Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Calcif Tissue Int ; 114(2): 110-118, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38078932

RESUMO

Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHNNC) is a rare autosomal recessive renal tubulopathy disorder characterized by excessive urinary loss of calcium and magnesium, polyuria, polydipsia, bilateral nephrocalcinosis, progressive chronic kidney disease, and renal failure. Also, sometimes amelogenesis imperfecta and severe ocular abnormalities are involved. The CLDN-16 and CLDN-19 genes encode the tight junction proteins claudin-16 and claudin-19, respectively, in the thick ascending loop of Henle in the kidney, epithelial cells of the retina, dental enamel, etc. Loss of function of the CLDN-16 and/or CLDN-19 genes leads to FHHNC. We present a case of FHHNC type 1, which was first confused with autosomal dominant hypocalcaemia (ADH) due to the presence of a very low serum parathyroid hormone (PTH) concentration and other similar clinical features before the genetic investigations. After the exome sequencing, FHHNC type 1 was confirmed by uncovering a novel homozygous missense mutation in the CLDN-16 gene (Exon 2, c.374 T > C) which causes, altered protein structure with F55S. Associated clinical, biochemical, and imaging findings also corroborate final diagnosis. Our findings expand the spectrum of the CLDN-16 mutation, which will further help in the genetic diagnosis and management of FHNNC.


Assuntos
Hipocalcemia , Hipoparatireoidismo/congênito , Nefrocalcinose , Humanos , Magnésio , Mutação de Sentido Incorreto , Nefrocalcinose/complicações , Nefrocalcinose/diagnóstico , Nefrocalcinose/genética , Hipercalciúria/complicações , Hipercalciúria/diagnóstico , Hipercalciúria/genética , Hipocalcemia/complicações , Hipocalcemia/diagnóstico , Hipocalcemia/genética , Mutação , Claudinas/genética
2.
Ann Clin Lab Sci ; 52(3): 494-498, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35777808

RESUMO

Autosomal dominant hypocalcemia (ADH) is characterized by hypocalcemia and inappropriately low PTH concentrations. ADH type 2 (ADH2) is caused by a heterozygous gain-of-function mutation in GNA11 that encodes the subunit of G11, the principal G protein that transduces calcium-sensing receptor signaling in the parathyroid. Clinical features related to hypocalcemia in ADH2 range from asymptomatic to tetany and seizures. We report the clinical and molecular analysis of an infant with ADH2. Exome sequencing identified a de novo heterozygous missense variant, c. G548C (p. Arg183Pro) in GNA11. This is the youngest Korean case to be diagnosed with ADH 2. In addition, we summarized the literature related to eight mutations in GNA11 from 10 families.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP , Hipocalcemia , Hipoparatireoidismo , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Hipercalciúria/genética , Hipercalciúria/metabolismo , Hipocalcemia/diagnóstico , Hipocalcemia/genética , Hipocalcemia/metabolismo , Hipoparatireoidismo/congênito , Hipoparatireoidismo/genética , Hipoparatireoidismo/metabolismo , Lactente
3.
J Int Med Res ; 50(7): 3000605221110489, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35818129

RESUMO

Autosomal dominant hypocalcemia type 1 (ADH1) is a rare inherited disorder characterized by hypocalcemia with low parathyroid hormone (PTH) levels and high urinary calcium. Its clinical presentation varies from mild asymptomatic to severe hypocalcemia. It is caused by gain-of-function mutations in the calcium-sensing receptor gene (CASR) which affect PTH secretion from the parathyroid gland and calcium resorption in the kidney. Here, we describe a case who presented with symptoms of recurrent seizure caused by hypocalcemia with a novel CASR variant. We comprehensively analyzed the phenotypic features of this presentation and reviewed the current literature to better understand clinical manifestations and the genetic spectrum.


Assuntos
Hipercalcemia , Hipocalcemia , Hipoparatireoidismo , Cálcio , Humanos , Hipercalciúria , Hipocalcemia/genética , Hipoparatireoidismo/congênito , Hipoparatireoidismo/genética , Mutação , Receptores de Detecção de Cálcio/genética
4.
EBioMedicine ; 78: 103947, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35313217

RESUMO

BACKGROUND: Parathyroid Ca2+-sensing receptor (CaSR) activation inhibits parathyroid hormone (PTH) release, while activation of renal CaSRs attenuates Ca2+ transport and increases expression of the pore-blocking claudin-14. Patients with autosomal dominant hypocalcemia 1 (ADH1), due to activating CASR mutations, exhibit hypocalcemia but not always hypercalciuria (elevated Ca2+ in urine). The latter promotes nephrocalcinosis and renal insufficiency. Although CaSRs throughout the body including the kidney harbor activating CASR mutations, it is not understood why only some ADH1 patients display hypercalciuria. METHODS: Activation of the CaSR was studied in mouse models and a ADH1 patient. In vitro CaSR activation was studied in HEK293 cells. FINDINGS: Cldn14 showed blood Ca2+ concentration-dependent regulation, which was absent in mice with kidney-specific Casr deletion, indicating Cldn14 is a suitable marker for chronic CaSR activation in the kidney. Mice with a gain-of-function mutation in the Casr (Nuf) were hypocalcemic with low plasma PTH levels. However, renal CaSRs were not activated at baseline but only after normalizing blood Ca2+ levels. Similarly, significant hypercalciuria was not observed in a ADH1 patient until blood Ca2+ was normalized. In vitro experiments indicate that increased CaSR expression in the parathyroid relative to the kidney could contribute to tissue-specific CaSR activation thresholds. INTERPRETATION: Our findings suggest that parathyroid CaSR overactivity can reduce plasma Ca2+ to levels insufficient to activate renal CaSRs, even when an activating mutation is present. These findings identify a conceptually new mechanism of CaSR-dependent Ca2+ balance regulation that aid in explaining the spectrum of hypercalciuria in ADH1 patients. FUNDING: Erasmus+ 2018/E+/4458087, the Canadian Institutes for Health research, the Novo Nordisk Foundation, the Beckett Foundation, the Carlsberg Foundation and Independent Research Fund Denmark.


