiperventilação/metabolismo , Lactatos/metabolismo , Água do Mar
3.
Nat Commun ; 13(1): 2387, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501322

RESUMO

Transcription Factor 4 (TCF4) has been associated with autism, schizophrenia, and other neuropsychiatric disorders. However, how pathological TCF4 mutations affect the human neural tissue is poorly understood. Here, we derive neural progenitor cells, neurons, and brain organoids from skin fibroblasts obtained from children with Pitt-Hopkins Syndrome carrying clinically relevant mutations in TCF4. We show that neural progenitors bearing these mutations have reduced proliferation and impaired capacity to differentiate into neurons. We identify a mechanism through which TCF4 loss-of-function leads to decreased Wnt signaling and then to diminished expression of SOX genes, culminating in reduced progenitor proliferation in vitro. Moreover, we show reduced cortical neuron content and impaired electrical activity in the patient-derived organoids, phenotypes that were rescued after correction of TCF4 expression or by pharmacological modulation of Wnt signaling. This work delineates pathological mechanisms in neural cells harboring TCF4 mutations and provides a potential target for therapeutic strategies for genetic disorders associated with this gene.


Assuntos
Deficiência Intelectual , Neurônios , Proliferação de Células/genética , Criança , Humanos , Hiperventilação/metabolismo , Deficiência Intelectual/genética , Neurônios/metabolismo , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo
4.
J Biol Chem ; 297(6): 101381, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748727

RESUMO

Transcription factor 4 (TCF4) is a basic helix-loop-helix transcription factor essential for neurocognitive development. The aberrations in TCF4 are associated with neurodevelopmental disorders including schizophrenia, intellectual disability, and Pitt-Hopkins syndrome, an autism-spectrum disorder characterized by developmental delay. Several disease-associated missense mutations in TCF4 have been shown to interfere with TCF4 function, but for many mutations, the impact remains undefined. Here, we tested the effects of 12 functionally uncharacterized disease-associated missense mutations and variations in TCF4 using transient expression in mammalian cells, confocal imaging, in vitro DNA-binding assays, and reporter assays. We show that Pitt-Hopkins syndrome-associated missense mutations within the basic helix-loop-helix domain of TCF4 and a Rett-like syndrome-associated mutation in a transcription activation domain result in altered DNA-binding and transcriptional activity of the protein. Some of the missense variations found in schizophrenia patients slightly increase TCF4 transcriptional activity, whereas no effects were detected for missense mutations linked to mild intellectual disability. We in addition find that the outcomes of several disease-related mutations are affected by cell type, TCF4 isoform, and dimerization partner, suggesting that the effects of TCF4 mutations are context-dependent. Together with previous work, this study provides a basis for the interpretation of the functional consequences of TCF4 missense variants.


Assuntos
Fácies , Hiperventilação , Deficiência Intelectual , Mutação de Sentido Incorreto , Esquizofrenia , Fator de Transcrição 4 , Transcrição Gênica , Substituição de Aminoácidos , Animais , Células HEK293 , Sequências Hélice-Alça-Hélice , Humanos , Hiperventilação/genética , Hiperventilação/metabolismo , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Ratos , Ratos Sprague-Dawley , Esquizofrenia/genética , Esquizofrenia/metabolismo , Fator de Transcrição 4/química , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo
5.
Nat Commun ; 12(1): 5962, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645823

RESUMO

Pitt-Hopkins syndrome (PTHS) is a rare autism spectrum-like disorder characterized by intellectual disability, developmental delays, and breathing problems involving episodes of hyperventilation followed by apnea. PTHS is caused by functional haploinsufficiency of the gene encoding transcription factor 4 (Tcf4). Despite the severity of this disease, mechanisms contributing to PTHS behavioral abnormalities are not well understood. Here, we show that a Tcf4 truncation (Tcf4tr/+) mouse model of PTHS exhibits breathing problems similar to PTHS patients. This behavioral deficit is associated with selective loss of putative expiratory parafacial neurons and compromised function of neurons in the retrotrapezoid nucleus that regulate breathing in response to tissue CO2/H+. We also show that central Nav1.8 channels can be targeted pharmacologically to improve respiratory function at the cellular and behavioral levels in Tcf4tr/+ mice, thus establishing Nav1.8 as a high priority target with therapeutic potential in PTHS.


