Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 125(42): 11606-11616, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34648705

RESUMO

Catalytic fields representing the topology of the optimal molecular environment charge distribution that reduces the activation barrier have been used to examine alternative reaction variants and to determine the role of conserved catalytic residues for two consecutive reactions catalyzed by the same enzyme. Until now, most experimental and conventional top-down theoretical studies employing QM/MM or ONIOM methods have focused on the role of enzyme electric fields acting on broken bonds of reactants. In contrast, our bottom-up approach dealing with a small reactant and transition-state model allows the analysis of the opposite effects: how the catalytic field resulting from the charge redistribution during the enzyme reaction acts on conserved amino acid residues and contributes to the reduction of the activation barrier. This approach has been applied to the family of histidyl tRNA synthetases involved in the translation of the genetic code into the protein amino acid sequence. Activation energy changes related to conserved charged amino acid residues for 12 histidyl tRNA synthetases from different biological species allowed to compare on equal footing the catalytic residues involved in ATP aminoacylation and tRNA charging reactions and to analyze different reaction mechanisms proposed in the literature. A scan of the library of atomic multipoles for amino acid side-chain rotamers within the catalytic field pointed out the change in the Glu83 conformation as the critical catalytic effect, providing, at low computational cost, insight into the electrostatic preorganization of the enzyme catalytic site at a level of detail that has not yet been accessible in conventional experimental or theoretical methods. This opens the way for rational reverse biocatalyst design at a very limited computational cost without resorting to empirical methods.


Assuntos
Histidina-tRNA Ligase , Aminoacilação , Catálise , Domínio Catalítico , Histidina-tRNA Ligase/metabolismo , Eletricidade Estática
2.
FEBS J ; 288(1): 142-159, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32543048

RESUMO

Charcot-Marie-Tooth disease (CMT) encompasses a set of genetically and clinically heterogeneous neuropathies characterized by length-dependent dysfunction of the peripheral nervous system. Mutations in over 80 diverse genes are associated with CMT, and aminoacyl-tRNA synthetases (ARS) constitute a large gene family implicated in the disease. Despite considerable efforts to elucidate the mechanistic link between ARS mutations and the CMT phenotype, the molecular basis of the pathology is unknown. In this work, we investigated the impact of three CMT-associated substitutions (V155G, Y330C, and R137Q) in the cytoplasmic histidyl-tRNA synthetase (HARS1) on neurite outgrowth and peripheral nervous system development. The model systems for this work included a nerve growth factor-stimulated neurite outgrowth model in rat pheochromocytoma cells (PC12), and a zebrafish line with GFP/red fluorescent protein reporters of sensory and motor neuron development. The expression of CMT-HARS1 mutations led to attenuation of protein synthesis and increased phosphorylation of eIF2α in PC12 cells and was accompanied by impaired neurite and axon outgrowth in both models. Notably, these effects were phenocopied by histidinol, a HARS1 inhibitor, and cycloheximide, a protein synthesis inhibitor. The mutant proteins also formed heterodimers with wild-type HARS1, raising the possibility that CMT-HARS1 mutations cause disease through a dominant-negative mechanism. Overall, these findings support the hypothesis that CMT-HARS1 alleles exert their toxic effect in a neuronal context, and lead to dysregulated protein synthesis. These studies demonstrate the value of zebrafish as a model for studying mutant alleles associated with CMT, and for characterizing the processes that lead to peripheral nervous system dysfunction.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Histidina-tRNA Ligase/genética , Crescimento Neuronal/genética , Neurônios/metabolismo , Sistema Nervoso Periférico/metabolismo , Biossíntese de Proteínas , Animais , Animais Geneticamente Modificados , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Cicloeximida/farmacologia , Modelos Animais de Doenças , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histidina-tRNA Ligase/antagonistas & inibidores , Histidina-tRNA Ligase/metabolismo , Histidinol/farmacologia , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutação , Crescimento Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Células PC12 , Sistema Nervoso Periférico/patologia , Multimerização Proteica , Ratos , Peixe-Zebra , Proteína Vermelha Fluorescente
3.
Genes (Basel) ; 11(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906706