Assuntos
Hipercalciúria , Hipocalcemia , Animais , Cálcio/metabolismo , Canadá , Células HEK293 , Humanos , Hipercalciúria/genética , Hipocalcemia/genética , Hipoparatireoidismo/congênito , Rim/metabolismo , Camundongos , Hormônio Paratireóideo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo
5.
Medicine (Baltimore) ; 100(25): e26443, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34160437

RESUMO

RATIONALE: Autosomal dominant hypocalcaemia type 1 (ADH1) is a genetic disease characterized by benign hypocalcemia, inappropriately low parathyroid hormone levels and mostly hypercalciuria. It is caused by the activating mutations of the calcium-sensing receptor gene (CASR), which produces a left-shift in the set point for extracellular calcium. PATIENT CONCERNS: A 50-year-old man presenting with muscle spasms was admitted into the hospital. He has a positive familial history for hypocalcemia. Auxiliary examinations demonstrated hypocalcemia, hyperphosphatemia, normal parathyroid hormone level and nephrolithiasis. A missense heterozygous variant in CASR, c 613C > T (p. Arg205Cys) which has been reported in a familial hypocalciuric hypercalcemia type 1 patient was found in the patient's genotype. It is the first time that this variant is found associating with ADH1. The variant is predicted vicious by softwares and cosegregates with ADH1 in this pedigree. CASR Arg205Cys was deduced to be the genetic cause of ADH1 in the family. DIAGNOSIS: The patient was diagnosed with ADH1 clinically and genetically. INTERVENTIONS: Oral calcitriol, calcium and hydrochlorothiazide were prescribed to the patient. OUTCOMES: After the treatments for 1 week, the patient's symptom was improved and the re-examination revealed serum calcium in the normal range. A 3-month follow-up showed his symptom was mostly relieved. LESSONS: The variant of CASR Arg205Cys, responsible for ADH1 in this family, broadened the genetic spectrum of ADH1. Further and more studies are required to evaluate the correlation between genotype and phenotype in ADH1 patients.


Assuntos
Cálcio/administração & dosagem , Hipercalciúria/diagnóstico , Hipocalcemia/diagnóstico , Hipoparatireoidismo/congênito , Receptores de Detecção de Cálcio/genética , Calcitriol/administração & dosagem , Cálcio/sangue , Análise Mutacional de DNA , Quimioterapia Combinada/métodos , Feminino , Testes Genéticos , Heterozigoto , Humanos , Hidroclorotiazida/administração & dosagem , Hipercalciúria/sangue , Hipercalciúria/genética , Hipocalcemia/sangue , Hipocalcemia/genética , Hipoparatireoidismo/sangue , Hipoparatireoidismo/diagnóstico , Hipoparatireoidismo/genética , Masculino , Anamnese , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , Resultado do Tratamento
6.
J Clin Endocrinol Metab ; 106(4): e1775-e1792, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33340048

RESUMO

CONTEXT: The calcium-sensing receptor (CaSR) is essential to maintain a stable calcium concentration in serum. Spermatozoa are exposed to immense changes in concentrations of CaSR ligands such as calcium, magnesium, and spermine during epididymal maturation, in the ejaculate, and in the female reproductive environment. However, the role of CaSR in human spermatozoa is unknown. OBJECTIVE: This work aimed to investigate the role of CaSR in human spermatozoa. METHODS: We identified CaSR in human spermatozoa and characterized the response to CaSR agonists on intracellular calcium, acrosome reaction, and 3',5'-cyclic adenosine 5'-monophosphate (cAMP) in spermatozoa from men with either loss-of-function or gain-of-function mutations in CASR and healthy donors. RESULTS: CaSR is expressed in human spermatozoa and is essential for sensing extracellular free ionized calcium (Ca2+) and Mg2+. Activators of CaSR augmented the effect of sperm-activating signals such as the response to HCO3- and the acrosome reaction, whereas spermatozoa from men with a loss-of-function mutation in CASR had a diminished response to HCO3-, lower progesterone-mediated calcium influx, and were less likely to undergo the acrosome reaction in response to progesterone or Ca2+. CaSR activation increased cAMP through soluble adenylyl cyclase (sAC) activity and increased calcium influx through CatSper. Moreover, external Ca2+ or Mg2+ was indispensable for HCO3- activation of sAC. Two male patients with a CASR loss-of-function mutation in exon 3 presented with normal sperm counts and motility, whereas a patient with a loss-of-function mutation in exon 7 had low sperm count, motility, and morphology. CONCLUSION: CaSR is important for the sensing of Ca2+, Mg2+, and HCO3- in spermatozoa, and loss-of-function may impair male sperm function.