Assuntos
Haploinsuficiência , Proteínas de Homeodomínio/genética , Hiperventilação/genética , Deficiência Intelectual/genética , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Neurônios/metabolismo , Fator de Transcrição 4/genética , Fatores de Transcrição/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Benzimidazóis/farmacologia , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Modelos Animais de Doenças , Fácies , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Hiperventilação/tratamento farmacológico , Hiperventilação/metabolismo , Hiperventilação/patologia , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Masculino , Camundongos , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Pirazóis/farmacologia , Respiração/efeitos dos fármacos , Fator de Transcrição 4/deficiência , Fatores de Transcrição/metabolismo
6.
Mol Psychiatry ; 26(11): 6562-6577, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33963287

RESUMO

The establishment of neural circuits depends on precise neuronal positioning in the cortex, which occurs via a tightly coordinated process of neuronal differentiation, migration, and terminal localization. Deficits in this process have been implicated in several psychiatric disorders. Here, we show that the transcription factor Tcf4 controls neuronal positioning during brain development. Tcf4-deficient neurons become mispositioned in clusters when their migration to the cortical plate is complete. We reveal that Tcf4 regulates the expression of cell adhesion molecules to control neuronal positioning. Furthermore, through in vivo extracellular electrophysiology, we show that neuronal functions are disrupted after the loss of Tcf4. TCF4 mutations are strongly associated with schizophrenia and cause Pitt-Hopkins syndrome, which is characterized by severe intellectual disability. Thus, our results not only reveal the importance of neuronal positioning in brain development but also provide new insights into the potential mechanisms underlying neurological defects linked to TCF4 mutations.


Assuntos
Hiperventilação , Deficiência Intelectual , Adesão Celular , Fácies , Humanos , Hiperventilação/genética , Hiperventilação/metabolismo , Deficiência Intelectual/genética , Neurônios/metabolismo , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo
7.
Clin Physiol Funct Imaging ; 41(1): 1-3, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33108041

RESUMO

BACKGROUND: Exhaled nitric oxide (FeNO) measurements and eucapnic voluntary hyperventilation (EVH) tests have been used as diagnostic tools for asthma. Data on the impact of hyperventilation on the level of FeNO are limited. AIM: We aimed to evaluate whether EVH tests affect the level of FeNO in children aged 10-16 years. METHODS: A total of 234 children aged 10-16 years had a 6-min EVH test performed. In total, FeNO values for 153 of 234 children were measured before the test and within 15 min after the test. According to a baseline FeNO level of 20 ppb, children were divided into two groups: those with low values (FeNO < 20 ppb) and those with high values (FeNO ≥ 20 ppb). RESULTS: The median age of the children was 13.4 years (interquartile range 12.3-15.3 years); 58% were boys and 42% were girls. Of these children, 51% were sensitized to aeroallergens. In 101 of 153 children (66%), the FeNO values decreased after the EVH test. In children with low and high baseline levels, the median level of FeNO decreased after the EVH test: 10.5 ppb before versus 9.5 ppb after (p < .011), and 31.0 ppb before versus 28.0 ppb after (p < .011), respectively. The decrease in FeNO after EVH test was not associated with induced bronchoconstriction expressed as a change in FEV1 (Rs  = .19). CONCLUSIONS: The EVH test decreases FeNO levels. Therefore, FeNO should be measured before an EVH test is performed.


Assuntos
Asma/diagnóstico , Hiperventilação/metabolismo , Óxido Nítrico/metabolismo , Adolescente , Criança , Expiração , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Reprodutibilidade dos Testes
8.
Exp Physiol ; 105(12): 2226-2237, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33111424

