Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 521
Filtrar
1.
J Ethnopharmacol ; 330: 118111, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38653394

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Schima wallichii (D.C.) Korth is traditionally used in Manipur, India for treatment of diabetes and hypertension. However, there is no data reported regarding safety profile of this medicinal plant upon repeated per oral administration over a period of time. AIM OF THE STUDY: In the current study phytochemical profile, toxicological profile and total phenolic and flavonoid compound content of Schima wallichii leaves extract were evaluated. MATERIALS AND METHODS: Gas chromatography coupled to mass spectrometry was performed for chemical profiling by using Gas Chromatography-Mass Spectrometry/Mass Spectrometry (GC-MS/MS), Shimadzu, TQ8040 system. A 28 days sub-acute toxicity study was carried out using albino Wistar rats by administering 3 different doses (200, 400 and 800 mg/kg body weight per oral) of methanol leaves extract. Changes in body weights were recorded weekly. Serum biochemical parameters were estimated as well as blood-cell count was done to check the effect of extract on haematopoietic system. Histopathology of vital organs viz. kidney, heart, brain, liver was performed to find any pathological indications. Since, liver is main the site for xenobiotic metabolism, estimation of the level of glutathione, catalase and lipid peroxidation were done. Further, total phenolic and flavonoid compound content estimation was performed for the leaves extract. RESULTS: GC-MS revealed 14 major compounds with area percentage >1% of which quinic acid, n-Hexadecanoic acid, 9,12,15-Octadecatrienoic acid, (Z,Z,Z)-, Octatriacontyl trifluoroacetate, are three major compounds. No mortality was observed after the treatment with extract. Blood-cell count and biochemical parameters didn't show significant deviation as compared to control group. Histopathology study of vital organs viz. (liver, kidney, heart and brain) showed normal cellular construction comparing to control group. There was no sign of membrane lipid peroxidation, depletion of catalase level and glutathione level in liver. The result demonstrates that NOAEL (no-observed-adverse-effect levels) in the sub-acute toxicity was above 800 mg/kg. The leaves extract showed significant total phenol and flavonoid content. CONCLUSION: The present study revealed that Schima wallichii possessed important bioactive compounds with therapeutic values. The plant was safe for consumption after repeated high doses administration in rats and possesses significant amount of total phenol and flavonoid content.


Assuntos
Flavonoides , Cromatografia Gasosa-Espectrometria de Massas , Hipoglicemiantes , Fenóis , Extratos Vegetais , Folhas de Planta , Ratos Wistar , Animais , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Extratos Vegetais/administração & dosagem , Flavonoides/toxicidade , Flavonoides/análise , Folhas de Planta/química , Fenóis/toxicidade , Fenóis/análise , Masculino , Hipoglicemiantes/toxicidade , Ratos , Plantas Medicinais/química , Metanol/química , Feminino , Medicina Tradicional , Peroxidação de Lipídeos/efeitos dos fármacos
2.
Clin Toxicol (Phila) ; 62(2): 131-133, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38470137

RESUMO

BACKGROUND: Prescriptions of semaglutide, a glucagon-like peptide-1 receptor agonist administered weekly for Type 2 diabetes mellitus and obesity, are increasing. Adverse effects from semaglutide overdose are poorly described. We report adverse effects from three unintentional semaglutide overdoses upon initiation. CASE REPORTS: Case 1: A 53-year-old man unintentionally injected semaglutide 2 mg instead of the recommended 0.1 mg. Case 2: A 45-year-old woman unintentionally injected semaglutide 2.4 mg instead of 0.25 mg. Case 3: A 33-year-old woman injected semaglutide 1.7 mg. All three of these patients developed nonspecific gastrointestinal symptoms. No patient experienced hypoglycemia. DISCUSSION: These unintentional semaglutide overdoses occurred due to deficits in patient and prescriber knowledge, and evasion of regulated access to pharmaceuticals. Nonspecific gastrointestinal symptoms predominated. The potential for hypoglycemia following glucagon-like peptide-1 agonist overdose is unclear, though it did not occur in our patients. It is thought that glucagon-like peptide-1 agonists are unlikely to cause hypoglycemia because their effects are glucose-dependent and diminish as serum glucose concentrations approach euglycemia. There is, however, an increase in hypoglycemia when glucagon-like peptide-1 agonists are combined with sulfonylureas. CONCLUSIONS: This case series highlights the critical role of patient education and training upon initiation of semaglutide therapy to minimize administration errors and adverse effects from injection of glucagon-like peptide-1 receptor agonists.