Assuntos
Bicarbonatos/metabolismo , Cálcio/metabolismo , Receptores de Detecção de Cálcio/fisiologia , Espermatozoides/metabolismo , Reação Acrossômica/efeitos dos fármacos , Reação Acrossômica/genética , Adulto , Bicarbonatos/farmacologia , Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Estudos de Casos e Controles , Feminino , Humanos , Hipercalcemia/congênito , Hipercalcemia/genética , Hipercalcemia/metabolismo , Hipercalcemia/patologia , Hipercalciúria/genética , Hipercalciúria/metabolismo , Hipercalciúria/patologia , Hipocalcemia/genética , Hipocalcemia/metabolismo , Hipocalcemia/patologia , Hipoparatireoidismo/congênito , Hipoparatireoidismo/genética , Hipoparatireoidismo/metabolismo , Hipoparatireoidismo/patologia , Rim/metabolismo , Rim/patologia , Magnésio/metabolismo , Magnésio/farmacologia , Masculino , Mutação , Receptores de Detecção de Cálcio/genética , Motilidade dos Espermatozoides/efeitos dos fármacos , Motilidade dos Espermatozoides/genética , Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patologia
7.
BMJ Case Rep ; 13(6)2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32513763

RESUMO

Autosomal dominant hypocalcaemia is a rare aetiology of hypocalcaemia, caused by gain-of-function mutations of the calcium-sensing receptor (CASR) gene. We present two cases of two asymptomatic women (50-year-old-case 1 and 25-year-old-case 2), referred to our endocrinology department for investigation of hypocalcaemia, hyperphosphatemia and inappropriately low parathormone. Both patients had relatives with the same laboratorial findings. At diagnosis, both patients presented basal ganglia calcifications. Genetic analysis was performed, identifying two novel heterozygous CASR variants: c.2269G>A (p.Glu757Lys) and c.2086C>G (p.Leu696Val), respectively, for case 1 and case 2. Affected individuals started oral calcium and vitamin D analogues, aiming to a low-normal calcium level. They remain under observation and are asymptomatic.


Assuntos
Gânglios da Base/diagnóstico por imagem , Calcinose , Hipercalciúria , Hiperfosfatemia , Hipocalcemia , Hipoparatireoidismo/congênito , Receptores de Detecção de Cálcio/genética , Conduta Expectante/métodos , Adulto , Doenças Assintomáticas , Calcinose/diagnóstico por imagem , Calcinose/etiologia , Sinalização do Cálcio , Feminino , Humanos , Hipercalciúria/sangue , Hipercalciúria/diagnóstico , Hiperfosfatemia/sangue , Hiperfosfatemia/etiologia , Hipocalcemia/sangue , Hipocalcemia/diagnóstico , Hipoparatireoidismo/sangue , Hipoparatireoidismo/diagnóstico , Pessoa de Meia-Idade , Mutação , Hormônio Paratireóideo/análise , Linhagem
8.
J Clin Endocrinol Metab ; 105(7)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32421798

RESUMO

CONTEXT: Familial hypoparathyroidism has a heterogeneous presentation where patients usually have low parathyroid hormone (PTH) levels due to impaired production or secretion. This contrasts with pseudohypoparathyroidism, in which PTH resistance is usually associated with an elevated serum PTH. High levels of circulating PTH can also be due to bioinactive PTH, which is difficult to distinguish from pseudohypoparathyroidism on biochemical grounds. CASE DESCRIPTION: We report on 2 sisters from consanguineous parents who presented with tetany at birth and were diagnosed with congenital hypocalcemia. Serum PTH levels were normal for many years, but progressively increased in midadulthood to greater than 100x the upper limit of normal on multiple assays. Homozygosity mapping was performed on 1 sister that demonstrated loss of heterozygosity (LOH) around PTH. Sequencing revealed a previously unreported variant, c.94T>C, predicting a codon change of p.Ser32Pro that is biologically inactive. CONCLUSIONS: This case report shows a previously unreported unusual biochemical phenotype of a rising PTH in the context of a novel PTH mutation. This expands the evolving genotypes associated with hypoparathyroidism without established gene mutations.


Assuntos
Hipoparatireoidismo/sangue , Hipoparatireoidismo/genética , Hormônio Paratireóideo/sangue , Hormônio Paratireóideo/genética , Feminino , Humanos , Hipocalcemia/sangue , Hipocalcemia/complicações , Hipoparatireoidismo/complicações , Hipoparatireoidismo/congênito , Pessoa de Meia-Idade , Mutação , Irmãos
9.
J Clin Endocrinol Metab ; 105(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31820785