RESUMO

NEW FINDINGS: What is the central question of this study? How does sternocleidomastoid blood flow change in response to increasing ventilation and whole-body exercise intensity? What is the main finding and its importance? Sternocleidomastoid blood flow increased with increasing ventilation. For a given ventilation, sternocleidomastoid blood flow was lower during whole-body exercise compared to resting hyperpnoea. These findings suggest that locomotor muscle work exerts an effect on respiratory muscle blood flow that can be observed in the sternocleidomastoid. ABSTRACT: Respiratory muscle work influences the distribution of blood flow during exercise. Most studies have focused on blood flow to the locomotor musculature rather than the respiratory muscles, owing to the complex anatomical arrangement of respiratory muscles. The purpose of this study was to examine how accessory respiratory (i.e. sternocleidomastoid, and muscles in the intercostal space) muscle blood flow changes in response to locomotor muscle work. Seven men performed 5 min bouts of constant load cycling exercise trials at 30%, 60% and 90% of peak work rate in a randomized order, followed by 5 min bouts of voluntary hyperpnoea (VH) matching the ventilation achieved during each exercise (EX) trial. Blood-flow index (BFI) of the vastus lateralis, sternocleidomastoid (SCM) and seventh intercostal space (IC) were estimated using near-infrared spectroscopy and indocyanine green and expressed relative to resting levels. BFISCM was greater during VH compared to EX (P = 0.002) and increased with increasing exercise intensity (P = 0.036). BFISCM reached 493 ± 219% and 301 ± 215% rest during VH and EX at 90% peak work rate, respectively. BFIIC increased to 242 ± 178% and 210 ± 117% rest at 30% peak work rate during VH and EX, respectively. No statistically significant differences in BFIIC were observed with increased work rate during VH or EX (both P > 0.05). Moreover, there was no observed difference in BFIIC between conditions (P > 0.05). BFISCM was lower for a given minute ventilation during EX compared to VH, suggesting that accessory respiratory muscle blood flow is influenced by whole-body exercise.


Assuntos
Exercício Físico/fisiologia , Hiperventilação/fisiopatologia , Músculo Quadríceps/irrigação sanguínea , Fluxo Sanguíneo Regional/fisiologia , Músculos Respiratórios/irrigação sanguínea , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Hemodinâmica/fisiologia , Humanos , Hiperventilação/metabolismo , Verde de Indocianina/metabolismo , Masculino , Consumo de Oxigênio/fisiologia , Músculo Quadríceps/metabolismo , Músculo Quadríceps/fisiologia , Respiração , Músculos Respiratórios/metabolismo , Músculos Respiratórios/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos
9.
Am J Physiol Regul Integr Comp Physiol ; 319(3): R329-R342, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32697653

RESUMO

Peripheral chemosensitivity in fishes is thought to be mediated by serotonin-enriched neuroepithelial cells (NECs) that are localized to the gills of adults and the integument of larvae. In adult zebrafish (Danio rerio), branchial NECs are presumed to mediate the cardiorespiratory reflexes associated with hypoxia or hypercapnia, whereas in larvae, there is indirect evidence linking cutaneous NECs to hypoxic hyperventilation and hypercapnic tachycardia. No study yet has examined the ventilatory response of larval zebrafish to hypercapnia, and regardless of developmental stage, the signaling pathways involved in CO2 sensing remain unclear. In the mouse, a background potassium channel (TASK-2) contributes to the sensitivity of chemoreceptor cells to CO2. Zebrafish possess two TASK-2 channel paralogs, TASK-2 and TASK-2b, encoded by kcnk5a and kcnk5b, respectively. The present study aimed to determine whether TASK-2 channels are expressed in NECs of larval zebrafish and whether they are involved in CO2 sensing. Using immunohistochemical approaches, TASK-2 protein was observed on the surface of NECs in larvae. Exposure of larvae to hypercapnia caused cardiac and breathing frequencies to increase, and these responses were blunted in fish experiencing TASK-2 and/or TASK-2b knockdown. The results of these experiments suggest that TASK-2 channels are involved in CO2 sensing by NECs and contribute to the initiation of reflex cardiorespiratory responses during exposure of larvae to hypercapnia.


Assuntos
Dióxido de Carbono/metabolismo , Hipercapnia/metabolismo , Hipóxia/metabolismo , Células Neuroepiteliais/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Células Quimiorreceptoras/metabolismo , Brânquias/metabolismo , Hiperventilação/metabolismo , Células Neuroepiteliais/citologia , Oxigênio/metabolismo , Peixe-Zebra/fisiologia
10.
Dis Model Mech ; 13(7)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32641419

RESUMO

Mammalian transcription factor 4 (TCF4) has been linked to schizophrenia and intellectual disabilities, such as Pitt-Hopkins syndrome (PTHS). Here, we show that similarly to mammalian TCF4, fruit fly orthologue Daughterless (Da) is expressed widely in the Drosophila brain. Furthermore, silencing of da, using several central nervous system-specific Gal4 driver lines, impairs appetitive associative learning of the larvae and leads to decreased levels of the synaptic proteins Synapsin (Syn) and Discs large 1 (Dlg1), suggesting the involvement of Da in memory formation. Here, we demonstrate that Syn and dlg1 are direct target genes of Da in adult Drosophila heads, as Da binds to the regulatory regions of these genes and the modulation of Da levels alter the levels of Syn and dlg1 mRNA. Silencing of da also affects negative geotaxis of the adult flies, suggesting the impairment of locomotor function. Overall, our findings suggest that Da regulates Drosophila larval memory and adult negative geotaxis, possibly via its synaptic target genes Syn and dlg1 These behavioural phenotypes can be further used as a PTHS model to screen for therapeutics.This article has an associated First Person interview with the first author of the paper.