Assuntos
Diabetes Mellitus Tipo 2 , Peptídeos Semelhantes ao Glucagon , Hipoglicemia , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Adulto , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/toxicidade , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/uso terapêutico , Hipoglicemia/induzido quimicamente , Hipoglicemia/tratamento farmacológico , Glucose/uso terapêutico
3.
Biol Pharm Bull ; 46(12): 1666-1675, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37899249

RESUMO

Gnetum gnemon var. tenerum (Gnetaceae) is a shrub plant native to South-East Asia. In Thailand, Liang leaves are commonly consumed in South of Thailand as vegetable. According to literature, they have an antihyperglycemic capacity because of their rich chlorophyll, fiber, and protein. However, there is need to assess the safety since natural food products are not completely devoid of toxicity. This study aimed to assess the biological activities as well as the acute and sub-chronic oral toxicity of Liang leaves powder (LLP). The evaluation of LLP for acute oral toxicity was performed at dose level 2000 mg/kg body weight in Wistar rats while the sub-chronic oral toxicity of LLP was performed at the effective dose (1.47 g/kg) for antihyperglycemic property according to Organisation for Economic Co-operation and Development (OECD)-425. The results showed that LLP demonstrated anti-inflammatory activities. It also showed no clinical signs of toxic effects and mortality in rats throughout 90 d. Thus, LLP could be classified in GHS category 5 which are of relatively low acute toxicity and then the lethal dose, 50% (LD50) cut off at 5000 mg/kg body weight to infinity (∞). Administration of LLP to the experimental rats significantly increased (p < 0.05) the concentration of triglyceride and increased concentration of creatinine as a result of kidney malfunction was also noticed in the experimental rats. Hematological alteration was not noticed in the treated female rats, but red blood cell, hemoglobin and hematocrit concentrations significantly increased in the treated male rats. The study concludes that sub-chronic administration of 1.47 g/kg LLP is relatively safe.


Assuntos
Produtos Biológicos , Gnetum , Ratos , Animais , Ratos Wistar , Pós , Testes de Toxicidade Aguda , Extratos Vegetais/toxicidade , Folhas de Planta , Peso Corporal , Hipoglicemiantes/toxicidade
4.
J Ethnopharmacol ; 309: 116310, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-36863642

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Aloe vera (L.) Burm.f. is widely used in various traditional systems of medicine worldwide. Since over 5000 years ago, several cultures have used A. vera extract medicinally for conditions ranging from diabetes to eczema. It has been shown to reduce the symptoms of diabetes by enhancing insulin secretion and protecting pancreatic islets. AIM OF THE WORK: This research study aimed to investigate the in-vitro antioxidant effect, the acute oral toxicity, and the possible pharmacological in-vivo anti-diabetic activity with histological examination of the pancreas of the standardized deep red A. vera flowers methanolic extracts (AVFME). MATERIALS AND METHODS: The liquid-liquid extraction procedure and TLC technique were used to investigate chemical composition. Total phenolics and flavonoids in AVFME were quantified by Folin-Ciocalteu and AlCl3 colorimetric methods, respectively. The present study involved evaluating the in-vitro antioxidant effect of AVFME using ascorbic acid as the reference standard, an acute oral toxicity study by using thirty-six albino rats and different concentrations of AVFME (200 mg/kg, 2, 4, 8 and 10 g/kg b.w.). Furthermore, the in-vivo anti-diabetic study was performed on alloxan-induced diabetes in rats (120 mg/kg, I.P.) and two doses of AVFME (200 and 500 mg/kg b.w., orally) were used as compared to glibenclamide (5 mg/kg, orally) as a standard hypoglycemic sulfonylurea medication. A histological examination of the pancreas was performed. RESULTS: AVFME resulted in the highest phenolic content of 150.44 ± 4.62 mg gallic acid equivalent per gram (GAE/g) along with flavonoid content of 70.38 ± 0.97 mg of quercetin equivalent per gram (QE/g). An in-vitro study revealed that the antioxidant effect of AVFME was strong as ascorbic acid. The results of the in-vivo studies showed that the AVFME didn't cause any apparent toxicity signs or death in all groups at different doses which proves the safety of this extract with a wide therapeutic index. The antidiabetic activity of AVFME demonstrated a considerable drop in blood glucose levels as glibenclamide, without severe hypoglycemia or significant weight gain which is considered an advantage of AVFME over glibenclamide use. The histopathological study of pancreatic tissues confirmed the protective effect of AVFME on the pancreatic beta-cells. The extract is proposed to have antidiabetic activity through inhibition of α-amylase, α-glucosidase, and dipeptidyl peptidase IV (DPP-IV). Molecular docking studies were conducted to understand possible molecular interactions with these enzymes. CONCLUSION: AVFME represents a promising alternative source of active constituents against diabetes mellitus (DM) based on its oral safety, antioxidant, anti-hyperglycemic activities, and pancreatic protective effects. These data revealed the antihyperglycemic activity of AVFME is mediated by pancreatic protective effects while significantly enhancing insulin secretion through increasing functioning beta cells. This suggests that AVFME has the potential as a novel antidiabetic therapy or a dietary supplement for the treatment of type 2 diabetes (T2DM).