RESUMO

CONTEXT: Autosomal dominant hypocalcemia types 1 and 2 (ADH1 and ADH2) are caused by germline gain-of-function mutations of the calcium-sensing receptor (CaSR) and its signaling partner, the G-protein subunit α 11 (Gα 11), respectively. More than 70 different gain-of-function CaSR mutations, but only 6 different gain-of-function Gα 11 mutations are reported to date. METHODS: We ascertained 2 additional ADH families and investigated them for CaSR and Gα 11 mutations. The effects of identified variants on CaSR signaling were evaluated by transiently transfecting wild-type (WT) and variant expression constructs into HEK293 cells stably expressing CaSR (HEK-CaSR), and measuring intracellular calcium (Ca2+i) and MAPK responses following stimulation with extracellular calcium (Ca2+e). RESULTS: CaSR variants were not found, but 2 novel heterozygous germline Gα 11 variants, p.Gly66Ser and p.Arg149His, were identified. Homology modeling of these revealed that the Gly66 and Arg149 residues are located at the interface between the Gα 11 helical and GTPase domains, which is involved in guanine nucleotide binding, and this is the site of 3 other reported ADH2 mutations. The Ca2+i and MAPK responses of cells expressing the variant Ser66 or His149 Gα 11 proteins were similar to WT cells at low Ca2+e, but significantly increased in a dose-dependent manner following Ca2+e stimulation, thereby indicating that the p.Gly66Ser and p.Arg149His variants represent pathogenic gain-of-function Gα 11 mutations. Treatment of Ser66- and His149-Gα 11 expressing cells with the CaSR negative allosteric modulator NPS 2143 normalized Ca2+i and MAPK responses. CONCLUSION: Two novel ADH2-causing mutations that highlight the Gα 11 interdomain interface as a hotspot for gain-of-function Gα 11 mutations have been identified.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Mutação com Ganho de Função/genética , Hipercalciúria/genética , Hipocalcemia/genética , Hipoparatireoidismo/congênito , Receptores de Detecção de Cálcio/genética , Adulto , Criança , Feminino , Células HEK293 , Humanos , Hipoparatireoidismo/genética , Masculino , Linhagem
10.
J Bone Miner Res ; 34(9): 1609-1618, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31063613

RESUMO

Autosomal dominant hypocalcemia type 1 (ADH1) is a rare form of hypoparathyroidism caused by heterozygous, gain-of-function mutations of the calcium-sensing receptor gene (CAR). Individuals are hypocalcemic with inappropriately low parathyroid hormone (PTH) secretion and relative hypercalciuria. Calcilytics are negative allosteric modulators of the extracellular calcium receptor (CaR) and therefore may have therapeutic benefits in ADH1. Five adults with ADH1 due to four distinct CAR mutations received escalating doses of the calcilytic compound NPSP795 (SHP635) on 3 consecutive days. Pharmacokinetics, pharmacodynamics, efficacy, and safety were assessed. Parallel in vitro testing with subject CaR mutations assessed the effects of NPSP795 on cytoplasmic calcium concentrations (Ca2+i ), and ERK and p38MAPK phosphorylation. These effects were correlated with clinical responses to administration of NPSP795. NPSP795 increased plasma PTH levels in a concentration-dependent manner up to 129% above baseline (p = 0.013) at the highest exposure levels. Fractional excretion of calcium (FECa) trended down but not significantly so. Blood ionized calcium levels remained stable during NPSP795 infusion despite fasting, no calcitriol supplementation, and little calcium supplementation. NPSP795 was generally safe and well-tolerated. There was significant variability in response clinically across genotypes. In vitro, all mutant CaRs were half-maximally activated (EC50 ) at lower concentrations of extracellular calcium (Ca2+o ) compared to wild-type (WT) CaR; NPSP795 exposure increased the EC50 for all CaR activity readouts. However, the in vitro responses to NPSP795 did not correlate with any clinical parameters. NPSP795 increased plasma PTH levels in subjects with ADH1 in a dose-dependent manner, and thus, serves as proof-of-concept that calcilytics could be an effective treatment for ADH1. Albeit all mutations appear to be activating at the CaR, in vitro observations were not predictive of the in vivo phenotype or the response to calcilytics, suggesting that other parameters impact the response to the drug. © 2019 American Society for Bone and Mineral Research.


Assuntos
Compostos de Cálcio/uso terapêutico , Hipercalciúria/tratamento farmacológico , Hipocalcemia/tratamento farmacológico , Hipoparatireoidismo/congênito , Adulto , Área Sob a Curva , Compostos de Cálcio/efeitos adversos , Compostos de Cálcio/farmacocinética , Linhagem Celular , Feminino , Genótipo , Humanos , Hipercalciúria/genética , Hipocalcemia/genética , Hipoparatireoidismo/tratamento farmacológico , Hipoparatireoidismo/genética , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
11.
J Bone Miner Res ; 34(4): 661-668, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30496603