Assuntos
Aprendizagem por Associação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Comportamento Animal , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Hiperventilação/metabolismo , Deficiência Intelectual/metabolismo , Neurônios/metabolismo , Proteoma , Sinapses/metabolismo , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Encéfalo/embriologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Fácies , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Hiperventilação/genética , Hiperventilação/fisiopatologia , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Larva/genética , Larva/metabolismo , Atividade Motora , Transdução de Sinais , Sinapses/genética , Sinapsinas/genética , Sinapsinas/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
Nagoya J Med Sci ; 82(2): 281-289, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32581407

RESUMO

It is unsettled whether increased exercise ventilation in Fontan subjects is due to increased pulmonary dead space or augmented ventilatory drive. Twenty-six Fontan patients underwent symptom-limited treadmill cardiopulmonary exercise testing. Two groups of age- and sex- matched subjects served as controls: the biventricularly repaired (Bi, n = 18), and the "true" control (C, n = 29) groups. Peak oxygen uptake (V̇O2peak) was not different among groups (41.0 +/- 8.4 ml/min/kg, 43.5 +/- 6.6 ml/min/kg, and 45.9 +/- 11.6 ml/min/kg for Fontan, Bi, and C groups, respectively, p = 0.16). Fontan subjects, however, showed steeper alveolar ventilation/carbon-dioxide (V̇A/V̇CO2) regression slope (35.5 +/- 5.3, 28.7 +/- 3.8, and 29.5 +/- 3.0 l/ml, for Fontan, Bi, and C groups, respectively, p<0.0001), and lower end-expiratory carbon-dioxide fraction (FetCO2VAT) at ventilatory threshold (VAT) (4.4 +/- 0.5%, 5.5 +/- 0.5%, and 5.5 +/- 0.4%, for Fontan, Bi, and C groups, respectively, p<0.001). The dead-space ventilation fraction at VAT was similar among groups (0.33 +/- 0.06, 0.33 +/- 0.04, 0.35 +/- 0.05 for Fontan, Bi, and C groups, respectively, p = 0.54). In Fontan subjects, arterial oxygen saturation at rest (SaO2rest) was correlated with V̇A/V̇CO2 regression slope (r = -0.41, p = 0.04) and with FetCO2VAT (p = -0.53, p<0.01). We conclude that Fontan patients show exercise hyperventilation due to augmented central and/or peripheral ventilatory drive, which is further augmented by residual hypoxemia.


Assuntos
Dióxido de Carbono/metabolismo , Técnica de Fontan , Cardiopatias Congênitas/cirurgia , Hiperventilação/fisiopatologia , Hipóxia/fisiopatologia , Consumo de Oxigênio/fisiologia , Ventilação Pulmonar/fisiologia , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Dupla Via de Saída do Ventrículo Direito/cirurgia , Exercício Físico , Teste de Esforço , Feminino , Cardiopatias Congênitas/metabolismo , Humanos , Hiperventilação/metabolismo , Hipóxia/metabolismo , Masculino , Atresia Pulmonar/cirurgia , Estenose da Valva Pulmonar/cirurgia , Espaço Morto Respiratório , Transposição dos Grandes Vasos/cirurgia , Atresia Tricúspide/cirurgia
12.
World Neurosurg ; 133: e567-e575, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31561041