Assuntos
Aloe , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ácido Ascórbico , Glicemia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Flores , Glibureto/farmacologia , Glibureto/uso terapêutico , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/toxicidade , Simulação de Acoplamento Molecular , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade , Ratos
5.
Turk J Med Sci ; 52(4): 1362-1370, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36326417

RESUMO

BACKGROUND: Dapagliflozin (DAPA), sodium-glucose cotransporter 2 (SGLT2) inhibitor, is an insulin-independent antidiabetic drug used to control hyperglycaemia by promoting glucose excretion from the kidney. Its adverse effects include orthostatic hypotension, dehydration and urinary tract and genital infections caused by glycosuria. DAPA is subjected to constant additional monitoring, as drugrelated adverse reactions are frequently updated in line with the results of case studies, clinical trials and in vivo studies. Some antidiabetic drugs have shown potential harmful effects on the male reproductive system; however, the effects of DAPA have not been sufficiently studied in this capacity. Aiming to fill this gap in the literature, the present work investigates the toxic effects of DAPA on the male reproductive system. METHODS: Diabetes was induced using streptozotocin (STZ) in adult male Sprague-Dawley (SD) rats. DAPA (10 mg/kg) was administered by gavage to the diabetic rats over 28 days, after which the animals were sacrificed. The biochemical, morphological and histological examinations were performed on testicle, sperm and plasma samples. RESULTS: As a result of this study, we observed reproductive system damage in the form of induction of apoptosis in the seminiferous tubules, changes in testis and sperm parameters and oxidative damage, alongside the development of diabetes in test animals. With the exception of sperm morphological damage, the changes observed in diabetic animals treated with DAPA were similar to those of the control group. Improvements were observed in histological, hormonal and proliferative parameters in the DAPA group compared to the DC group. DISCUSSION: Even if DAPA is found to have antioxidant effects, it may raise abnormal sperm counts through a mechanism completely independent of these effects and thus may not have a significant toxic effect on the male reproductive system.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Masculino , Ratos , Animais , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Ratos Sprague-Dawley , Sêmen , Hipoglicemiantes/toxicidade , Hipoglicemiantes/uso terapêutico , Glucose/uso terapêutico , Genitália , Diabetes Mellitus Tipo 2/tratamento farmacológico
6.
ScientificWorldJournal ; 2022: 1376817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898284

RESUMO

Backgroundand Aim. Diabetes mellitus is a metabolic disorder that has no known cure with continuous endeavors to find a therapy for the condition. According to some studies, traditional leafy vegetables could prevent and manage diabetes by modifying the carbohydrate and lipid metabolism. In this study, a phytochemical analysis, acute toxicity, as well as antihyperglycemic and antidiabetic activity testing of the methanolic, diethyl ether, and aqueous leaf extracts of Corchorus olitorius L. was performed. Materials and Methods. Methanolic, diethyl ether, and aqueous leaf extracts of Corchorus olitorius L. were prepared by serial extraction. Phytochemical analysis was performed following standard methods. 52 mice were separated into 13 groups (A-M) of 4 and received extracts' doses ranging from 1000 mg/kg to 5000 mg/kg for the acute toxicity testing. For the antihyperglycemic and antidiabetic activities testing, 48 rats were divided into 8 groups of 6 and received 500 mg/kg of each extract. 10 mg/kg of glibenclamide and distilled water were used as controls. Data were analyzed using Prism GraphPad version 8.0.2 (263). Results. Phytochemical analysis revealed the presence of alkaloids, reducing sugars, saponins, and terpenoids. There were no acute toxicity signs observed in this study. Corchorus olitorius L. extracts demonstrated moderate antihyperglycemic and antidiabetic activities. The methanolic extract exhibited the highest degree of antihyperglycemic activity. However, there was no statistically significant difference between the extracts and the negative control (p > 0.05), but with glibenclamide (p < 0.01). Conclusion. Corchorus olitorius L. is a safe and potential postprandial antidiabetic vegetable that could minimize the rise in blood glucose after a meal. We therefore recommend further investigations into the antidiabetic properties of the vegetable using purified extracts.


Assuntos
Corchorus , Compostos Fitoquímicos , Extratos Vegetais , Folhas de Planta , Animais , Corchorus/química , Éter , Glibureto , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/toxicidade , Camundongos , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Ratos , Verduras
7.
J Ethnopharmacol ; 296: 115473, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35718052

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Loquat (Eriobotrya japonica (Thunb.) Lindl.) is an evergreen tree native to China, which is introduced in many Mediterranean countries. As in many ancient medical systems, loquat leaves have been used in Moroccan traditional medicine to treat diabetes and its complications. AIM OF THE STUDY: This study aims to determine the nutritional and polyphenol composition and to evaluate the in vivo antidiabetic, and antihyperlipidemic properties and oral toxicity of a leaf aqueous extract (LLE) derived from loquat grown in Morocco. MATERIALS AND METHODS: Energy value and fiber, fatty acids, minerals, vitamins, total carbohydrate, sugar, lipid, and protein contents were determined according to international methods committee guidelines. Polyphenol profiling was carried out using the HPLC-DAD method. Mice fed a high-fat and high-glucose (HFG) diet for 10 weeks were used as a model to assess the antidiabetic and antihyperlipidemic effects of a daily administration of LLE at three different doses (150, 200, 250 mg/kg body weight (BW)/day), in comparison with metformin (50 mg/kg BW/day) and pravastatin (20 mg/kg BW/day). The oral toxicity was determined following OECD 425 Guideline. RESULTS: Loquat leaves were found to be rich in fiber, minerals (potassium, calcium, magnesium, iron, and sodium), and vitamins (B2, B6, and B12) and lower in energy, sugar, and fat. Ten different phenolic compounds were characterized. Naringenin, procyanidin C1, epicatechin, and rutin were the more abundant compounds in LLE. The administration of the LLE dose-dependently ameliorated hyperglycemia, insulin resistance, oxidative stress, and hyperlipidemia in HFG diet-fed mice. The median lethal dose of LLE was higher than 5000 mg/kg BW. CONCLUSIONS: Loquat leaves are a potential source of micronutrients and polyphenols with beneficial effects on diabetes and its complications.