RESUMO

The role of the calcium-sensing receptor (CaSR) as a regulator of parathyroid hormone secretion is well established, but its function in bone is less well defined. In an effort to elucidate the CaSR's skeletal role, bone tissue and material characteristics from patients with autosomal dominant hypocalcemia (ADH), a genetic form of primary hypoparathyroidism caused by CASR gain-of-function mutations, were compared to patients with postsurgical hypoparathyroidism (PSH). Bone structure and formation/resorption indices and mineralization density distribution (BMDD), were examined in transiliac biopsy samples from PSH (n = 13) and ADH (n = 6) patients by histomorphometry and quantitative backscatter electron imaging, respectively. Bone mineral density (BMD by DXA) and biochemical characteristics were measured at the time of the biopsy. Because both study groups comprised children and adults, all measured biopsy parameters and BMD outcomes were converted to Z-scores for comparison. Histomorphometric indices were normal and not different between ADH and PSH, with the exception of mineral apposition rate Z-score, which was higher in the ADH group. Similarly, average BMD Z-scores were normal and not different between ADH and PSH. Significant differences were observed for the BMDD: average Z-scores of mean and typical degree of mineralization (CaMean, CaPeak, respectively) were lower (p = 0.02 and p = 0.03, respectively), whereas the heterogeneity of mineralization (CaWidth) and percentage of lower mineralized areas (CaLow) were increased in ADH versus PSH (p = 0.01 and p = 0.002, respectively). The BMDD outcomes point toward a direct, PTH-independent role of the CaSR in the regulation of bone mineralization. © 2018 American Society for Bone and Mineral Research.


Assuntos
Densidade Óssea , Mutação com Ganho de Função , Hipercalciúria , Hipocalcemia , Hipoparatireoidismo/congênito , Complicações Pós-Operatórias , Receptores de Detecção de Cálcio , Adolescente , Adulto , Criança , Feminino , Humanos , Hipercalciúria/genética , Hipercalciúria/metabolismo , Hipercalciúria/patologia , Hipocalcemia/genética , Hipocalcemia/metabolismo , Hipocalcemia/patologia , Hipoparatireoidismo/genética , Hipoparatireoidismo/metabolismo , Hipoparatireoidismo/patologia , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/genética , Complicações Pós-Operatórias/metabolismo , Complicações Pós-Operatórias/patologia , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo
12.
Nat Rev Endocrinol ; 15(1): 33-51, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30443043

RESUMO

The Ca2+-sensing receptor (CaSR) is a dimeric family C G protein-coupled receptor that is expressed in calcitropic tissues such as the parathyroid glands and the kidneys and signals via G proteins and ß-arrestin. The CaSR has a pivotal role in bone and mineral metabolism, as it regulates parathyroid hormone secretion, urinary Ca2+ excretion, skeletal development and lactation. The importance of the CaSR for these calcitropic processes is highlighted by loss-of-function and gain-of-function CaSR mutations that cause familial hypocalciuric hypercalcaemia and autosomal dominant hypocalcaemia, respectively, and also by the fact that alterations in parathyroid CaSR expression contribute to the pathogenesis of primary and secondary hyperparathyroidism. Moreover, the CaSR is an established therapeutic target for hyperparathyroid disorders. The CaSR is also expressed in organs not involved in Ca2+ homeostasis: it has noncalcitropic roles in lung and neuronal development, vascular tone, gastrointestinal nutrient sensing, wound healing and secretion of insulin and enteroendocrine hormones. Furthermore, the abnormal expression or function of the CaSR is implicated in cardiovascular and neurological diseases, as well as in asthma, and the CaSR is reported to protect against colorectal cancer and neuroblastoma but increase the malignant potential of prostate and breast cancers.


Assuntos
Calcimiméticos/uso terapêutico , Hipercalcemia/congênito , Hipercalciúria/genética , Hipocalcemia/genética , Hipoparatireoidismo/congênito , Nefrolitíase/genética , Receptores de Detecção de Cálcio/genética , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença/epidemiologia , Humanos , Hipercalcemia/tratamento farmacológico , Hipercalcemia/genética , Hipercalcemia/fisiopatologia , Hipercalciúria/tratamento farmacológico , Hipercalciúria/fisiopatologia , Hipocalcemia/tratamento farmacológico , Hipocalcemia/fisiopatologia , Hipoparatireoidismo/tratamento farmacológico , Hipoparatireoidismo/genética , Hipoparatireoidismo/fisiopatologia , Incidência , Masculino , Mutação/genética , Nefrolitíase/tratamento farmacológico , Nefrolitíase/fisiopatologia , Prognóstico , Receptores de Detecção de Cálcio/efeitos dos fármacos , Medição de Risco , Resultado do Tratamento
13.
J Clin Endocrinol Metab ; 103(11): 4023-4032, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137364

RESUMO

Context: Most cases of autosomal dominant isolated hypoparathyroidism are caused by gain-of-function mutations in CASR or GNA11 or dominant negative mutations in GCM2 or PTH. Objective: To identify the genetic etiology for dominantly transmitted isolated hypoparathyroidism in two multigenerational families with 14 affected family members. Methods: We performed whole exome sequencing of DNA from two families and examined the consequences of mutations by minigene splicing assay. Results: We discovered disease-causing mutations in both families. A splice-altering mutation in TBX1 (c.1009+1G>C) leading to skipping of exon 8 (101 bp) was identified in 10 affected family members and five unaffected subjects of family A, indicating reduced penetrance for this point mutation. In a second family from France (family B), we identified another splice-altering mutation (c.1009+2T>C) adjacent to the mutation identified in family A that results in skipping of the same exon; two subjects in family B had isolated hypoparathyroidism, whereas a third subject manifested the clinical triad of the 22q11.2 deletion syndrome, indicative of variable expressivity. Conclusions: We report evidence that heterozygous TBX1 mutations can cause isolated hypoparathyroidism. This study adds knowledge to the increasingly expanding list of causative and candidate genes in isolated hypoparathyroidism.