RESUMO

OBJECTIVE: Hyperventilation is a controversial treatment in traumatic brain injury (TBI). Prophylactic severe hyperventilation (below 3.3 kPa/25 mm Hg) is generally avoided, due to the risk of cerebral ischemia. Mild hyperventilation (arterial pCO2 within 4.0-4.5 kPa/30-34 mm Hg) in cases of intracranial hypertension is commonly used, but its safety and benefits are not fully elucidated. The aim of this study was to evaluate the use of mild hyperventilation and its relation to cerebral energy metabolism, pressure autoregulation, and clinical outcome in TBI. METHODS: This retrospective study was based on 120 patients with severe TBI treated at the neurointensive care unit, Uppsala University Hospital, Sweden, between 2008 and 2018. Data from cerebral microdialysis (glucose, pyruvate, and lactate), arterial pCO2, and pressure reactivity index were analyzed for the first 3 days post-injury. RESULTS: Mild hyperventilation, 4.0-4.5 kPa (30-34 mm Hg), was more frequently used early and the patients were gradually normoventilated. Low pCO2 was associated with slightly higher intracranial pressure and slightly lower cerebral perfusion pressure (P < 0.01). There was no univariate correlation between low pCO2 and worse cerebral energy metabolism. Multiple linear regression analysis showed that mild hyperventilation was associated with lower pressure reactivity index on day 2 (P = 0.03), suggesting better pressure autoregulation. Younger age and lower intracranial pressure were also associated with lower pressure reactivity index. CONCLUSIONS: These findings support the notion that mild hyperventilation is safe and may improve cerebrovascular reactivity.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Hiperventilação/metabolismo , Hiperventilação/fisiopatologia , Adulto , Criança , Metabolismo Energético/fisiologia , Feminino , Homeostase/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento
13.
Acupunct Med ; 37(5): 277-282, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31412706

RESUMO

OBJECTIVES: To determine whether acupuncture at GB34 affects cerebral blood flow (CBF) via the anterior cerebral arteries (ACAs) and middle cerebral arteries (MCAs). METHODS: This study included 10 healthy young male volunteers. CBF velocity and cerebrovascular reactivity (CVR) were measured using transcranial Doppler sonography (TCD). The changes in hyperventilation-induced carbon dioxide (CO2) reactivity and modified blood flow velocity at 40 mm Hg (CV40) were observed for both ACAs and MCAs before and after GB34 acupuncture treatment. Blood pressure and heart rate were also measured before and after GB34 acupuncture treatment. RESULTS: The CO2 reactivity of the ipsilateral MCA significantly increased after GB34 acupuncture treatment, compared with that at baseline (P=0.007). In contrast, the CO2 reactivity of both ACAs and the contralateral MCA remained unchanged. The CV40 of both ACAs and MCAs did not change after GB34 acupuncture treatment and neither did the mean arterial blood pressure and heart rate. CONCLUSIONS: GB34 acupuncture treatment increased CO2 reactivity specifically in the ipsilateral MCA, but had no effect on either the ACAs or the contralateral MCA. These data suggest that GB34 acupuncture treatment improves the vasodilatory potential of the cerebral vasculature to compensate for fluctuations caused by changes in external conditions and could potentially be useful for the treatment of disorders of the ipsilateral MCA circulation.


Assuntos
Pontos de Acupuntura , Terapia por Acupuntura , Dióxido de Carbono/metabolismo , Hiperventilação/fisiopatologia , Hiperventilação/terapia , Artéria Cerebral Média/fisiopatologia , Velocidade do Fluxo Sanguíneo , Circulação Cerebrovascular , Feminino , Humanos , Hiperventilação/diagnóstico por imagem , Hiperventilação/metabolismo , Masculino , Pessoa de Meia-Idade , Artéria Cerebral Média/diagnóstico por imagem , Artéria Cerebral Média/metabolismo , Ultrassonografia Doppler Transcraniana , Adulto Jovem
14.
Exp Physiol ; 104(9): 1363-1370, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31264258

RESUMO

NEW FINDINGS: What is the central question of this study? There is an interaction between the regulatory systems of respiration and cerebral blood flow, because the mediator (CO2 ) is the same for both physiological systems. We examined whether the traditional method for determining cerebrovascular reactivity to CO2 is modified by changes in respiration. What is the main finding and its importance? Cerebrovascular reactivity was modified by voluntary changes in respiration during hypercapnia. This finding suggests that an alteration in the respiratory system may result in under- or overestimation of cerebrovascular reactivity determined by traditional methods in healthy adults. ABSTRACT: The cerebral vasculature is sensitive to changes in the arterial partial pressure of CO2 . This physiological mechanism has been well established as a cerebrovascular reactivity to CO2 (CVR). However, arterial CO2 may not be an independent variable in the traditional method for assessment of CVR, because the cerebral blood flow response is also affected by the activation of respiratory drive or higher centres in the brain. We hypothesized that CVR is modified by changes in respiration. To test our hypothesis, in the present study, 10 young, healthy subjects performed hyper- or hypoventilation to change end-tidal CO2 ( PET,CO2 ) with different concentrations of CO2 in the inhaled gas (0, 2.0 and 3.5%). We measured middle cerebral artery mean blood flow velocity by transcranial Doppler ultrasonography to identify the cerebral blood flow response to change in PET,CO2 during each set of conditions. In each set of conditions, PET,CO2 was significantly altered by changes in ventilation, and middle cerebral artery mean blood flow velocity changed accordingly. However, the relationship between changes in middle cerebral artery mean blood flow velocity and PET,CO2 as a response curve of CVR was reset upwards and downwards by hypo- and hyperventilation, respectively, compared with CVR during normal ventilation. The findings of the present study suggest the possibility that an alteration in respiration might lead to under- or overestimation of CVR determined by the traditional methods.