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) play essential roles in protein translation. In addition, numerous aaRSs (mostly in vertebrates) have also been discovered to possess a range of non-canonical functions. Very few studies have been conducted to elucidate or characterize non-canonical functions of plant aaRSs. A genome-wide search for aaRS genes in Arabidopsis thaliana revealed a total of 59 aaRS genes. Among them, asparaginyl-tRNA synthetase (AsnRS) was found to possess a WHEP domain inserted into the catalytic domain in a plant-specific manner. This insertion was observed only in the cytosolic isoform. In addition, a long stretch of sequence that exhibited weak homology with histidine ammonia lyase (HAL) was found at the N-terminus of histidyl-tRNA synthetase (HisRS). This HAL-like domain has only been seen in plant HisRS, and only in cytosolic isoforms. Additionally, a number of genes lacking minor or major portions of the full-length aaRS sequence were found. These genes encode 14 aaRS fragments that lack key active site sequences and are likely catalytically null. These identified genes that encode plant-specific additional domains or aaRS fragment sequences are candidates for aaRSs possessing non-canonical functions.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Aspartato-tRNA Ligase/metabolismo , Genoma de Planta , Histidina-tRNA Ligase/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Aminoacil-tRNA Sintetases/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Aspartato-tRNA Ligase/genética , Domínio Catalítico , Histidina-tRNA Ligase/genética , Biossíntese de Proteínas , Aminoacil-RNA de Transferência/genética
4.
Proc Natl Acad Sci U S A ; 116(39): 19440-19448, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31501329

RESUMO

Aminoacyl-transfer RNA (tRNA) synthetases (aaRSs) are the largest protein family causatively linked to neurodegenerative Charcot-Marie-Tooth (CMT) disease. Dominant mutations cause the disease, and studies of CMT disease-causing mutant glycyl-tRNA synthetase (GlyRS) and tyrosyl-tRNA synthetase (TyrRS) showed their mutations create neomorphic structures consistent with a gain-of-function mechanism. In contrast, based on a haploid yeast model, loss of aminoacylation function was reported for CMT disease mutants in histidyl-tRNA synthetase (HisRS). However, neither that nor prior work of any CMT disease-causing aaRS investigated the aminoacylation status of tRNAs in the cellular milieu of actual patients. Using an assay that interrogated aminoacylation levels in patient cells, we investigated a HisRS-linked CMT disease family with the most severe disease phenotype. Strikingly, no difference in charged tRNA levels between normal and diseased family members was found. In confirmation, recombinant versions of 4 other HisRS CMT disease-causing mutants showed no correlation between activity loss in vitro and severity of phenotype in vivo. Indeed, a mutation having the most detrimental impact on activity was associated with a mild disease phenotype. In further work, using 3 independent biophysical analyses, structural opening (relaxation) of mutant HisRSs at the dimer interface best correlated with disease severity. In fact, the HisRS mutation in the severely afflicted patient family caused the largest degree of structural relaxation. These data suggest that HisRS-linked CMT disease arises from open conformation-induced mechanisms distinct from loss of aminoacylation.


Assuntos
Aminoacil-tRNA Sintetases/genética , Doença de Charcot-Marie-Tooth/genética , Histidina-tRNA Ligase/genética , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/metabolismo , Aminoacilação/genética , Axônios , Doença de Charcot-Marie-Tooth/metabolismo , Mutação com Ganho de Função/genética , Histidina-tRNA Ligase/metabolismo , Humanos , Mutação , RNA de Transferência/genética , RNA de Transferência/metabolismo , Relação Estrutura-Atividade , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo
5.
Crit Rev Immunol ; 38(4): 263-278, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30806243

RESUMO

Among the inflammatory myopathies, anti-tRNA-synthetase syndrome (ASyS) is a severe autoimmune condition characterized by extramuscular involvement, affecting especially the lungs. ASyS specific serological markers are anti-tRNA-synthetase autoantibodies, among which anti-histidyl-tRNA-synthetase is the most common. In the past decades, ASyS has been distinguished by unique histological features attributed to a specific pathogenesis. Research has highlighted the role of environmental factors and infections as possible triggers. Tissue modifications of histidyl-tRNA-synthetase (HisRS) expression might be responsible for the recruitment and activation of both innate and adaptive immune cells. HisRS not only acts through antigenic properties, but also through many others, including chemoattraction, innate pathway activation, and cytokine-like functions. Favored by a certain genetic background, this whole activation of immunity results in widespread and specific tissue damage and finally leads to visible heterogeneous symptoms characterizing the disease state. Understanding the pathogenesis of ASyS is essential to improving patient care by identifying biomarkers and designing new therapeutic strategies accordingly. Therefore, this review details the recent hypotheses concerning the dynamic of ASyS pathogenesis with the aim of enlightening the development of new therapeutic axes in the future.