Assuntos
Síndrome de DiGeorge/genética , Hipercalciúria/genética , Hipocalcemia/genética , Hipoparatireoidismo/congênito , Proteínas com Domínio T/genética , Idoso , Síndrome de DiGeorge/sangue , Síndrome de DiGeorge/diagnóstico , Éxons/genética , Feminino , Heterozigoto , Humanos , Hipercalciúria/sangue , Hipercalciúria/diagnóstico , Hipocalcemia/sangue , Hipocalcemia/diagnóstico , Hipoparatireoidismo/sangue , Hipoparatireoidismo/diagnóstico , Hipoparatireoidismo/genética , Lactente , Masculino , Mutação , Linhagem , Penetrância , Sítios de Splice de RNA/genética , Sequenciamento do Exoma
14.
Hum Mol Genet ; 27(21): 3720-3733, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30052933

RESUMO

The calcium-sensing receptor (CaSR) is a homodimeric G-protein-coupled receptor that signals via intracellular calcium (Ca2+i) mobilisation and phosphorylation of extracellular signal-regulated kinase 1/2 (ERK) to regulate extracellular calcium (Ca2+e) homeostasis. The central importance of the CaSR in Ca2+e homeostasis has been demonstrated by the identification of loss- or gain-of-function CaSR mutations that lead to familial hypocalciuric hypercalcaemia (FHH) or autosomal dominant hypocalcaemia (ADH), respectively. However, the mechanisms determining whether the CaSR signals via Ca2+i or ERK have not been established, and we hypothesised that some CaSR residues, which are the site of both loss- and gain-of-function mutations, may act as molecular switches to direct signalling through these pathways. An analysis of CaSR mutations identified in >300 hypercalcaemic and hypocalcaemic probands revealed five 'disease-switch' residues (Gln27, Asn178, Ser657, Ser820 and Thr828) that are affected by FHH and ADH mutations. Functional expression studies using HEK293 cells showed disease-switch residue mutations to commonly display signalling bias. For example, two FHH-associated mutations (p.Asn178Asp and p.Ser820Ala) impaired Ca2+i signalling without altering ERK phosphorylation. In contrast, an ADH-associated p.Ser657Cys mutation uncoupled signalling by leading to increased Ca2+i mobilization while decreasing ERK phosphorylation. Structural analysis of these five CaSR disease-switch residues together with four reported disease-switch residues revealed these residues to be located at conformationally active regions of the CaSR such as the extracellular dimer interface and transmembrane domain. Thus, our findings indicate that disease-switch residues are located at sites critical for CaSR activation and play a role in mediating signalling bias.


Assuntos
Mutação com Ganho de Função , Hipercalciúria/genética , Hipocalcemia/genética , Hipoparatireoidismo/congênito , Mutação com Perda de Função , Receptores de Detecção de Cálcio/genética , Transdução de Sinais , Sequência de Aminoácidos , Sinalização do Cálcio , Análise Mutacional de DNA , Células HEK293 , Humanos , Hipercalciúria/metabolismo , Hipocalcemia/metabolismo , Hipoparatireoidismo/genética , Hipoparatireoidismo/metabolismo , Conformação Proteica , Receptores de Detecção de Cálcio/metabolismo , Alinhamento de Sequência
15.
BMJ Case Rep ; 20182018 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-29804071

RESUMO

A female patient with consanguineous parents presented at the age of 4 with isolated hypoparathyroidism due to a parathyroid hormone (PTH) gene mutation. She was managed with alfacalcidol and calcium supplements, and developed normally. Her consanguineous parents described symptoms suggestive of hypocalcaemia but had normal serum calcium and low normal PTH levels. A molecular diagnosis obtained in her adulthood revealed the presence of homozygous point mutation (c.68C>A) in exon 2 introducing a premature stop codon resulting in a non-functional precursor protein. This mutation has been reported only once before. Our patient remained on stable doses of alfacalcidol during pregnancy, but stopped all supplementation while breast feeding. This case confirms that alternative mechanisms (likely breast-derived parathyroid hormone-related protein) contribute to calcium homeostasis during breast feeding. Heterozygotes for the c.68C>A mutation may have latent hypoparathyroidism and maintain calcium homeostasis except during prolonged hypocalcaemia. This would suggest incomplete dominance, or a dose effect of the wild-type PTH allele.


Assuntos
Aleitamento Materno , Hipoparatireoidismo/congênito , Proteína Relacionada ao Hormônio Paratireóideo/genética , Mutação Puntual , Complicações na Gravidez/genética , Adulto , Códon , Consanguinidade , Éxons , Feminino , Homozigoto , Humanos , Hipoparatireoidismo/genética , Gravidez , Resultado da Gravidez
16.
J Mol Endocrinol ; 61(1): R1-R12, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29599414