Assuntos
Eriobotrya , Animais , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/toxicidade , Hipolipemiantes/uso terapêutico , Hipolipemiantes/toxicidade , Camundongos , Minerais , Valor Nutritivo , Folhas de Planta , Polifenóis/uso terapêutico , Polifenóis/toxicidade , Açúcares , Vitaminas
8.
Environ Res ; 213: 113613, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35697083

RESUMO

Metformin is a wonder drug used as an anti-hypoglycemic medication; it is also used as a cancer suppression medicament. Metformin is a first line of drug choice used by doctors for patients with type 2 diabetes. It is used worldwide where the drug's application varies from an anti-hypoglycemic medication to cancer oppression and as a weight loss treatment drug. Due to its wide range of usage, metformin and its byproducts are found in waste water and receiving aquatic environment. This leads to the accumulation of metformin in living beings and the environment where excess concentration levels can lead to ailments such as lactic acidosis or vitamin B12 deficiency. This drug could become of future water treatment concerns with its tons of production per year and vast usage. As a result of continuous occurrence of metformin has demanded the need of implementing and adopting different strategies to save the aquatic systems and the exposure to metformin. This review discuss the various methods for the elimination of metformin from wastewater. Along with that, the properties, occurrence, and health and environmental impacts of metformin are addressed. The different analytical methods for the detection of metformin are also explained. The main findings are discussed with respect to the management of metformin as an emerging contaminants and the major recommendations are discussed to understand the major research gaps.


Assuntos
Acidose Láctica , Diabetes Mellitus Tipo 2 , Metformina , Acidose Láctica/induzido quimicamente , Acidose Láctica/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Humanos , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/toxicidade , Metformina/uso terapêutico , Metformina/toxicidade , Águas Residuárias
9.
Sci Rep ; 12(1): 7127, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505003

RESUMO

Synacinn is a standardized polyherbal extract formulated for the treatment of diabetes mellitus and its complications. This study aims to assess the mutagenicity potential of Synacinn by Ames assay and in vivo bone marrow micronucleus (MN) test on Sprague Dawley rat. Human ether-a-go-go-related gene (hERG) assay and Functional Observation Battery (FOB) were done for the safety pharmacology tests. In the Ames assay, Dose Range Finding (DRF) study and mutagenicity assays (+/- S9) were carried out. For the MN test, a preliminary and definitive study were conducted. In-life observations and number of immature and mature erythrocytes in the bone marrow cells were recorded. The hERG assay was conducted to determine the inhibitory effect on hERG potassium channel current expressed in human embryonic kidney cells (HEK293). FOB tests were performed orally (250, 750, and 2000 mg/kg) on Sprague Dawley rats. Synacinn is non-mutagenic against all tested strains of Salmonella typhimurium and did not induce any clastogenicity in the rat bone marrow. Synacinn also did not produce any significant inhibition (p ≤ 0.05) on hERG potassium current. Synacinn did not cause any neurobehavioural changes in rats up to 2000 mg/kg. Thus, no mutagenicity, cardiotoxicity and neurotoxicity effects of Synacinn were observed in this study.


Assuntos
Hipoglicemiantes , Mutagênicos , Animais , Células HEK293 , Humanos , Hipoglicemiantes/toxicidade , Testes de Mutagenicidade , Mutagênicos/toxicidade , Ratos , Ratos Sprague-Dawley
10.
J Appl Toxicol ; 42(10): 1570-1584, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35393688

RESUMO

Inhibition of sodium-glucose cotransporter-2 (SGLT2) has been shown to be a safe and efficacious approach to support managing Type 2 diabetes. In the 2-year carcinogenicity study with the SGLT2 inhibitor empagliflozin in CD-1 mice, an increased incidence of renal tubular adenomas and carcinomas was identified in the male high-dose group but was not observed in female mice. An integrated review of available nonclinical data was conducted to establish a mode-of-action hypothesis for male mouse-specific tumorigenesis. Five key events were identified through systematic analysis to form the proposed mode-of-action: (1) Background kidney pathology in CD-1 mice sensitizes the strain to (2) pharmacology-related diuretic effects associated with SGLT2 inhib ition. (3) In male mice, metabolic demand increases with the formation of a sex- and species-specific empagliflozin metabolite. These features converge to (4) deplete oxidative stress handling reserve, driving (5) constitutive cellular proliferation in male CD-1 mice. The proposed mode of action requires all five key events for empagliflozin to present a carcinogenicity risk in the CD-1 mouse. Considering that empagliflozin is not genotoxic in the standard battery of genotoxicity tests, and not all five key events are present in the context of female mice, rats, or humans, nor for other osmotic diuretics or other SGLT2 inhibitors, the observed male mouse renal tumors are not considered relevant to humans.