Assuntos
Miosite/imunologia , Miosite/patologia , Animais , Histidina-tRNA Ligase/biossíntese , Histidina-tRNA Ligase/imunologia , Histidina-tRNA Ligase/metabolismo , Humanos , Miosite/genética
6.
SLAS Discov ; 23(1): 65-75, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28745975

RESUMO

Pseudomonas aeruginosa histidyl-tRNA synthetase (HisRS) was selected as a target for antibiotic drug development. The HisRS protein was overexpressed in Escherichia coli and kinetically evaluated. The KM values for interaction of HisRS with its three substrates, histidine, ATP, and tRNAHis, were 37.6, 298.5, and 1.5 µM, while the turnover numbers were 8.32, 16.8, and 0.57 s-1, respectively. A robust screening assay was developed, and 800 natural products and 890 synthetic compounds were screened for inhibition of activity. Fifteen compounds with inhibitory activity were identified, and the minimum inhibitory concentration (MIC) was determined for each against a panel of nine pathogenic bacteria. Each compound exhibited broad-spectrum activity. Based on structural similarity and MIC results, four compounds, BT02C02, BT02D04, BT08E04, and BT09C11, were selected for additional analysis. These compounds inhibited the activity of HisRS with IC50 values of 4.4, 9.7, 14.1, and 11.3 µM, respectively. Time-kill studies indicated a bacteriostatic mode of inhibition for each compound. BT02D04 and BT08E04 were noncompetitive with both histidine and ATP, BT02C02 was competitive with histidine but noncompetitive with ATP, and BT09C11 was uncompetitive with histidine and noncompetitive with ATP. These compounds were not observed to be toxic to human cell cultures.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Histidina-tRNA Ligase/antagonistas & inibidores , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Sequência de Aminoácidos , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Expressão Gênica , Histidina-tRNA Ligase/genética , Histidina-tRNA Ligase/metabolismo , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudomonas aeruginosa/genética
7.
Hum Mutat ; 39(3): 415-432, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29235198

RESUMO

Histidyl-tRNA synthetase (HARS) ligates histidine to cognate tRNA molecules, which is required for protein translation. Mutations in HARS cause the dominant axonal peripheral neuropathy Charcot-Marie-Tooth disease type 2W (CMT2W); however, the precise molecular mechanism remains undefined. Here, we investigated three HARS missense mutations associated with CMT2W (p.Tyr330Cys, p.Ser356Asn, and p.Val155Gly). The three mutations localize to the HARS catalytic domain and failed to complement deletion of the yeast ortholog (HTS1). Enzyme kinetics, differential scanning fluorimetry (DSF), and analytical ultracentrifugation (AUC) were employed to assess the effect of these substitutions on primary aminoacylation function and overall dimeric structure. Notably, the p.Tyr330Cys, p.Ser356Asn, and p.Val155Gly HARS substitutions all led to reduced aminoacylation, providing a direct connection between CMT2W-linked HARS mutations and loss of canonical ARS function. While DSF assays revealed that only one of the variants (p.Val155Gly) was less thermally stable relative to wild-type, all three HARS mutants formed stable dimers, as measured by AUC. Our work represents the first biochemical analysis of CMT-associated HARS mutations and underscores how loss of the primary aminoacylation function can contribute to disease pathology.


Assuntos
Axônios/patologia , Histidina-tRNA Ligase/metabolismo , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças do Sistema Nervoso Periférico/patologia , Sequência de Aminoácidos , Aminoacilação , Biocatálise , Domínio Catalítico , Sequência Conservada , Feminino , Teste de Complementação Genética , Histidina-tRNA Ligase/química , Histidina-tRNA Ligase/genética , Histidina-tRNA Ligase/isolamento & purificação , Humanos , Cinética , Masculino , Mutação/genética , Linhagem , Doenças do Sistema Nervoso Periférico/genética , Multimerização Proteica , Especificidade por Substrato
8.
PLoS One ; 12(9): e0185317, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28934368

RESUMO

Histidyl tRNA Synthetase (HARS) is a member of the aminoacyl tRNA synthetase (ARS) family of enzymes. This family of 20 enzymes is responsible for attaching specific amino acids to their cognate tRNA molecules, a critical step in protein synthesis. However, recent work highlighting a growing number of associations between ARS genes and diverse human diseases raises the possibility of new and unexpected functions in this ancient enzyme family. For example, mutations in HARS have been linked to two different neurological disorders, Usher Syndrome Type IIIB and Charcot Marie Tooth peripheral neuropathy. These connections raise the possibility of previously undiscovered roles for HARS in metazoan development, with alterations in these functions leading to complex diseases. In an attempt to establish Danio rerio as a model for studying HARS functions in human disease, we characterized the Danio rerio hars gene and compared it to that of human HARS. Using a combination of bioinformatics, molecular biology, and cellular approaches, we found that while the human genome encodes separate genes for cytoplasmic and mitochondrial HARS protein, the Danio rerio genome encodes a single hars gene which undergoes alternative splicing to produce the respective cytoplasmic and mitochondrial versions of Hars. Nevertheless, while the HARS genes of humans and Danio differ significantly at the genomic level, we found that they are still highly conserved at the amino acid level, underscoring the potential utility of Danio rerio as a model organism for investigating HARS function and its link to human diseases in vivo.