RESUMO

The calcium-sensing receptor (CASR) is a class C G-protein-coupled receptor (GPCR) that detects extracellular calcium concentrations, and modulates parathyroid hormone secretion and urinary calcium excretion to maintain calcium homeostasis. The CASR utilises multiple heterotrimeric G-proteins to mediate signalling effects including activation of intracellular calcium release; mitogen-activated protein kinase (MAPK) pathways; membrane ruffling; and inhibition of cAMP production. By studying germline mutations in the CASR and proteins within its signalling pathway that cause hyper- and hypocalcaemic disorders, novel mechanisms governing GPCR signalling and trafficking have been elucidated. This review focusses on two recently described pathways that provide novel insights into CASR signalling and trafficking mechanisms. The first, identified by studying a CASR gain-of-function mutation that causes autosomal dominant hypocalcaemia (ADH), demonstrated a structural motif located between the third transmembrane domain and the second extracellular loop of the CASR that mediates biased signalling by activating a novel ß-arrestin-mediated G-protein-independent pathway. The second, in which the mechanism by which adaptor protein-2 σ-subunit (AP2σ) mutations cause familial hypocalciuric hypercalcaemia (FHH) was investigated, demonstrated that AP2σ mutations impair CASR internalisation and reduce multiple CASR-mediated signalling pathways. Furthermore, these studies showed that the CASR can signal from the cell surface using multiple G-protein pathways, whilst sustained signalling is mediated only by the Gq/11 pathway. Thus, studies of FHH- and ADH-associated mutations have revealed novel steps by which CASR mediates signalling and compartmental bias, and these pathways could provide new targets for therapies for patients with calcaemic disorders.


Assuntos
Cálcio/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Animais , Homeostase/fisiologia , Humanos , Hipercalciúria/metabolismo , Hipocalcemia/metabolismo , Hipoparatireoidismo/congênito , Hipoparatireoidismo/metabolismo , Receptores de Detecção de Cálcio/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
17.
Sci Signal ; 11(518)2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463778

RESUMO

The calcium-sensing receptor (CaSR) is a G protein-coupled receptor (GPCR) that signals through Gq/11 and Gi/o to stimulate cytosolic calcium (Ca2+i) and mitogen-activated protein kinase (MAPK) signaling to control extracellular calcium homeostasis. Studies of loss- and gain-of-function CASR mutations, which cause familial hypocalciuric hypercalcemia type 1 (FHH1) and autosomal dominant hypocalcemia type 1 (ADH1), respectively, have revealed that the CaSR signals in a biased manner. Thus, some mutations associated with FHH1 lead to signaling predominantly through the MAPK pathway, whereas mutations associated with ADH1 preferentially enhance Ca2+i responses. We report a previously unidentified ADH1-associated R680G CaSR mutation, which led to the identification of a CaSR structural motif that mediates biased signaling. Expressing CaSRR680G in HEK 293 cells showed that this mutation increased MAPK signaling without altering Ca2+i responses. Moreover, this gain of function in MAPK activity occurred independently of Gq/11 and Gi/o and was mediated instead by a noncanonical pathway involving ß-arrestin proteins. Homology modeling and mutagenesis studies showed that the R680G CaSR mutation selectively enhanced ß-arrestin signaling by disrupting a salt bridge formed between Arg680 and Glu767, which are located in CaSR transmembrane domain 3 and extracellular loop 2, respectively. Thus, our results demonstrate CaSR signaling through ß-arrestin and the importance of the Arg680-Glu767 salt bridge in mediating signaling bias.


Assuntos
Membrana Celular/metabolismo , Hipercalciúria/fisiopatologia , Hipocalcemia/fisiopatologia , Hipoparatireoidismo/congênito , Sistema de Sinalização das MAP Quinases , Mutação , Receptores de Detecção de Cálcio/metabolismo , Sais/metabolismo , beta-Arrestinas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Cálcio/metabolismo , Membrana Celular/química , Saúde da Família , Feminino , Humanos , Hipercalciúria/genética , Hipocalcemia/genética , Hipoparatireoidismo/genética , Hipoparatireoidismo/fisiopatologia , Masculino , Modelos Moleculares , Linhagem , Conformação Proteica , Receptores de Detecção de Cálcio/química , Receptores de Detecção de Cálcio/genética , Sais/química , Homologia de Sequência de Aminoácidos
18.
J Bone Miner Res ; 33(3): 467-477, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29087612

RESUMO

Nonsurgical hypoparathyroidism (Ns-HypoPT) and pseudohypoparathyroidism (PHP) are both rare diseases, characterized by hypocalcemia. In Ns-HypoPT, PTH levels are low, whereas patients with PHP often have very high levels due to receptor-insensitivity to PTH (PTH-resistance). Accordingly, we hypothesized that indices of bone turnover and bone mineralization/architecture are similar in Ns-HypoPT and PHP despite marked differences in PTH levels. We studied 62 patients with Ns-HypoPT and 31 with PHP as well as a group of age- and sex-matched healthy controls. We found a significantly higher areal BMD (aBMD) by DXA among patients with Ns-HypoPT, both compared with PHP and the background population. Compared with Ns-HypoPT, PHP patients had significantly lower total and trabecular volumetric BMD (vBMD) assessed by quantitative computed tomography (QCT) scans at the spine and hip. High-resolution peripheral quantitative computed tomography (HRpQCT) scans showed a lower trabecular area and vBMD as well as a lower trabecular number at the tibia in PHP compared to Ns-HypoPT and matched controls. In PHP, PTH levels correlated with levels of markers of bone formation (osteocalcin, bone-specific alkaline phosphatase, P1NP), and bone resorption (CTx). In adult males, levels of bone markers were significantly higher in PHP compared with Ns-HypoPT. Levels of procalcitonin and calcitonin were significantly higher in PHP compared with Ns-HypoPT. In conclusion, indices of bone turnover, density, and microarchitecture differ between patients with Ns-HypoPT and PHP. Our data suggest that patients with PHP do not have a complete skeletal resistance to PTH and that the effects of chronically high PTH levels in PHP are mostly confined to the trabecular tissue. © 2017 American Society for Bone and Mineral Research.