Assuntos
Carcinoma de Células Renais , Diabetes Mellitus Tipo 2 , Neoplasias Renais , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Antígenos CD1/metabolismo , Compostos Benzidrílicos/toxicidade , Carcinoma de Células Renais/complicações , Carcinoma de Células Renais/patologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Feminino , Glucosídeos , Humanos , Hipoglicemiantes/toxicidade , Rim , Neoplasias Renais/induzido quimicamente , Neoplasias Renais/complicações , Neoplasias Renais/tratamento farmacológico , Masculino , Camundongos , Ratos , Transportador 2 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/toxicidade
11.
J Ethnopharmacol ; 293: 115276, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35421528

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The leaves of Eugenia biflora (Myrtaceae) are traditionally used by Amazonian populations for the control of diabetes. However, their chemical composition has not yet been described and pharmacological evidence has not been reported. OBJECTIVE: This study aimed to identify the chemical constituents and evaluate the hypoglycemic and toxic effect of the dry extract of the E. biflora leaves (DEEB). MATERIALS AND METHODS: DEEB, obtained by infusion, was analyzed using LC-HRMS and NMR, whose the catechin flavonoid was quantified using NMR. The antidiabetic effect of DEEB was evaluated according to its inhibition of the enzymes α-amylase and α-glucosidase, as well as the content of total phenols, free radical scavengingand antiglycation activities, and its in vitro cell viability. Oral maltose tolerance and chronic multiple dose tests (28 days) in streptozotocin-induced diabetic mice (STZ) were performed. The hypoglycemic effect and toxicity of this extract were evaluated in the multiple dose assay. Biochemical parameters, hemolysis, and levels of the thiobarbituric acid reactive species in the liver were investigated and histopathological analyses of the kidneys and liver were performed. RESULTS: Eight phenolic compounds were identified, with catechin (15.5 ± 1.7 mg g-1) being the majority compound and a possible chemical marker of DEEB. The extract showed inhibition activity of the enzyme α-glucosidase. Chronic administration of DEEB (50 mg/kg of body weight) reduced glucose levels in diabetic animals, similar to acarbose; however, DEEB (100 and 200 mg/kg bw) caused premature death of mice by D22 of the treatment. Our data indicate that one of the mechanisms of toxicity in DEEB may be related to the aggravation of oxidative stress in the liver. This histopathological study indicated that DEEB failed to minimize the progression of the toxicity of diabetes caused by STZ. CONCLUSIONS: This study demonstrated the hypoglycemic potential of E. biflora leaves. However, the prolonged use of this tea can be harmful to its users due to its considerable toxicity, which needs to be better investigated.


Assuntos
Diabetes Mellitus Experimental , Eugenia , Hipoglicemiantes , Animais , Antioxidantes/farmacologia , Glicemia , Catequina , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Eugenia/química , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/toxicidade , Camundongos , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade , Folhas de Planta/química , Estreptozocina , alfa-Glucosidases/metabolismo
12.
Life Sci ; 294: 120370, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35124000

RESUMO

AIMS: Scientific evidence imply the strong correlation between diabetes and breast cancer. Glucagon-like peptide-1 (GLP-1) and its analogue liraglutide, have been widely used for diabetes treatment. However, the role of GLP-1 receptor (GLP-1R) in breast cancer requires further elucidation. This study aimed to investigate the risk and the molecular mechanisms of liraglutide using in breast cancer. MATERIALS AND METHODS: Quantitative real-time polymerase chain reaction, western blot or immunohistochemistry were used to detect the expressions of GLP-1R, NADPH oxidase 4 (NOX4) and vascular endothelial growth factor (VEGF) in human triple negative breast cancer (TNBC) cells (MDA-MB-231 and MDA-MB-468) and tissues derived from BALB/cfC3H mouse bearing 4T1 cells inoculation. Cell proliferation and migration was detected using the Cell Counting Kit-8, adenosine triphosphate assay, and transwell assay, respectively. Flow cytometry was used to measure the level of reactive oxygen species (ROS). KEY FINDINGS: We found that the expression of GLP-1R increased after liraglutide treatment in breast cancer cells and the transplanted tumors. Liraglutide, at a slightly higher concentration, accelerated breast cancer progress in vitro (100 nM) and in vivo (400µg/kg) through the NOX4/ROS/VEGF signal pathway after activating GLP-1R. The GLP-1R inhibitor, Exendin (9-39), significantly inhibited the effect of liraglutide, inducing a reversed function of GLP-1R activation. SIGNIFICANCE: Our study illustrated that in an approximately toxicology context, liraglutide may promote the malignant progression of TNBC. The dosage and the phenotype of the breast cancer should be considered as important factors for the rational administration of antidiabetic drugs, especially that of liraglutide in breast cancer patients.