Assuntos
Citoplasma/enzimologia , Citoplasma/genética , Histidina-tRNA Ligase/genética , Mitocôndrias/enzimologia , Peixe-Zebra/genética , Animais , Células COS , Chlorocebus aethiops , Sequência Conservada , Regulação Enzimológica da Expressão Gênica , Histidina-tRNA Ligase/química , Histidina-tRNA Ligase/metabolismo , Humanos , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade da Espécie
9.
Biochemistry ; 56(28): 3619-3631, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28632987

RESUMO

Histidyl-tRNA synthetase (HARS) is a highly conserved translation factor that plays an essential role in protein synthesis. HARS has been implicated in the human syndromes Charcot-Marie-Tooth (CMT) Type 2W and Type IIIB Usher (USH3B). The USH3B mutation, which encodes a Y454S substitution in HARS, is inherited in an autosomal recessive fashion and associated with childhood deafness, blindness, and episodic hallucinations during acute illness. The biochemical basis of the pathophysiologies linked to USH3B is currently unknown. Here, we present a detailed functional comparison of wild-type (WT) and Y454S HARS enzymes. Kinetic parameters for enzymes and canonical substrates were determined using both steady state and rapid kinetics. Enzyme stability was examined using differential scanning fluorimetry. Finally, enzyme functionality in a primary cell culture was assessed. Our results demonstrate that the Y454S substitution leaves HARS amino acid activation, aminoacylation, and tRNAHis binding functions largely intact compared with those of WT HARS, and the mutant enzyme dimerizes like the wild type does. Interestingly, during our investigation, it was revealed that the kinetics of amino acid activation differs from that of the previously characterized bacterial HisRS. Despite the similar kinetics, differential scanning fluorimetry revealed that Y454S is less thermally stable than WT HARS, and cells from Y454S patients grown at elevated temperatures demonstrate diminished levels of protein synthesis compared to those of WT cells. The thermal sensitivity associated with the Y454S mutation represents a biochemical basis for understanding USH3B.


Assuntos
Histidina-tRNA Ligase/genética , Histidina-tRNA Ligase/metabolismo , Mutação Puntual , Síndromes de Usher/enzimologia , Síndromes de Usher/genética , Sequência de Aminoácidos , Aminoacilação , Células Cultivadas , Estabilidade Enzimática , Células HEK293 , Histidina-tRNA Ligase/química , Humanos , Cinética , Modelos Moleculares , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Alinhamento de Sequência , Temperatura , Síndromes de Usher/metabolismo
10.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt B): 3009-3015, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28288813

RESUMO

BACKGROUND: Development of new aminoacyl-tRNA synthetase (aaRS)•tRNA pairs is central for incorporation of novel non-canonical amino acids (ncAAs) into proteins via genetic code expansion (GCE). The Escherichia coli and Caulobacter crescentus histidyl-tRNA synthetases (HisRS) evolved divergent mechanisms of tRNAHis recognition that prevent their cross-reactivity. Although the E. coli HisRS•tRNAHis pair is a good candidate for GCE, its use in C. crescentus is limited by the lack of established genetic selection methods and by the low transformation efficiency of C. crescentus. METHODS: E. coli was genetically engineered to use a C. crescentus HisRS•tRNAHis pair. Super-folder green fluorescent protein (sfGFP) and chloramphenicol acetyltransferase (CAT) were used as reporters for read-through assays. A library of 313 ncAAs coupled with the sfGFP reporter system was employed to investigate the specificity of E. coli HisRS in vivo. RESULTS: A genomically modified E. coli strain (named MEOV1) was created. MEVO1 requires an active C. crescentus HisRS•tRNAHis pair for growth, and displays a similar doubling time as the parental E. coli strain. sfGFP- and CAT-based assays showed that the E. coli HisRS•tRNAHis pair is orthogonal in MEOV1 cells. A mutation in the anticodon loop of E. coli tRNAHisCUA elevated its suppression efficiency by 2-fold. CONCLUSIONS: The C. crescentus HisRS•tRNAHis pair functionally complements an E. coli ΔhisS strain. The E. coli HisRS•tRNAHis is orthogonal in MEOV1 cells. E. coli tRNAHisCUA is an efficient amber suppressor in MEOV1. GENERAL SIGNIFICANCE: We developed a platform that allows protein engineering of E. coli HisRS that should facilitate GCE in E. coli. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Histidina-tRNA Ligase/metabolismo , Engenharia de Proteínas/métodos , RNA de Transferência de Histidina/metabolismo , Clonagem Molecular/métodos , Biblioteca Gênica , Engenharia Genética/métodos , Histidina-tRNA Ligase/genética , Mutagênese Sítio-Dirigida , RNA de Transferência de Histidina/genética
11.
Cell Mol Life Sci ; 74(14): 2663-2677, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28321488