Assuntos
Dióxido de Carbono/metabolismo , Circulação Cerebrovascular/fisiologia , Artéria Cerebral Média/metabolismo , Artéria Cerebral Média/fisiopatologia , Adulto , Pressão Arterial/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Feminino , Humanos , Hipercapnia/metabolismo , Hipercapnia/fisiopatologia , Hiperventilação/metabolismo , Hiperventilação/fisiopatologia , Masculino , Pressão Parcial , Respiração , Ultrassonografia Doppler Transcraniana/métodos , Adulto Jovem
15.
Appl Psychophysiol Biofeedback ; 44(3): 247-256, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31065914

RESUMO

Breathing at a frequency of around 0.1 Hz is widely used in basic research and in applied psychophysiology because it strongly increases fluctuations in the cardiovascular system and affects psychological functioning. Volitional control of breathing often leads to hyperventilation among untrained individuals, which may produce aversive symptoms and alter the psychological and physiological effects of the paced breathing. The present study investigated the effectiveness of a brief anti-hyperventilation instruction during paced breathing at a frequency of 0.1 Hz. Forty-six participants were randomly assigned to one of two groups: a group given an anti-hyperventilation instruction and a control group without such an instruction. The instruction asked participants to avoid excessively deep breathing and to breathe shallowly and naturally. Participants performed the breathing task for 10 min. Hyperventilation was measured by partial pressure of end-tidal CO2 (PetCO2); furthermore, symptoms of hyperventilation, feeling of air hunger, task difficulty, and affective state were measured by self-report. The results showed that paced breathing without instruction decreased PetCO2 by 5.21 mmHg and that the use of the anti-hyperventilation instruction reduced the drop in PetCO2 to 2.7 mmHg. Symptoms of hyperventilation were lower in the group with the anti-hyperventilation instruction. Neither the feeling of air hunger nor task difficulty were affected by the instruction. There were no significant effects of the instruction on affective state. The present study indicates that a brief anti-hyperventilation instruction may be used to decrease drop in PetCO2 and symptoms of hyperventilation during breathing at 0.1 Hz and that the instruction is well tolerated.


Assuntos
Dióxido de Carbono/metabolismo , Hiperventilação , Pressão Parcial , Respiração , Adulto , Feminino , Humanos , Hiperventilação/metabolismo , Hiperventilação/fisiopatologia , Masculino , Adulto Jovem
16.
Nucleic Acids Res ; 47(16): 8375-8387, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31081034

RESUMO

The psychiatric risk-associated transcription factor 4 (TCF4) is linked to schizophrenia. Rare TCF4 coding variants are found in individuals with Pitt-Hopkins syndrome-an intellectual disability and autism spectrum disorder. TCF4 contains a C-terminal basic-helix-loop-helix (bHLH) DNA binding domain which recognizes the enhancer-box (E-box) element 5'-CANNTG-3' (where N = any nucleotide). A subset of the TCF4-occupancy sites have the expanded consensus binding specificity 5'-C(A/G)-CANNTG-3', with an added outer Cp(A/G) dinucleotide; for example in the promoter for CNIH3, a gene involved in opioid dependence. In mammalian genomes, particularly brain, the CpG and CpA dinucleotides can be methylated at the 5-position of cytosine (5mC), and then may undergo successive oxidations to the 5-hydroxymethyl (5hmC), 5-formyl (5fC), and 5-carboxyl (5caC) forms. We find that, in the context of 5'-0CG-1CA-2CG-3TG-3'(where the numbers indicate successive dinucleotides), modification of the central E-box 2CG has very little effect on TCF4 binding, E-box 1CA modification has a negative influence on binding, while modification of the flanking 0CG, particularly carboxylation, has a strong positive impact on TCF4 binding to DNA. Crystallization of TCF4 in complex with unmodified or 5caC-modified oligonucleotides revealed that the basic region of bHLH domain adopts multiple conformations, including an extended loop going through the DNA minor groove, or the N-terminal portion of a long helix binding in the DNA major groove. The different protein conformations enable arginine 576 (R576) to interact, respectively, with a thymine in the minor groove, a phosphate group of DNA backbone, or 5caC in the major groove. The Pitt-Hopkins syndrome mutations affect five arginine residues in the basic region, two of them (R569 and R576) involved in 5caC recognition. Our analyses indicate, and suggest a structural basis for, the preferential recognition of 5caC by a transcription factor centrally important in brain development.