Assuntos
Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Liraglutida/toxicidade , NADPH Oxidase 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Apoptose , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/metabolismo , Proliferação de Células , Feminino , Humanos , Hipoglicemiantes/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Nus , NADPH Oxidase 4/genética , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Fundam Clin Pharmacol ; 36(1): 143-149, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33969534

RESUMO

Thiazolidinediones are well-known anti-diabetic drugs. However, they are not widely used due to their cardiotoxic effects. Therefore, in this study, we aimed to determine the molecular toxicological alterations induced in the mouse hearts after thiazolidinedione administration. Balb/c mice received doses clinically equivalent to those given to humans of the most commonly used thiazolidinediones, pioglitazone, and rosiglitazone for 30 days. After that, RNA samples were isolated from the hearts. The mRNA expression of cytochrome (cyp) p450 genes that synthesize the cardiotoxic 20-hydroxyeicosatetraenoic acid (20-HETE) in addition to 92 cardiotoxicity biomarker genes were analyzed using quantitative polymerase chain reaction array technique. The analysis demonstrated that thiazolidinediones caused a significant upregulation (p < 0.5) of the mRNA expression of cyp1a1, cyp4a12, itpr1, ccl7, ccr1, and b2 m genes. In addition, thiazolidinediones caused a significant (p < 0.05) downregulation of the mRNA expression of adra2a, bsn, col15a1, fosl1, Il6, bpifa1, plau, and reg3b genes. The most affected gene was itpr1 gene, which was upregulated by pioglitazone and rosiglitazone by sevenfold and 3.5-fold, respectively. In addition, pioglitazone caused significant upregulation of (p < 0.05) hamp, ppbp, psma2, sik1, timp1, and ucp1 genes, which were not affected significantly (p > 0.05) by rosiglitazone administration. In conclusion, this study showed that thiazolidinediones induce toxicological molecular alterations in the mouse hearts, such as the induction of cyp450s that synthesize 20-HETE, chemokine activation, inflammatory responses, blood clotting, and oxidative stress. These findings may help us understand the mechanism of cardiotoxicity involved in thiazolidinedione administration.


Assuntos
Preparações Farmacêuticas , Tiazolidinedionas , Animais , Glicoproteínas , Hipoglicemiantes/toxicidade , Camundongos , Fosfoproteínas , Rosiglitazona/toxicidade , Tiazolidinedionas/toxicidade
14.
Drug Chem Toxicol ; 45(2): 955-962, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33161761

RESUMO

Metformin (MET) is the first-choice antidiabetic drug for type 2 diabetes mellitus treatment. In this study, the genotoxic potential of MET was evaluated by using chromosome aberrations (CAs), sister chromatid exchanges (SCEs), and micronucleus (MN) assays in human peripheral lymphocytes as well as comet assay in isolated lymphocytes. Human lymphocytes were treated with different concentrations of MET (12.5, 25, 50, 75, 100, and 125 µg/mL) for 24 h and 48 h. A negative and a positive control (Mitomycin-C-MMC, 0.20 µg/mL, for CA, SCE, and MN tests; hydrogen peroxide-H2O2, 100 µM, for comet assay) were also maintained. MET significantly increased the frequency of CAs at 48 h exposure (except 12.5 µg/mL) compared to the negative control. MET increased SCEs/cells in both treatment periods (except 12.5 µg/mL at 24 h). MET only increased the frequency of MN at 125 µg/mL. While MET significantly increased the comet tail length (CTL) at four concentrations (25, 75, 100, and 125 µg/mL), it did not affect comet tail intensity (CTI) (except 125 µg/mL) and comet tail moment (CTM) at all the treatments. All these data showed that MET had a mild genotoxic effect, especially at a long treatment period and higher concentrations in human lymphocytes in vitro. However, further in vitro and especially in vivo studies should be conducted to understand the detailed genotoxic potential of MET.HighlightsMetformin increased the frequency of CAs and SCEs, especially at 48-h exposure time in human lymphocytes.This antidiabetic drug increased the frequency of MN only at the highest concentration tested (125 µg/mL).Metformin significantly increased the comet tail length in all treatments (except 50 µg/mL).The drug did not significantly affect the comet tail intensity (except 125 µg/mL) and comet tail moment in all treatments.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Aberrações Cromossômicas/induzido quimicamente , Análise Citogenética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Humanos , Peróxido de Hidrogênio/farmacologia , Hipoglicemiantes/toxicidade , Linfócitos , Metformina/toxicidade , Testes para Micronúcleos , Troca de Cromátide Irmã
15.
Int J Environ Health Res ; 32(7): 1447-1468, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33678072

RESUMO

Upon Seeking natural and safe alternatives for synthetic medicines to treat many chronic diseases, seaweeds have offered a promising resource to produce numerous bioactive secondary metabolites. Through in vivo investigations, Turbinaria decurrens acetone extract (AE) revealed its antidiabetic activity against alloxan-induced diabetic rats. Treatment of rats with T. decurrens AE at 300 and 150 mg/Kg doses revealed antihyperglycemic activity by reducing the elevated blood glucose level. A remarkable decrease in the liver, kidney functions, and hyperlipidemia related to diabetes were also detected. Administration of the same extract also showed a recovery in body weight loss, total protein, albumin, and haemoglobin levels compared with untreated diabetic rats. Furthermore, treatment of rats with the same extract improved liver and pancreas histopathological disorders related to diabetes. These effects may be attributed to the presence of bioactive phytochemicals and antioxidant components in T. decurrens AE mainly cyclotrisiloxane, hexamethyl, and cyclic diterpene 3,7,11,15-tetramethyl-2-hexadecen-1-ol (phytol alcohol). Besides, other valuable secondary metabolites, as phenols, flavonoids, alkaloids, terpenoids, steroid and glycosides, which were documented and published by the same authors in a previous study. The obtained results in the present study recommended using T. decurrens AE in developing medicinal preparations for treatment of diabetes and its related symptoms.


Assuntos
Aloxano , Diabetes Mellitus Experimental , Acetona/uso terapêutico , Acetona/toxicidade , Aloxano/uso terapêutico , Aloxano/toxicidade , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/toxicidade , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos
16.
Sci Rep ; 11(1): 23826, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903733

RESUMO

DPP-4 inhibitors (DPP-4i) and sulphonylureas remain the most widely prescribed add-on treatments after metformin. However, there is limited evidence from clinical practice comparing major adverse cardiovascular events (MACE) in patients prescribed these treatments, particularly among those without prior history of MACE and from vulnerable population groups. Using electronic health records from UK primary care, we undertook a retrospective cohort study with people diagnosed type-2 diabetes mellitus, comparing incidence of MACE (myocardial infarction, stroke, major cardiovascular surgery, unstable angina) and all-cause mortality among those prescribed DPP-4i versus sulphonylureas as add-on to metformin. We stratified analysis by history of MACE, age, social deprivation and comorbidities and adjusted for HbA1c, weight, smoking-status, comorbidities and medications. We identified 17,570 patients prescribed sulphonylureas and 6,267 prescribed DPP-4i between 2008-2017. Of these, 16.3% had pre-existing MACE. Primary incidence of MACE was similar in patients prescribed DPP-4i and sulphonylureas (10.3 vs 8.5 events per 1000 person-years; adjusted Hazard Ratio (adjHR): 0.94; 95%CI 0.80-1.14). For those with pre-existing MACE, rates for recurrence were higher overall, but similar between the two groups (21.8 vs 17.2 events per 1000 person-years; adjHR: 0.93; 95%CI 0.69-1.24). For those aged over 75 and with BMI less than 25 kg/m2 there was a protective effect for DPP-I, warranting further investigation. Patients initiating a DPP-4i had similar risk of cardiovascular outcomes to those initiating a sulphonylurea. This indicates the choice should be based on safety and cost, not cardiovascular prognosis, when deciding between a DPP-4i or sulphonylurea as add-on to metformin.


Assuntos
Doenças Cardiovasculares/epidemiologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/toxicidade , Hipoglicemiantes/toxicidade , Metformina/administração & dosagem , Compostos de Sulfonilureia/toxicidade , Adulto , Idoso , Índice de Massa Corporal , Cardiotoxicidade/etiologia , Doenças Cardiovasculares/etiologia , Comorbidade , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Feminino , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/uso terapêutico , Masculino , Metformina/uso terapêutico , Pessoa de Meia-Idade , Fumar/epidemiologia , Compostos de Sulfonilureia/administração & dosagem , Compostos de Sulfonilureia/uso terapêutico
17.
Pak J Pharm Sci ; 34(5(Supplementary)): 1939-1944, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34836863

RESUMO

Type 2 Diabetes Mellitus (T2DM) patients are at high risk of Coronary Heart Disease (CHD) and need a global therapeutic intervention. A fixed-dose combination prescription medication containing anti-diabetic drug (Sitagliptin) and lipid lowering (Simvastatin) has recently been approved. Present study was designed to explore the potential synergistic toxic effects of sitagliptin and simvastatin at cellular level. MTT assay revealed the potential synergistic cytotoxic effect whereas Comet assay spotlighted the genotoxicity. MTT assay conducted on Vero cell lines revealed no significant change in proliferative activity upon treatment with simvastatin but cell survival percentage (CSP) decreased upon treatment with sitagliptin (51% at 1000µg/mL). However, combination of both drugs exhibited a better survival percentage except highest dose combination (1000:500µg/mL) which augmented antiproliferative effects rendering CSP 71.6%. The genotoxic assay spotted that Simvastatin produced less damage to DNA with the threshold of 500µg/ml whereas Sitagliptin significantly damage above the 250µg/mL, However, combination of drugs produced lesser damage than Sitagliptin alone. The findings concluded a non-genotoxic combination of sitagliptin and simvastatin which possess a least cytotoxic potential suggesting the safe use of the combination both in T2DM and CHD.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/toxicidade , Hipoglicemiantes/toxicidade , Mutagênicos/toxicidade , Sinvastatina/toxicidade , Fosfato de Sitagliptina/toxicidade , Animais , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Ensaio Cometa , Dano ao DNA , Diabetes Mellitus Tipo 2/tratamento farmacológico , Combinação de Medicamentos , Interações Medicamentosas , Sinergismo Farmacológico , Células Vero
18.
Toxicol Appl Pharmacol ; 427: 115659, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34332991

RESUMO

Mitochondrial injury contributes to severe drug-induced liver injury. Particularly, mitochondrial permeability transition (MPT) is thought to be relevant to cytolytic hepatitis. However, the mechanism of drug-induced MPT is unclear and prediction of MPT is not adequately evaluated in the preclinical stage. In a previous study, we found that troglitazone, a drug withdrawn due to liver injury, induced MPT via mild depolarization probably resulting from uncoupling. Herein, we investigated whether other drugs that induce MPT share similar properties as troglitazone, using isolated mitochondria from rat liver. Of the 22 test drugs examined, six drugs, including troglitazone, induced MPT and showed an uncoupling effect. Additionally, receiver operating characteristic analysis was conducted to predict the MPT potential from the respiratory control ratio, an indicator of uncoupling intensity. Results showed that 2.5 was the best threshold that exhibited high sensitivity (1.00) and high specificity (0.81), indicating that uncoupling was correlated with MPT potential. Activation of calcium-independent phospholipase A2 appeared to be involved in uncoupling-induced MPT. Furthermore, a strong relationship between MPT intensity and the uncoupling effect among similar compounds was confirmed. These results may help in predicting MPT potential using cultured cells and modifying the chemical structures of the drugs to reduce MPT risk.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Hipoglicemiantes/toxicidade , Masculino , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria/fisiologia , Consumo de Oxigênio/fisiologia , Ratos , Ratos Wistar , Troglitazona/toxicidade
19.
Biomed Pharmacother ; 142: 111948, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34385108

RESUMO

The objective of our study was to evaluate the effect of Physalis peruviana L. fruits in the management of diabetes and diabetic nephropathy in relation to its metabolic profile. In-vitro α-amylase, ß-glucosidase, and lipase inhibition activities were assessed for the ethanolic extract (EtOH) and its subfractions. Ethyl acetate (EtOAc) fraction showed the highest α-amylase, ß-glucosidase, and lipase inhibition effect. In vivo antihyperglycemic testing of EtOAc in streptozotocin (STZ)-induced diabetic rats showed that it decreased the blood glucose level, prevented the reduction in body weight, improved serum indicators of kidney injury (urea, uric acid, creatinine), and function (albumin and total protein). EtOAc increased autophagic parameters (LC3B, AMPK) and depressed mTOR contents. Histopathology revealed that EtOAc ameliorated the pathological features and decreased the glycogen content induced by STZ. The immunohistochemical analysis showed that EtOAc reduced P53 expression as compared to the STZ-diabetic group. UPLC-ESI-MS/MS metabolite profiling of EtOAc allowed the identification of several phenolic compounds. Among the isolated compounds, gallic acid, its methylated dimer and the glycosides of quercetin had promising α-amylase and ß-glucosidase inhibition activity. The results suggest that the phenolic-rich fraction has a protective effects against diabetic nephropathy presumably via enhancing autophagy (AMPK/mTOR pathway) and prevention of apoptosis (P53 suppression).


Assuntos
Antioxidantes/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Hipoglicemiantes/farmacologia , Fenóis/farmacologia , Physalis/química , Extratos Vegetais/farmacologia , Animais , Antioxidantes/uso terapêutico , Antioxidantes/toxicidade , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/patologia , Frutas/química , Glicogênio/metabolismo , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/toxicidade , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Fenóis/isolamento & purificação , Fenóis/uso terapêutico , Fenóis/toxicidade , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade , Ratos Wistar , Proteína Supressora de Tumor p53/metabolismo
20.
Chemosphere ; 285: 131213, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34246938

RESUMO

In recent years, the consumption of metformin has increased not only due to the higher prevalence of type 2 diabetes, but also due to their usage for other indications such as cancer and polycystic ovary syndrome. Consequently, metformin is currently among the highest drug by weight released into the aquatic environments. Since the toxic effects of this drug on aquatic species has been scarcely explored, the aim of this work was to investigate the influence of metformin on the development and redox balance of zebrafish (Danio rerio) embryos. For this purpose, zebrafish embryos (4 hpf) were exposed to 1, 10, 20, 30, 40, 50, 75 and 100 µg/L metformin until 96 hpf. Metformin significantly accelerated the hatching process in all exposure groups. Moreover, this drug induced several morphological alterations on the embryos, affecting their integrity and consequently leading to their death. The most frequent malformations found on the embryos included malformation of tail, scoliosis, pericardial edema and yolk deformation. Regarding oxidative balance, metformin significantly induced the activity of antioxidant enzymes and the levels of oxidative damage biomarkers. However, our IBR analisis demonstrated that oxidative damage biomarkers got more influence over the embryos. Together these results demonstrated that metformin may affect the embryonic development of zebrafish and that oxidative stress may be involved in the generation of this embryotoxic process.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Animais , Diabetes Mellitus Tipo 2/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Feminino , Hipoglicemiantes/toxicidade , Metformina/metabolismo , Metformina/toxicidade , Estresse Oxidativo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...