RESUMO

The discriminator base N73 is a key identity element of tRNAHis. In eukaryotes, N73 is an "A" in cytoplasmic tRNAHis and a "C" in mitochondrial tRNAHis. We present evidence herein that yeast histidyl-tRNA synthetase (HisRS) recognizes both A73 and C73, but somewhat prefers A73 even within the context of mitochondrial tRNAHis. In contrast, humans possess two distinct yet closely related HisRS homologues, with one encoding the cytoplasmic form (with an extra N-terminal WHEP domain) and the other encoding its mitochondrial counterpart (with an extra N-terminal mitochondrial targeting signal). Despite these two isoforms sharing high sequence similarities (81% identity), they strongly preferred different discriminator bases (A73 or C73). Moreover, only the mitochondrial form recognized the anticodon as a strong identity element. Most intriguingly, swapping the discriminator base between the cytoplasmic and mitochondrial tRNAHis isoacceptors conveniently switched their enzyme preferences. Similarly, swapping seven residues in the active site between the two isoforms readily switched their N73 preferences. This study suggests that the human HisRS genes, while descending from a common ancestor with dual function for both types of tRNAHis, have acquired highly specialized tRNA recognition properties through evolution.


Assuntos
Evolução Molecular , Histidina-tRNA Ligase/metabolismo , RNA de Transferência/metabolismo , Sequência de Aminoácidos , Aminoacilação , Bacillus subtilis/enzimologia , Escherichia coli/enzimologia , Histidina-tRNA Ligase/química , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Mitocôndrias/metabolismo , Proteínas Mutantes/metabolismo , Filogenia , Saccharomyces cerevisiae/enzimologia , Especificidade por Substrato
12.
Methods ; 113: 64-71, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27794454

RESUMO

Differential scanning fluorimetry (DSF) is a fluorescence-based assay to evaluate protein stability by determining protein melting temperatures. Here, we describe the application of DSF to investigate aminoacyl-tRNA synthetase (AARS) stability and interaction with ligands. Employing three bacterial AARS enzymes as model systems, methods are presented here for the use of DSF to measure the apparent temperatures at which AARSs undergo melting transitions, and the effect of AARS substrates and inhibitors. One important observation is that the extent of temperature stability realized by an AARS in response to a particular bound ligand cannot be predicted a priori. The DSF method thus serves as a rapid and highly quantitative approach to measure AARS stability, and the ability of ligands to influence the temperature at which unfolding transitions occur.


Assuntos
Alanina-tRNA Ligase/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Histidina-tRNA Ligase/química , RNA de Transferência Aminoácido-Específico/metabolismo , Treonina-tRNA Ligase/química , Alanina-tRNA Ligase/antagonistas & inibidores , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Benzopiranos/química , Inibidores Enzimáticos/química , Estabilidade Enzimática , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Corantes Fluorescentes/química , Fluorometria/métodos , Histidina-tRNA Ligase/antagonistas & inibidores , Histidina-tRNA Ligase/genética , Histidina-tRNA Ligase/metabolismo , Muramidase/química , Muramidase/metabolismo , Transição de Fase , Ligação Proteica , Desdobramento de Proteína , RNA de Transferência Aminoácido-Específico/genética , Especificidade por Substrato , Treonina-tRNA Ligase/antagonistas & inibidores , Treonina-tRNA Ligase/genética , Treonina-tRNA Ligase/metabolismo , Aminoacilação de RNA de Transferência
13.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 8): 1684-98, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26249349