Assuntos
Osso e Ossos/patologia , Hipercalciúria/complicações , Hipocalcemia/complicações , Hipoparatireoidismo/congênito , Hipoparatireoidismo/complicações , Pseudo-Hipoparatireoidismo/complicações , Adulto , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Estudos de Coortes , Feminino , Humanos , Hipercalciúria/diagnóstico por imagem , Hipocalcemia/diagnóstico por imagem , Hipoparatireoidismo/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Pseudo-Hipoparatireoidismo/diagnóstico por imagem , Rádio (Anatomia)/diagnóstico por imagem , Rádio (Anatomia)/patologia , Insuficiência Renal Crônica/complicações , Tíbia/diagnóstico por imagem , Tíbia/patologia , Tomografia Computadorizada por Raios X
19.
Hormones (Athens) ; 16(2): 200-204, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28742508

RESUMO

OBJECTIVE: Autosomal dominant hypocalcemia (ADH) is a rare familial or sporadic syndrome associated with activating mutations in the calcium sensing receptor (CaSR) gene. The aim of this study was to assess the functional significance of a novel CaSR mutation and, moreover, to present the clinical characteristics and the bone mineral density (BMD) progression from early childhood to late puberty in a patient with ADH. DESIGN: Genetic analysis of the CaSR gene was performed in a patient who presented in the neonatal period with hypocalcemic seizures and biochemical features of ADH. The functional impact of the novel mutation identified was assessed in cultured HEK 293T cells, transfected with either the wild type (WT) or mutant CaSR, by evaluating intracellular calcium ([Ca2+]i) influx after stimulation with extracellular calcium (Ca2+). Several BMD measurements were performed during the patient's follow-up until late puberty. RESULTS: A novel CaSR mutation (p.L123S) was identified, which, as demonstrated by functional analysis, renders CaSR more sensitive to extracellular changes of Ca2+ compared with the WT, although the difference is not statistically significant. BMD measurements, from early childhood to late puberty, revealed high normal to elevated BMD. CONCLUSION: We present the first Greek patient, to our knowledge, with sporadic ADH due to a novel gain-of-function mutation of the CaSR gene.


Assuntos
Hipercalciúria/diagnóstico , Hipocalcemia/diagnóstico , Hipoparatireoidismo/congênito , Receptores de Detecção de Cálcio/genética , Adolescente , Humanos , Hipercalciúria/genética , Hipocalcemia/genética , Hipoparatireoidismo/diagnóstico , Hipoparatireoidismo/genética , Masculino
20.
Neth J Med ; 75(6): 253-255, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28741586

RESUMO

BACKGROUND: Regulation of calcium is mediated by parathyroid hormone (PTH) and 1.25-dihydroxyvitamine D3. The calcium-sensing receptor (CaSR) regulates PTH release by a negative feedback system. Gain-of-function mutations in the CaSR gene reset the calcium-PTH axis, leading to hypocalcaemia. PATIENTS AND METHODS: We analysed a family with hypocalcaemia. The proband was a 47-year-old man (index, patient I1), who presented with paraesthesias in both limbs. He has two sons (patient II1 a nd I I2). The probands' lab results showed: serum calcium of 1.95 mmol/l, albumin 41 g/l, phosphate 0.81 mmol/l and PTH 6.6 ng/l (normal 15-65 ng/l). Based on this analysis, we suspected a hereditary form of hypocalcaemia and performed genetic testing by polymerase chain reaction and Sanger sequencing of the coding regions and intron boundaries of the CaSR gene. Genetic analysis revealed a new heterozygous mutation: c.2195A>G, p.(Asn732Ser) in exon 7. The lab results of patient II1 showed: serum calcium of 1.93 mmol/l, phosphate 1.31 mmol/l, albumin 41 g/l, and PTH 24.3 ng/l. His genotype revealed the same activating mutation and, like his father, he also lost his scalp hair at an early adolescent age. Patient II2 is asymptomatic, and has neither biochemical abnormalities, nor the familial CaSR gene mutation. He still has all his scalp hair. CONCLUSIONS: 1) The c.2195A>G, p.(Asn732Ser) mutation in exon 7 of the CaSR gene leads to hypocalcaemia, and has not been reported before in the medical literature. 2) Possibly, this mutation is linked to premature baldness.


Assuntos
Hipercalciúria/genética , Hipocalcemia/genética , Hipoparatireoidismo/congênito , Mutação , Receptores de Detecção de Cálcio/genética , Adolescente , Adulto , Cálcio/sangue , Éxons , Pai , Genótipo , Heterozigoto , Humanos , Hipoparatireoidismo/genética , Masculino , Pessoa de Meia-Idade , Núcleo Familiar , Linhagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...