Assuntos
Arginina/química , Citosina/análogos & derivados , DNA/química , Timina/química , Fator de Transcrição 4/química , Sequência de Aminoácidos , Arginina/metabolismo , Sítios de Ligação , Clonagem Molecular , Citosina/química , Citosina/metabolismo , DNA/genética , DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/genética , Escherichia coli/metabolismo , Fácies , Expressão Gênica , Humanos , Hiperventilação/genética , Hiperventilação/metabolismo , Hiperventilação/patologia , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Modelos Moleculares , Mutação , Motivos de Nucleotídeos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Timina/metabolismo , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo
17.
Acta Neuropathol ; 137(4): 657-673, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30830316

RESUMO

The TCF4 gene encodes for the basic helix-loop-helix transcription factor 4 (TCF4), which plays an important role in the development of the central nervous system (CNS). Haploinsufficiency of TCF4 was found to cause Pitt-Hopkins syndrome (PTHS), a severe neurodevelopmental disorder. Recently, the screening of a large cohort of medulloblastoma (MB), a highly aggressive embryonal brain tumor, revealed almost 20% of adult patients with MB of the Sonic hedgehog (SHH) subtype carrying somatic TCF4 mutations. Interestingly, many of these mutations have previously been detected as germline mutations in patients with PTHS. We show here that overexpression of wild-type TCF4 in vitro significantly suppresses cell proliferation in MB cells, whereas mutant TCF4 proteins do not to the same extent. Furthermore, RNA sequencing revealed significant upregulation of multiple well-known tumor suppressors upon expression of wild-type TCF4. In vivo, a prenatal knockout of Tcf4 in mice caused a significant increase in apoptosis accompanied by a decreased proliferation and failed migration of cerebellar granule neuron precursor cells (CGNP), which are thought to be the cells of origin for SHH MB. In contrast, postnatal in vitro and in vivo knockouts of Tcf4 with and without an additional constitutive activation of the SHH pathway led to significantly increased proliferation of CGNP or MB cells. Finally, publicly available data from human MB show that relatively low expression levels of TCF4 significantly correlate with a worse clinical outcome. These results not only point to time-specific roles of Tcf4 during cerebellar development but also suggest a functional linkage between TCF4 mutations and the formation of SHH MB, proposing that TCF4 acts as a tumor suppressor during postnatal stages of cerebellar development.


Assuntos
Proteínas Hedgehog/genética , Meduloblastoma/genética , Mutação , Fator de Transcrição 4/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Fácies , Proteínas Hedgehog/metabolismo , Humanos , Hiperventilação/genética , Hiperventilação/metabolismo , Hiperventilação/patologia , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Camundongos , Camundongos Knockout , Fator de Transcrição 4/metabolismo
18.
J Card Fail ; 25(4): 278-285, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30822511

RESUMO

BACKGROUND: Patients with heart failure with preserved ejection fraction (HFpEF) exhibit pulmonary abnormalities, but the studies to date have reported wide variability in the ventilatory equivalent for carbon dioxide (V̇E/V̇CO2) slope. It is possible that aging may contribute to that variability. We sought to compare ventilatory efficiency and its components in older and younger HFpEF patients during exercise. METHODS AND RESULTS: Eighteen older (O; 80 ± 4 y) and 19 younger (Y; 59 ± 7 y) HFpEF patients performed cardiopulmonary exercise testing to volitional fatigue. Measurements of arterial blood gases were used to derive VD/VT, dead space ventilation, and alveolar ventilation. V̇E/V̇CO2 slope was greater in older compared with younger HFpEF patients (O 36 ± 7vs Y 31 ± 7; P = .04). At peak exercise, older HFpEF exhibited greater VD/VT compared with younger HFpEF (O 0.37 ± 0.10vs Y 0.28 ± 0.10; P < .01), whereas PaCO2 was not different between groups (P = .58). V̇E and alveolar ventilation were similar (P > .23), but dead space ventilation was greater in older compared with younger HFpEF at peak exercise (P = .04). CONCLUSIONS: Older HFpEF patients exhibit greater ventilatory inefficiency resulting from elevated physiologic dead space during peak exercise compared with younger HFpEF patients. These results suggest that aging can worsen the pathophysiologic mechanisms underlying ventilatory efficiency during exercise in HFpEF.


Assuntos
Envelhecimento/fisiologia , Tolerância ao Exercício/fisiologia , Insuficiência Cardíaca/fisiopatologia , Hiperventilação/etiologia , Pulmão/fisiopatologia , Volume Sistólico/fisiologia , Volume de Ventilação Pulmonar/fisiologia , Idoso , Idoso de 80 Anos ou mais , Gasometria , Dióxido de Carbono/metabolismo , Progressão da Doença , Teste de Esforço/métodos , Feminino , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/diagnóstico , Humanos , Hiperventilação/metabolismo , Hiperventilação/fisiopatologia , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio/fisiologia , Testes de Função Respiratória
19.
Brain Res ; 1703: 41-52, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29288644

RESUMO

Voluntary hyperventilation triggers seizures in the vast majority of people with absence epilepsy. The mechanisms that underlie this phenomenon remain unknown. Herein, we review observations - many made long ago - that provide insight into the relationship between breathing and absence seizures.


Assuntos
Epilepsia Tipo Ausência/metabolismo , Hiperventilação/metabolismo , Convulsões/etiologia , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Humanos , Respiração , Tálamo/metabolismo
20.
J Appl Physiol (1985) ; 126(2): 305-313, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30382804

RESUMO

Hyperthermia causes hyperventilation at rest and during exercise. We previously reported that carotid chemoreceptors partly contribute to the hyperthermia-induced hyperventilation at rest. However, given that a hyperthermia-induced hyperventilation markedly differs between rest and exercise, the results obtained at rest may not be representative of the response in exercise. Therefore, we evaluated whether carotid chemoreceptors contribute to hyperthermia-induced hyperventilation in exercising humans. Eleven healthy young men (23 ± 2 yr) cycled in the heat (37°C) at a fixed submaximal workload equal to ~55% of the individual's predetermined peak oxygen uptake (moderate intensity). To suppress carotid chemoreceptor activity, 30-s hyperoxia breathing (100% O2) was performed at rest (before exercise) and during exercise at increasing levels of hyperthermia as defined by an increase in esophageal temperature of 0.5°C (low), 1.0°C (moderate), 1.5°C (high), and 2.0°C (severe) above resting levels. Ventilation during exercise gradually increased as esophageal temperature increased (all P ≤ 0.05), indicating that hyperthermia-induced hyperventilation occurred. Hyperoxia breathing suppressed ventilation in a greater manner during exercise (-9 to -13 l/min) than at rest (-2 ± 1 l/min); however, the magnitude of reduction during exercise did not differ at low (0.5°C) to severe (2.0°C) increases in esophageal temperature (all P > 0.05). Similarly, hyperoxia-induced changes in ventilation during exercise as assessed by percent change from prehyperoxic levels were not different at all levels of hyperthermia (~15-20%, all P > 0.05). We show that in young men carotid chemoreceptor contribution to hyperthermia-induced hyperventilation is relatively small at low-to-severe increases in body core temperature induced by moderate-intensity exercise in the heat. NEW & NOTEWORTHY Exercise-induced increases in hyperthermia cause a progressive increase in ventilation in humans. However, the mechanisms underpinning this response remain unresolved. We showed that in young men hyperventilation associated with exercise-induced hyperthermia is not predominantly mediated by carotid chemoreceptors. This study provides important new insights into the mechanism(s) underpinning the regulation of hyperthermia-induced hyperventilation in humans and suggests that factor(s) other than carotid chemoreceptors play a more important role in mediating this response.


Assuntos
Corpo Carotídeo/metabolismo , Exercício Físico , Hiperóxia/metabolismo , Hipertermia Induzida , Hiperventilação/metabolismo , Pulmão/inervação , Ventilação Pulmonar , Adulto , Regulação da Temperatura Corporal , Corpo Carotídeo/fisiopatologia , Humanos , Hiperóxia/etiologia , Hiperóxia/fisiopatologia , Hiperventilação/etiologia , Hiperventilação/fisiopatologia , Masculino , Transdução de Sinais , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...