RESUMO

American trypanosomiasis, commonly known as Chagas disease, is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. The chronic form of the infection often causes debilitating morbidity and mortality. However, the current treatment for the disease is typically inadequate owing to drug toxicity and poor efficacy, necessitating a continual effort to discover and develop new antiparasitic therapeutic agents. The structure of T. cruzi histidyl-tRNA synthetase (HisRS), a validated drug target, has previously been reported. Based on this structure and those of human cytosolic HisRS, opportunities for the development of specific inhibitors were identified. Here, efforts are reported to identify small molecules that bind to T. cruzi HisRS through fragment-based crystallographic screening in order to arrive at chemical starting points for the development of specific inhibitors. T. cruzi HisRS was soaked into 68 different cocktails from the Medical Structural Genomics of Pathogenic Protozoa (MSGPP) fragment library and diffraction data were collected to identify bound fragments after soaking. A total of 15 fragments were identified, all bound to the same site on the protein, revealing a fragment-binding hotspot adjacent to the ATP-binding pocket. On the basis of the initial hits, the design of reactive fragments targeting the hotspot which would be simultaneously covalently linked to a cysteine residue present only in trypanosomatid HisRS was initiated. Inhibition of T. cruzi HisRS was observed with the resultant reactive fragments and the anticipated binding mode was confirmed crystallographically. These results form a platform for the development of future generations of selective inhibitors for trypanosomatid HisRS.


Assuntos
Inibidores Enzimáticos/química , Histidina-tRNA Ligase/antagonistas & inibidores , Histidina-tRNA Ligase/química , Bibliotecas de Moléculas Pequenas/química , Trypanosoma cruzi/enzimologia , Sítios de Ligação , Doença de Chagas/tratamento farmacológico , Doença de Chagas/microbiologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Histidina-tRNA Ligase/metabolismo , Humanos , Modelos Moleculares , Bibliotecas de Moléculas Pequenas/farmacologia , Trypanosoma cruzi/química , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/metabolismo
14.
Nucleic Acids Res ; 43(5): 2980-90, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25722375

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) play a crucial role in protein translation by linking tRNAs with cognate amino acids. Among all the tRNAs, only tRNA(His) bears a guanine base at position -1 (G-1), and it serves as a major recognition element for histidyl-tRNA synthetase (HisRS). Despite strong interests in the histidylation mechanism, the tRNA recognition and aminoacylation details are not fully understood. We herein present the 2.55 Å crystal structure of HisRS complexed with tRNA(His), which reveals that G-1 recognition is principally nonspecific interactions on this base and is made possible by an enlarged binding pocket consisting of conserved glycines. The anticodon triplet makes additional specific contacts with the enzyme but the rest of the loop is flexible. Based on the crystallographic and biochemical studies, we inferred that the uniqueness of histidylation system originates from the enlarged binding pocket (for the extra base G-1) on HisRS absent in other aaRSs, and this structural complementarity between the 5' extremity of tRNA and enzyme is probably a result of coevolution of both.


Assuntos
Guanina/química , Histidina-tRNA Ligase/química , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , RNA de Transferência de Histidina/química , Sequência de Aminoácidos , Aminoacilação , Sequência de Bases , Domínio Catalítico , Cristalografia por Raios X , Guanina/metabolismo , Histidina-tRNA Ligase/genética , Histidina-tRNA Ligase/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , RNA de Transferência de Histidina/genética , RNA de Transferência de Histidina/metabolismo , Homologia de Sequência de Aminoácidos , Thermus thermophilus/enzimologia , Thermus thermophilus/genética
15.
Biochimie ; 106: 111-20, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25151410

RESUMO

As part of a project aimed at obtaining selective inhibitors and drug-like compounds targeting tRNA synthetases from trypanosomatids, we have elucidated the crystal structure of human cytosolic histidyl-tRNA synthetase (Hs-cHisRS) in complex with histidine in order to be able to compare human and parasite enzymes. The resultant structure of Hs-cHisRS•His represents the substrate-bound state (H-state) of the enzyme. It provides an interesting opportunity to compare with ligand-free and imidazole-bound structures Hs-cHisRS published recently, both of which represent the ligand-free state (F-state) of the enzyme. The H-state Hs-cHisRS undergoes conformational changes in active site residues and several conserved motif of HisRS, compared to F-state structures. The histidine forms eight hydrogen bonds with HisRS of which six engage the amino and carboxylate groups of this amino acid. The availability of published imidazole-bound structure provides a unique opportunity to dissect the structural roles of individual chemical groups of histidine. The analysis revealed the importance of the amino and carboxylate groups, of the histidine in leading to these dramatic conformational changes of the H-state. Further, comparison with previously published trypanosomatid HisRS structures reveals a pocket in the F-state of the parasite enzyme that may provide opportunities for developing specific inhibitors of Trypanosoma brucei HisRS.


Assuntos
Histidina-tRNA Ligase/química , Histidina/química , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Trypanosoma brucei brucei/enzimologia , Sequência de Aminoácidos , Sítios de Ligação/genética , Biocatálise/efeitos dos fármacos , Domínio Catalítico , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Histidina/metabolismo , Histidina-tRNA Ligase/genética , Histidina-tRNA Ligase/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Trypanosoma brucei brucei/genética
16.
J Biol Chem ; 289(28): 19269-75, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24898250

RESUMO

Inflammatory and debilitating myositis and interstitial lung disease are commonly associated with autoantibodies (anti-Jo-1 antibodies) to cytoplasmic histidyl-tRNA synthetase (HisRS). Anti-Jo-1 antibodies from different disease-afflicted patients react mostly with spatially separated epitopes in the three-dimensional structure of human HisRS. We noted that two HisRS splice variants (SVs) include these spatially separated regions, but each SV lacks the HisRS catalytic domain. Despite the large deletions, the two SVs cross-react with a substantial population of anti-Jo-l antibodies from myositis patients. Moreover, expression of at least one of the SVs is up-regulated in dermatomyositis patients, and cell-based experiments show that both SVs and HisRS can be secreted. We suggest that, in patients with inflammatory myositis, anti-Jo-1 antibodies may have extracellular activity.


Assuntos
Processamento Alternativo , Autoanticorpos/metabolismo , Epitopos/metabolismo , Histidina-tRNA Ligase/metabolismo , Miosite/enzimologia , Autoanticorpos/imunologia , Linhagem Celular Tumoral , Epitopos/genética , Epitopos/imunologia , Histidina-tRNA Ligase/genética , Histidina-tRNA Ligase/imunologia , Humanos , Inflamação/enzimologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Miosite/genética , Miosite/imunologia , Miosite/patologia , Estrutura Terciária de Proteína
17.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 27(9): 1128-33, 2013 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-24279029

RESUMO

OBJECTIVE: To explore the effects of mechanical stimulation on the expression of autoantigens in myoblasts. METHODS: According to different processing methods, C2C12 cells were divided into the experimental group and control group; the experimental group was divided into 4 subgroups: 2-, 4-, and 6-day and 1-day stretch groups. In 2-, 4-, and 6-day stretch groups, mechanical loading was added on the C2C12 cells at a stretching frequency of 0.25 Hz and cellular deformation amplitude of 10%, 2 hours a day for 2, 4, and 6 days respectively by Flexercell 5000 strain unit, and at a stretching frequency of 1 Hz and cellular deformation amplitude of 15% for 1 hour in 1-day stretch group. In the control group, the cells were routinely cultured for 1, 2, 4, and 6 days (1-, 2-, 4-, and 6-day control). The cells were observed by inverted phase contrast microscope. The cell proliferation was detected by flow cytometry; the expressions of autoantigens were detected by Western blot method, including the Ku/the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), U1-70 (A part of ATP-dependent DNA helicase II), histidyl tRNA synthetase (HRS), and Mi-2 (reconfigurable components deacetylase complexes of NuRD). RESULTS: The exfoliated cells were found in 1-day stretch group, but no exfoliated cell was seen in the control group for 1-day culture. The cells proliferated more obviously in 2-day stretch group than in the control group for 2-day culture; cell differentiation was found in 4-day stretch group, and cell fusion in 6-day stretch group, which were similar to those in the control group for 4- and 6-day culture. After single stretching, cell apoptosis was found in 1-day stretch group, showing no significant difference in the relative DNA proliferation index (DPI) when compared with DPI of control group for 1-day culture (t = 0.346, P = 0.747). After cyclic stretching, DPIs of 2- and 4- day stretch groups were significantly increased when compared with those of the control group for 2- and 4-day culture (P < 0.05), but no significant difference was found between control group for 6-day culture and 6-day stretch group (t = 1.191, P = 0.303). Compared with the control group for 2-day culture, the relative protein expression of autoantigens (DNA-Pkcs, Mi-2, HRS, and U1-70) in 2-day stretch group decreased significantly (P < 0.05), but no significant difference was found between control group for 4-day culture and 4-day stretch group (P > 0.05). The relative protein expressions of autoantigens in 4-day stretch group significantly increased when compared with those of 2-day stretch group (P < 0.05), but the relative protein expressions of autoantigens in the control group for 4-day culture significantly decreased when compared with those of the control group for 2-day culture (P < 0.05). CONCLUSION: Short-term mechanical stimulation can inhibit the expressions of autoantigens in myoblasts, but with the time prolonging, cell differentiation and fusion and adaptation to mechanical stimulation would result in diminished inhibitory effect.


Assuntos
Autoantígenos/metabolismo , Proliferação de Células , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/fisiologia , Estresse Mecânico , Western Blotting , Diferenciação Celular , Células Cultivadas , Proteína Quinase Ativada por DNA/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica , Histidina-tRNA Ligase/metabolismo , Humanos , Miosite/metabolismo , Miosite/patologia , Resistência à Tração
18.
Mater Sci Eng C Mater Biol Appl ; 33(8): 4867-70, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24094198

RESUMO

An amino acid-sensing system with absorption spectrophotometric detection was developed. To ensure specific recognition of each amino acid, aminoacyl-tRNA synthetases were employed and the concentration of NADH produced by way of several enzymatic reactions was measured. Using this detection system, from 1.5 to 55 µM of histidine and from 15 to 95 µM of lysine could be measured selectively in HEPES-KOH buffer (pH 8.0).


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Histidina/análise , Lisina/análise , Espectrofotometria , Histidina-tRNA Ligase/metabolismo , Concentração de Íons de Hidrogênio , Lisina-tRNA Ligase/metabolismo , NAD/metabolismo
19.
Curr Rheumatol Rep ; 15(6): 335, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23591825

RESUMO

Inflammatory myopathies are a group of acquired diseases, characterized by immunoflogistic processes primarily involving the skeletal muscle. According to recent classification criteria, four major diseases have been identified: polymyositis (PM), dermatomyositis (DM), sporadic inclusion body myositis (IBM), and necrotizing autoimmune myositis (NAM). Autoantibodies can be found in the sera of most patients with myositis. Myositis-specific autoantibodies (MSAs) are markers of very specific disease entities within the spectrum of myositis, and target proteins involved in key processes of protein synthesis. Myositis autoantigens comprise the well-defined aminoacyl-tRNA synthetases, the Mi-2 helicase/histone deacetylase protein complex, and the signal recognition particle (SRP) ribonucleoprotein, together with novel targets such as TIF1-γ, MDA5, NXP2, SAE, and HMGCR. Recent studies suggest that autoantigens drive a B cell antigen-specific immune response in muscles. Interestingly, an increased expression of Jo-1 and Mi-2 in regenerating fibers in muscle biopsies from PM and DM patients compared to normal was demonstrated. Myositis autoantigen up-regulation was observed in neoplastic tissues, thus representing a potential link between cancer and autoimmunity in myositis. Non-immunological mechanisms seem to participate to the pathogenesis of inflammatory myopathies; induction of endoplasmic reticulum stress response in response to abnormal muscle regeneration and inflammation has recently been reported in patients with myositis. This review article provides an update of new emerging insights about the clinical and pathophysiologic role of principal autoantibodies in myositis.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Autoanticorpos/imunologia , Autoantígenos/metabolismo , Dermatomiosite/sangue , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Músculo Esquelético/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Aminoacil-tRNA Sintetases/imunologia , Autoanticorpos/metabolismo , Autoantígenos/imunologia , Biomarcadores/metabolismo , Dermatomiosite/imunologia , Dermatomiosite/fisiopatologia , Histidina-tRNA Ligase/imunologia , Histidina-tRNA Ligase/metabolismo , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/imunologia , Fibras Musculares Esqueléticas/imunologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Regeneração , Partícula de Reconhecimento de Sinal/imunologia
20.
PLoS One ; 8(12): e83630, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24386240

RESUMO

While translational read-through of stop codons by suppressor tRNAs is common in many bacteria, archaea and eukaryotes, this phenomenon has not yet been observed in the α-proteobacterium Caulobacter crescentus. Based on a previous report that C. crescentus and Escherichia coli tRNA(His) have distinctive identity elements, we constructed E. coli tRNA(His) CUA, a UAG suppressor tRNA for C. crescentus. By examining the expression of three UAG codon- containing reporter genes (encoding a ß-lactamase, the fluorescent mCherry protein, or the C. crescentus xylonate dehydratase), we demonstrated that the E. coli histidyl-tRNA synthetase/tRNA(His) CUA pair enables in vivo UAG suppression in C. crescentus. E. coli histidyl-tRNA synthetase (HisRS) or tRNA(His) CUA alone did not achieve suppression; this indicates that the E. coli HisRS/tRNA(His) CUA pair is orthogonal in C. crescentus. These results illustrate that UAG suppression can be achieved in C. crescentus with an orthogonal aminoacyl-tRNA synthetase/suppressor tRNA pair.


Assuntos
Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Códon de Terminação , Escherichia coli/genética , Escherichia coli/metabolismo , Histidina-tRNA Ligase/metabolismo , RNA de Transferência de Histidina/genética , Resistência a Ampicilina/genética , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , RNA de Transferência de Histidina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA