Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Reprod Dev ; 91(5): e23760, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38769918

RESUMO

e-Lysine acetylation is a prominent histone mark found at transcriptionally active loci. Among many lysine acetyl transferases, nonspecific lethal complex (NSL) members are known to mediate the modification of histone H4. In addition to histone modifications, the KAT8 regulatory complex subunit 3 gene (Kansl3), a core member of NSL complex, has been shown to be involved in several other cellular processes such as mitosis and mitochondrial activity. Although functional studies have been performed on NSL complex members, none of the four core proteins, including Kansl3, have been studied during early mouse development. Here we show that homozygous knockout Kansl3 embryos are lethal at peri-implantation stages, failing to hatch out of the zona pellucida. When the zona pellucida is removed in vitro, Kansl3 null embryos form an abnormal outgrowth with significantly disrupted inner cell mass (ICM) morphology. We document lineage-specific defects at the blastocyst stage with significantly reduced ICM cell number but no difference in trophectoderm cell numbers. Both epiblast and primitive endoderm lineages are altered with reduced cell numbers in null mutants. These results show that Kansl3 is indispensable during early mouse embryonic development and with defects in both ICM and trophectoderm lineages.


Assuntos
Camundongos Knockout , Animais , Camundongos , Massa Celular Interna do Blastocisto/metabolismo , Massa Celular Interna do Blastocisto/citologia , Feminino , Desenvolvimento Embrionário , Perda do Embrião/patologia , Perda do Embrião/genética , Perda do Embrião/metabolismo , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/deficiência , Blastocisto/metabolismo , Blastocisto/citologia
2.
Cancer Sci ; 112(5): 1865-1877, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33544437

RESUMO

The histone acetyltransferase MOF (KAT8) is mainly involved in the acetylation of histone H4 at lysine 16 (H4K16) and some non-histone proteins. The MOF expression level is significantly reduced in many cancers, however the biological function of MOF and its underlying mechanism are still elusive in hepatocellular carcinoma (HCC). Estrogen receptor α (ERα) has been considered as a tumor suppressor in HCC. Here, we demonstrated that MOF expression is significantly reduced in HCC samples, and is positively correlated with that of ERα. MOF interacts with ERα, and participates in acetylation of ERα at K266, K268, K299, thereby inhibiting ERα ubiquitination to maintain the stability of ERα. In addition, MOF participates in the upregulation of ERα-mediated transactivation. Depletion of MOF significantly promotes cell growth, migration, and invasion in HCC cell lines. Taken together, our results provide new insights to understand the mechanism underlying the modulation function of MOF on ERα action in HCC, suggesting that MOF might be a potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Receptor alfa de Estrogênio/metabolismo , Histona Acetiltransferases/metabolismo , Neoplasias Hepáticas/metabolismo , Acetilação , Acetilesterase/metabolismo , Animais , Anticorpos/uso terapêutico , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Movimento Celular , Proliferação de Células , Bases de Dados Genéticas , Regulação para Baixo , Receptor alfa de Estrogênio/genética , Feminino , Xenoenxertos , Histona Acetiltransferases/deficiência , Histonas/metabolismo , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Lisina/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica , Transdução de Sinais , Ativação Transcricional , Ubiquitinação , Regulação para Cima
3.
Neurobiol Dis ; 149: 105224, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33359140

RESUMO

The TATA-box binding protein associated factor 1 (TAF1) is part of the TFIID complex that plays a key role during the initiation of transcription. Variants of TAF1 are associated with neurodevelopmental disorders. Previously, we found that CRISPR/Cas9 based editing of the TAF1 gene disrupts the morphology of the cerebral cortex and blunts the expression as well as the function of the CaV3.1 (T-type) voltage gated calcium channel. Here, we tested the efficacy of SAK3 (ethyl 8'-methyl-2', 4-dioxo-2-(piperidin-1-yl)-2'H-spiro [cyclopentane-1, 3'-imidazo [1, 2-a] pyridine]-2-ene-3-carboxylate), a T-type calcium channel enhancer, in an animal model of TAF1 intellectual disability (ID) syndrome. At post-natal day 3, rat pups were subjected to intracerebroventricular (ICV) injection of either gRNA-control or gRNA-TAF1 CRISPR/Cas9 viruses. At post-natal day 21, the rat pups were given SAK3 (0.25 mg/kg, p.o.) or vehicle for 14 days (i.e. till post-natal day 35) and then subjected to behavioral, morphological, and molecular studies. Oral administration of SAK3 (0.25 mg/kg, p.o.) significantly rescued locomotion abnormalities associated with TAF1 gene editing. SAK3 treatment prevented the loss of cortical neurons and GFAP-positive astrocytes observed after TAF1 gene editing. In addition, SAK3 protected cells from apoptosis. SAK3 also restored the Brain-derived neurotrophic factor/protein kinase B/Glycogen Synthase Kinase 3 Beta (BDNF/AKT/GSK3ß) signaling axis in TAF1 edited animals. Finally, SAK3 normalized the levels of three GSK3ß substrates - CaV3.1, FOXP2, and CRMP2. We conclude that the T-type calcium channel enhancer SAK3 is beneficial against the deleterious effects of TAF1 gene-editing, in part, by stimulating the BDNF/AKT/GSK3ß signaling pathway.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Modelos Animais de Doenças , Histona Acetiltransferases/deficiência , Imidazóis/administração & dosagem , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/metabolismo , Compostos de Espiro/administração & dosagem , Fatores Associados à Proteína de Ligação a TATA/deficiência , Fator de Transcrição TFIID/deficiência , Animais , Animais Recém-Nascidos , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Histona Acetiltransferases/genética , Injeções Intraventriculares , Deficiência Intelectual/genética , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Gravidez , Ratos , Ratos Sprague-Dawley , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética
4.
Metabolism ; 109: 154290, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32522488

RESUMO

BACKGROUND: Males absent on the first (Mof) is implicated in gene control of diverse biological processes, such as cell growth, differentiation, apoptosis and autophagy. However, the relationship between glucose regulation and Mof-mediated transcription events remains unexplored. We aimed to unravel the role of Mof in glucose regulation by using global and pancreatic α-cell-specific Mof-deficient mice in vivo and α-TC1-6 cell line in vitro. METHODS: We used tamoxifen-induced temporal Mof-deficient mice first to show Mof regulate glucose homeostasis, islet cell proportions and hormone secretion. Then we used α-cell-specific Mof-deficient mice to clarify how α-cell subsets and ß-cell mass were regulated and corresponding hormone level alterations. Ultimately, we used small interfering RNA (siRNA) to knockdown Mof in α-TC1-6 and unravel the mechanism regulating α-cell mass and glucagon secretion. RESULTS: Mof was mainly expressed in α-cells. Global Mof deficiency led to lower glucose levels, attributed by decreased α/ß-cell ratio and glucagon secretion. α-cell-specific Mof-deficient mice exhibited similar alterations, with more reduced prohormone convertase 2 (PC2)-positive α-cell mass, responsible for less glucagon, and enhanced prohormone convertase 1 (PC1/3)-positive α-cell mass, leading to more glucagon-like peptide-1 (GLP-1) secretion, thus increased ß-cell mass and insulin secretion. In vitro, increased DNA damage, dysregulated autophagy, enhanced apoptosis and altered cell fate factors expressions upon Mof knockdown were observed. Genes and pathways linked to impaired glucagon secretion were uncovered through transcriptome sequencing. CONCLUSION: Mof is a potential interventional target for glucose regulation, from the aspects of both α-cell subset mass and glucagon, intra-islet GLP-1 secretion. Upon Mof deficiency, Up-regulated PC1/3 but down-regulated PC2-positive α-cell mass, leads to more GLP-1 and insulin but less glucagon secretion, and contributed to lower glucose level.


Assuntos
Glicemia/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células Secretoras de Glucagon/citologia , Glucagon/metabolismo , Histona Acetiltransferases/fisiologia , Homeostase , Animais , Linhagem Celular , Histona Acetiltransferases/deficiência , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Pró-Proteína Convertase 1/metabolismo , Pró-Proteína Convertase 2/metabolismo
5.
J Biol Chem ; 295(25): 8363-8373, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32366460

RESUMO

The replisome is a protein complex on the DNA replication fork and functions in a dynamic environment at the intersection of parental and nascent chromatin. Parental nucleosomes are disrupted in front of the replication fork. The daughter DNA duplexes are packaged with an equal amount of parental and newly synthesized histones in the wake of the replication fork through the activity of the replication-coupled chromatin assembly pathway. Histone acetyltransferase 1 (HAT1) is responsible for the cytosolic diacetylation of newly synthesized histone H4 on lysines 5 and 12, which accompanies replication-coupled chromatin assembly. Here, using proximity ligation assay-based chromatin assembly assays and DNA fiber analysis, we analyzed the role of murine HAT1 in replication-coupled chromatin assembly. We demonstrate that HAT1 physically associates with chromatin near DNA replication sites. We found that the association of HAT1 with newly replicated DNA is transient, but can be stabilized by replication fork stalling. The association of HAT1 with nascent chromatin may be functionally relevant, as HAT1 loss decreased replication fork progression and increased replication fork stalling. Moreover, in the absence of HAT1, stalled replication forks were unstable, and newly synthesized DNA became susceptible to MRE11-dependent degradation. These results suggest that HAT1 links replication fork function to the proper processing and assembly of newly synthesized histones.


Assuntos
Replicação do DNA , DNA/metabolismo , Histona Acetiltransferases/metabolismo , Animais , Linhagem Celular , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Técnicas de Inativação de Genes , Histona Acetiltransferases/deficiência , Histona Acetiltransferases/genética , Proteína Homóloga a MRE11/metabolismo , Camundongos
6.
Hum Mol Genet ; 28(R2): R254-R264, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31595951

RESUMO

The epigenetic machinery in conjunction with the transcriptional machinery is responsible for maintaining genome-wide chromatin states and dynamically regulating gene expression. Mendelian disorders of the epigenetic machinery (MDEMs) are genetic disorders resulting from mutations in components of the epigenetic apparatus. Though individually rare, MDEMs have emerged as a collectively common etiology for intellectual disability (ID) and growth disruption. Studies in model organisms and humans have demonstrated dosage sensitivity of this gene group with haploinsufficiency as a predominant disease mechanism. The epigenetic machinery consists of three enzymatic components (writers, erasers and chromatin remodelers) as well as one non-enzymatic group (readers). A tally of the entire census of such factors revealed that although multiple enzymatic activities never coexist within a single component, individual enzymatic activities often coexist with a reader domain. This group of disorders disrupts both the chromatin and transcription states of target genes downstream of the given component but also DNA methylation on a global scale. Elucidation of these global epigenetic changes may inform our understanding of disease pathogenesis and have diagnostic utility. Moreover, many therapies targeting epigenetic marks already exist, and some have proven successful in treating cancer. This, along with the recent observation that neurological dysfunction in these disorders may in fact be treatable in postnatal life, suggests that the scientific community should prioritize this group as a potentially treatable cause of ID. Here we summarize the recent expansion and major characteristics of MDEMs, as well as the unique therapeutic prospects for this group of disorders.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/enzimologia , Epigênese Genética , Deficiência Intelectual/genética , Animais , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Metilação de DNA/genética , Histona Acetiltransferases/deficiência , Humanos , Metiltransferases/metabolismo , Camundongos , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Sotos/enzimologia , Síndrome de Sotos/genética , Talassemia alfa/genética
7.
Aging Cell ; 18(5): e12992, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31290578

RESUMO

Histone acetyltransferase 1 (Hat1) is responsible for the acetylation of newly synthesized histone H4 on lysines 5 and 12 during the process of chromatin assembly. To understand the broader biological role of Hat1, we have generated a conditional mouse knockout model of this enzyme. We previously reported that Hat1 is required for viability and important for mammalian development and genome stability. In this study, we show that haploinsufficiency of Hat1 results in a significant decrease in lifespan. Defects observed in Hat1+/- mice are consistent with an early-onset aging phenotype. These include lordokyphosis (hunchback), muscle atrophy, minor growth retardation, reduced subcutaneous fat, cancer, and paralysis. In addition, the expression of Hat1 is linked to the normal aging process as Hat1 mRNA and protein becomes undetectable in many tissues in old mice. At the cellular level, fibroblasts from Hat1 haploinsufficient embryos undergo early senescence and accumulate high levels of p21. Hat1+/- mouse embryonic fibroblasts (MEFs) display modest increases in endogenous DNA damage but have significantly higher levels of reactive oxygen species (ROS). Consistently, further studies show that Hat1-/- MEFs exhibit mitochondrial defects suggesting a critical role for Hat1 in mitochondrial function. Taken together, these data show that loss of Hat1 induces multiple hallmarks of early-onset aging.


Assuntos
Envelhecimento/metabolismo , Histona Acetiltransferases/deficiência , Histona Acetiltransferases/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Nature ; 569(7758): 734-739, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31118512

RESUMO

The execution of developmental programs of gene expression requires an accurate partitioning of the genome into subnuclear compartments, with active euchromatin enriched centrally and silent heterochromatin at the nuclear periphery1. The existence of degenerative diseases linked to lamin A mutations suggests that perinuclear binding of chromatin contributes to cell-type integrity2,3. The methylation of lysine 9 of histone H3 (H3K9me) characterizes heterochromatin and mediates both transcriptional repression and chromatin anchoring at the inner nuclear membrane4. In Caenorhabditis elegans embryos, chromodomain protein CEC-4 bound to the inner nuclear membrane tethers heterochromatin through H3K9me3,5, whereas in differentiated tissues, a second heterochromatin-sequestering pathway is induced. Here we use an RNA interference screen in the cec-4 background and identify MRG-1 as a broadly expressed factor that is necessary for this second chromatin anchor in intestinal cells. However, MRG-1 is exclusively bound to euchromatin, suggesting that it acts indirectly. Heterochromatin detachment in double mrg-1; cec-4 mutants is rescued by depleting the histone acetyltransferase CBP-1/p300 or the transcription factor ATF-8, a member of the bZIP family (which is known to recruit CBP/p300). Overexpression of CBP-1 in cec-4 mutants is sufficient to delocalize heterochromatin in an ATF-8-dependent manner. CBP-1 and H3K27ac levels increase in heterochromatin upon mrg-1 knockdown, coincident with delocalization. This suggests that the spatial organization of chromatin in C. elegans is regulated both by the direct perinuclear attachment of silent chromatin, and by an active retention of CBP-1/p300 in euchromatin. The two pathways contribute differentially in embryos and larval tissues, with CBP-1 sequestration by MRG-1 having a major role in differentiated cells.


Assuntos
Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Cromatina/genética , Cromatina/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Animais , Caenorhabditis elegans/anatomia & histologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromossômicas não Histona/deficiência , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Eucromatina/genética , Eucromatina/metabolismo , Mutação com Ganho de Função , Genes Reporter/genética , Histona Acetiltransferases/deficiência , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/química , Histonas/metabolismo , Intestinos/citologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
DNA Repair (Amst) ; 73: 91-98, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30473425

RESUMO

The nucleotide excision repair (NER) pathway is critical for removing damage induced by ultraviolet (UV) light and other helix-distorting lesions from cellular DNA. While efficient NER is critical to avoid cell death and mutagenesis, NER activity is inhibited in chromatin due to the association of lesion-containing DNA with histone proteins. Histone acetylation has emerged as an important mechanism for facilitating NER in chromatin, particularly acetylation catalyzed by the Spt-Ada-Gcn5 acetyltransferase (SAGA); however, it is not known if other histone acetyltransferases (HATs) promote NER activity in chromatin. Here, we report that the essential Nucleosome Acetyltransferase of histone H4 (NuA4) complex is required for efficient NER in Saccharomyces cerevisiae. Deletion of the non-essential Yng2 subunit of the NuA4 complex causes a general defect in repair of UV-induced cyclobutane pyrimidine dimers (CPDs) in yeast; in contrast, deletion of the Sas3 catalytic subunit of the NuA3 complex does not affect repair. Rapid depletion of the essential NuA4 catalytic subunit Esa1 using the anchor-away method also causes a defect in NER, particularly at the heterochromatic HML locus. We show that disrupting the Sds3 subunit of the Rpd3L histone deacetylase (HDAC) complex rescued the repair defect associated with loss of Esa1 activity, suggesting that NuA4-catalyzed acetylation is important for efficient NER in heterochromatin.


Assuntos
Reparo do DNA , Histona Acetiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , DNA Helicases/metabolismo , Deleção de Genes , Loci Gênicos/genética , Loci Gênicos/efeitos da radiação , Genômica , Histona Acetiltransferases/deficiência , Histona Acetiltransferases/genética , Mutação , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/genética , Raios Ultravioleta/efeitos adversos
10.
Nature ; 560(7717): 253-257, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069049

RESUMO

Acetylation of histones by lysine acetyltransferases (KATs) is essential for chromatin organization and function1. Among the genes coding for the MYST family of KATs (KAT5-KAT8) are the oncogenes KAT6A (also known as MOZ) and KAT6B (also known as MORF and QKF)2,3. KAT6A has essential roles in normal haematopoietic stem cells4-6 and is the target of recurrent chromosomal translocations, causing acute myeloid leukaemia7,8. Similarly, chromosomal translocations in KAT6B have been identified in diverse cancers8. KAT6A suppresses cellular senescence through the regulation of suppressors of the CDKN2A locus9,10, a function that requires its KAT activity10. Loss of one allele of KAT6A extends the median survival of mice with MYC-induced lymphoma from 105 to 413 days11. These findings suggest that inhibition of KAT6A and KAT6B may provide a therapeutic benefit in cancer. Here we present highly potent, selective inhibitors of KAT6A and KAT6B, denoted WM-8014 and WM-1119. Biochemical and structural studies demonstrate that these compounds are reversible competitors of acetyl coenzyme A and inhibit MYST-catalysed histone acetylation. WM-8014 and WM-1119 induce cell cycle exit and cellular senescence without causing DNA damage. Senescence is INK4A/ARF-dependent and is accompanied by changes in gene expression that are typical of loss of KAT6A function. WM-8014 potentiates oncogene-induced senescence in vitro and in a zebrafish model of hepatocellular carcinoma. WM-1119, which has increased bioavailability, arrests the progression of lymphoma in mice. We anticipate that this class of inhibitors will help to accelerate the development of therapeutics that target gene transcription regulated by histone acetylation.


Assuntos
Benzenossulfonatos/farmacologia , Senescência Celular/efeitos dos fármacos , Histona Acetiltransferases/antagonistas & inibidores , Hidrazinas/farmacologia , Linfoma/tratamento farmacológico , Linfoma/patologia , Sulfonamidas/farmacologia , Acetilação/efeitos dos fármacos , Animais , Benzenossulfonatos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Desenvolvimento de Medicamentos , Fibroblastos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Acetiltransferases/deficiência , Histona Acetiltransferases/genética , Histonas/química , Histonas/metabolismo , Hidrazinas/uso terapêutico , Linfoma/enzimologia , Linfoma/genética , Lisina/química , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Sulfonamidas/uso terapêutico
11.
Aging Cell ; 16(4): 785-796, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28568901

RESUMO

Sgf73, a core component of SAGA, is the yeast orthologue of ataxin-7, which undergoes CAG-polyglutamine repeat expansion leading to the human neurodegenerative disease spinocerebellar ataxia type 7 (SCA7). Deletion of SGF73 dramatically extends replicative lifespan (RLS) in yeast. To further define the basis for Sgf73-mediated RLS extension, we performed ChIP-Seq, identified 388 unique genomic regions occupied by Sgf73, and noted enrichment in promoters of ribosomal protein (RP)-encoding genes. Of 388 Sgf73 binding sites, 33 correspond to 5' regions of genes implicated in RLS extension, including 20 genes encoding RPs. Furthermore, half of Sgf73-occupied, RLS-linked RP genes displayed significantly reduced expression in sgf73Δ mutants, and double null strains lacking SGF73 and a Sgf73-regulated, RLS-linked RP gene exhibited no further increase in replicative lifespan. We also found that sgf73Δ mutants display altered acetylation of Ifh1, an important regulator of RP gene transcription. These findings implicate altered ribosomal protein expression in sgf73Δ yeast RLS and highlight altered acetylation as a pathway of relevance for SCA7 neurodegeneration.


Assuntos
Deleção de Genes , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/genética , Regiões Promotoras Genéticas , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Acetilação , Ataxina-7/deficiência , Ataxina-7/genética , Sequência de Bases , Sítios de Ligação , Divisão Celular , Histona Acetiltransferases/deficiência , Humanos , Viabilidade Microbiana , Anotação de Sequência Molecular , Ligação Proteica , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia , Transativadores/genética , Transativadores/metabolismo
12.
Adv Exp Med Biol ; 978: 39-62, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28523540

RESUMO

Rubinstein-Taybi syndrome (RSTS) is a rare genetic disorder in humans characterized by growth and psychomotor delay, abnormal gross anatomy, and mild to severe mental retardation (Rubinstein and Taybi, Am J Dis Child 105:588-608, 1963, Hennekam et al., Am J Med Genet Suppl 6:56-64, 1990). RSTS is caused by de novo mutations in epigenetics-associated genes, including the cAMP response element-binding protein (CREBBP), the gene-encoding protein referred to as CBP, and the EP300 gene, which encodes the p300 protein, a CBP homologue. Recent studies of the epigenetic mechanisms underlying cognitive functions in mice provide direct evidence for the involvement of nuclear factors (e.g., CBP) in the control of higher cognitive functions. In fact, a role for CBP in higher cognitive function is suggested by the finding that RSTS is caused by heterozygous mutations at the CBP locus (Petrij et al., Nature 376:348-351, 1995). CBP was demonstrated to possess an intrinsic histone acetyltransferase activity (Ogryzko et al., Cell 87:953-959, 1996) that is required for CREB-mediated gene expression (Korzus et al., Science 279:703-707, 1998). The intrinsic protein acetyltransferase activity in CBP might directly destabilize promoter-bound nucleosomes, facilitating the activation of transcription. Due to the complexity of developmental abnormalities and the possible genetic compensation associated with this congenital disorder, however, it is difficult to establish a direct role for CBP in cognitive function in the adult brain. Although aspects of the clinical presentation in RSTS cases have been extensively studied, a spectrum of symptoms found in RSTS patients can be accessed only after birth, and, thus, prenatal genetic tests for this extremely rare genetic disorder are seldom considered. Even though there has been intensive research on the genetic and epigenetic function of the CREBBP gene in rodents, the etiology of this devastating congenital human disorder is largely unknown.


Assuntos
Proteína de Ligação a CREB/fisiologia , Proteína p300 Associada a E1A/fisiologia , Epigênese Genética/genética , Histona Acetiltransferases/fisiologia , Código das Histonas/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Processamento de Proteína Pós-Traducional/genética , Síndrome de Rubinstein-Taybi/genética , Acetilação , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteína de Ligação a CREB/deficiência , Proteína de Ligação a CREB/genética , Cognição/fisiologia , Modelos Animais de Doenças , Proteína p300 Associada a E1A/deficiência , Proteína p300 Associada a E1A/genética , Regulação da Expressão Gênica no Desenvolvimento , Estudos de Associação Genética , Histona Acetiltransferases/deficiência , Histona Acetiltransferases/genética , Código das Histonas/genética , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Invertebrados/genética , Invertebrados/fisiologia , Mamíferos/genética , Mamíferos/fisiologia , Memória/fisiologia , Modelos Neurológicos , Mutação , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , RNA Longo não Codificante/genética , Síndrome de Rubinstein-Taybi/metabolismo
13.
Development ; 144(12): 2165-2174, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28506985

RESUMO

Proper oocyte development is crucial for female fertility and requires timely and accurate control of gene expression. K (lysine) acetyltransferase 8 (KAT8), an important component of the X chromosome dosage compensation system in Drosophila, regulates gene activity by acetylating histone H4 preferentially at lysine 16. To explore the function of KAT8 during mouse oocyte development, we crossed Kat8flox/flox mice with Gdf9-Cre mice to specifically delete Kat8 in oocytes. Oocyte Kat8 deletion resulted in female infertility, with follicle development failure in the secondary and preantral follicle stages. RNA-seq analysis revealed that Kat8 deficiency in oocytes results in significant downregulation of antioxidant genes, with a consequent increase in reactive oxygen species. Intraperitoneal injection of the antioxidant N-acetylcysteine rescued defective follicle and oocyte development resulting from Kat8 deficiency. Chromatin immunoprecipitation assays indicated that KAT8 regulates antioxidant gene expression by direct binding to promoter regions. Taken together, our findings demonstrate that KAT8 is essential for female fertility by regulating antioxidant gene expression and identify KAT8 as the first histone acetyltransferase with an essential function in oogenesis.


Assuntos
Histona Acetiltransferases/metabolismo , Oogênese/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose , Feminino , Fertilidade/genética , Fertilidade/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Células da Granulosa/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Histona Acetiltransferases/deficiência , Histona Acetiltransferases/genética , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Infertilidade Feminina/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos/citologia , Oócitos/metabolismo , Oogênese/genética , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Gravidez
14.
J Immunol ; 198(10): 3927-3938, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28424240

RESUMO

Histone acetyltransferases (HATs) regulate inducible transcription in multiple cellular processes and during inflammatory and immune response. However, the functions of general control nonrepressed-protein 5 (Gcn5), an evolutionarily conserved HAT from yeast to human, in immune regulation remain unappreciated. In this study, we conditionally deleted Gcn5 (encoded by the Kat2a gene) specifically in T lymphocytes by crossing floxed Gcn5 and Lck-Cre mice, and demonstrated that Gcn5 plays important roles in multiple stages of T cell functions including development, clonal expansion, and differentiation. Loss of Gcn5 functions impaired T cell proliferation, IL-2 production, and Th1/Th17, but not Th2 and regulatory T cell differentiation. Gcn5 is recruited onto the il-2 promoter by interacting with the NFAT in T cells upon TCR stimulation. Interestingly, instead of directly acetylating NFAT, Gcn5 catalyzes histone H3 lysine H9 acetylation to promote IL-2 production. T cell-specific suppression of Gcn5 partially protected mice from myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis, an experimental model for human multiple sclerosis. Our study reveals previously unknown physiological functions for Gcn5 and a molecular mechanism underlying these functions in regulating T cell immunity. Hence Gcn5 may be an important new target for autoimmune disease therapy.


Assuntos
Histona Acetiltransferases/metabolismo , Ativação Linfocitária , Linfócitos T/imunologia , Animais , Diferenciação Celular , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/prevenção & controle , Regulação da Expressão Gênica , Histona Acetiltransferases/deficiência , Histona Acetiltransferases/genética , Interleucina-2/deficiência , Interleucina-2/genética , Interleucina-2/imunologia , Camundongos , Fatores de Transcrição NFATC/genética , Regiões Promotoras Genéticas , Ligação Proteica , Processamento de Proteína Pós-Traducional , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/fisiologia , Células Th1/imunologia , Células Th1/fisiologia , Células Th2/imunologia , Células Th2/fisiologia
15.
Cell Rep ; 18(2): 380-390, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28076783

RESUMO

During brain development, the correct migration of newborn neurons is one of the determinants of circuit formation, and neuronal migration defects may lead to neurological and psychiatric disorders. The molecular mechanisms underlying neuronal migration and related disorders are poorly understood. Here, we report that Chromodomain Y-like (CDYL) is critical for neuronal migration in mice. Knocking down CDYL caused neuronal migration defects and disrupted both mobility and multipolar-to-bipolar transition of migrating neurons. We find that CDYL regulates neuronal migration by transcriptionally repressing RhoA. In addition, CDYL deficiency increased the excitability of cortical pyramidal neurons and the susceptibility of mice to convulsant-induced seizures. These results demonstrate that CDYL is a regulator of neuronal migration and shed light on the pathogenesis of seizure-related neurodevelopmental disorders.


Assuntos
Epilepsia/metabolismo , Epilepsia/patologia , Histona Acetiltransferases/deficiência , Neurônios/metabolismo , Neurônios/patologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Encéfalo/patologia , Movimento Celular , Polaridade Celular , Cromatina/metabolismo , Proteínas Correpressoras/metabolismo , Suscetibilidade a Doenças , Técnicas de Silenciamento de Genes , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Hidroliases , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Pentilenotetrazol , Polimerização , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/metabolismo
16.
J Leukoc Biol ; 101(4): 887-892, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27733580

RESUMO

Histone acetylation has an important role in gene regulation, DNA replication, and repair. Because these processes are central to the development of the immune system, we investigated the role of a previously unstudied histone acetyltransferase named KAT7 (also known as Myst2 or HBO1) in the regulation of thymopoiesis and observed a critical role in the regulation of conventional and innate-like T cell development. We found that KAT7-deficient thymocytes displayed normal, positive selection and development into mature single-positive αß thymocytes; however, we observed few peripheral CD4+ or CD8+ T cells. The observed effects did not appear to arise from alterations to DNA replication, the TCR repertoire, or a block in thymocyte maturation and, more likely, was linked to survival defects related to gene deregulation because KAT7 deficiency led to an almost complete and specific loss of global histone-H3 lysine 14 acetylation (H3K14ac). Overall, we demonstrated a nonredundant role for KAT7 in the maintenance of H3K14ac, which is intimately linked with the ability to develop a normal immune system.


Assuntos
Histona Acetiltransferases/metabolismo , Linfócitos T/citologia , Linfócitos T/enzimologia , Acetilação , Animais , Diferenciação Celular , Sobrevivência Celular , Replicação do DNA , Histona Acetiltransferases/deficiência , Histonas/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Timócitos/citologia , Timócitos/metabolismo
17.
Nucleic Acids Res ; 44(15): 7159-72, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27112564

RESUMO

The transcriptional response of Saccharomyces cerevisiae to cell wall stress is mainly mediated by the cell wall integrity (CWI) pathway through the MAPK Slt2 and the transcription factor Rlm1. Once activated, Rlm1 interacts with the chromatin remodeling SWI/SNF complex which locally alters nucleosome positioning at the target promoters. Here we show that the SAGA complex plays along with the SWI/SNF complex an important role for eliciting both early induction and sustained gene expression upon stress. Gcn5 co-regulates together with Swi3 the majority of the CWI transcriptional program, except for a group of genes which are only dependent on the SWI/SNF complex. SAGA subunits are recruited to the promoter of CWI-responsive genes in a Slt2, Rlm1 and SWI/SNF-dependent manner. However, Gcn5 mediates acetylation and nucleosome eviction only at the promoters of the SAGA-dependent genes. This process is not essential for pre-initiation transcriptional complex assembly but rather increase the extent of the remodeling mediated by SWI/SNF. As a consequence, H3 eviction and Rlm1 recruitment is completely blocked in a swi3Δ gcn5Δ double mutant. Therefore, SAGA complex, through its histone acetylase activity, cooperates with the SWI/SNF complex for the mandatory nucleosome displacement required for full gene expression through the CWI pathway.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Transcrição Gênica , Acetilação , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Vermelho Congo/toxicidade , DNA Fúngico/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Histona Acetiltransferases/química , Histona Acetiltransferases/deficiência , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Proteínas de Domínio MADS/metabolismo , Mutação , Regiões Promotoras Genéticas , Subunidades Proteicas/deficiência , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/química , Transativadores/genética , Transcrição Gênica/efeitos dos fármacos
18.
FEMS Yeast Res ; 16(2): fow010, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26851403

RESUMO

RTT109 is a histone acetyltransferase for the acetylation of histone H3. It is still not clear whether RTT109 plays a role in regulation of gene expression under environmental stresses. In this study, the involvement of RTT109 in acetic acid stress tolerance of Saccharomyces cerevisiae was investigated. It was revealed that the absence of RTT109 enhanced resistance to 5.5 g L(-1) acetic acid, which was indicated by improved growth of RTT109Δ mutant compared with that of the wild-type BY4741 strain. Meanwhile, the lag phase was shortened for 48 h and glucose consumption completed 36 h in advance for RTT109Δ mutant compared to the wild-type strain, with ethanol production rate increased from 0.39 to 0.60 g L(-1) h(-1). Significantly, elevated transcription levels of HSP12, CTT1 and GSH1, as well as increased activities of antioxidant enzymes were observed in RTT109Δ under acetic acid stress. Improved flocculation of RTT109Δ compared to that of the control strain BY4741 under the acetic acid stress was also observed. These results suggest that the absence of RTT109 not only activates transcription of stress responsive genes, but also improves resistance to oxidative stress, which ultimately contributes to improved acetic acid tolerance in S. cerevisiae.


Assuntos
Ácido Acético/toxicidade , Tolerância a Medicamentos , Histona Acetiltransferases/deficiência , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Ácido Acético/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/metabolismo , Estresse Oxidativo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Cancer Res ; 75(18): 3936-45, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26208904

RESUMO

Recent efforts to sequence human cancer genomes have highlighted that point mutations in genes involved in the epigenetic setting occur in tumor cells. Small cell lung cancer (SCLC) is an aggressive tumor with poor prognosis, where little is known about the genetic events related to its development. Herein, we have identified the presence of homozygous deletions of the candidate histone acetyltransferase KAT6B, and the loss of the corresponding transcript, in SCLC cell lines and primary tumors. Furthermore, we show, in vitro and in vivo, that the depletion of KAT6B expression enhances cancer growth, while its restoration induces tumor suppressor-like features. Most importantly, we demonstrate that KAT6B exerts its tumor-inhibitory role through a newly defined type of histone H3 Lys23 acetyltransferase activity.


Assuntos
Carcinoma de Células Pequenas/enzimologia , Histona Acetiltransferases/fisiologia , Neoplasias Pulmonares/enzimologia , Proteínas de Neoplasias/fisiologia , Acetilação , Animais , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Carcinoma de Células Pequenas/tratamento farmacológico , Carcinoma de Células Pequenas/genética , Carcinoma de Células Pequenas/patologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Resistencia a Medicamentos Antineoplásicos , Deleção de Genes , Perfilação da Expressão Gênica , Genes Supressores de Tumor , Xenoenxertos , Histona Acetiltransferases/deficiência , Histona Acetiltransferases/genética , Histonas/metabolismo , Humanos , Irinotecano , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Metástase Neoplásica , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Mensageiro/genética , RNA Neoplásico/genética , RNA Interferente Pequeno/farmacologia
20.
Oncogene ; 34(47): 5807-20, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25772242

RESUMO

Cellular senescence is an important mechanism that restricts tumour growth. The Ink4a-Arf locus (also known as Cdkn2a), which encodes p16(INK4A) and p19(ARF), has a central role in inducing and maintaining senescence. Given the importance of cellular senescence in restraining tumour growth, great emphasis is being placed on the identification of novel factors that can modulate senescence. The MYST-family histone acetyltransferase MOZ (MYST3, KAT6A), first identified in recurrent translocations in acute myeloid leukaemia, has been implicated in both the promotion and inhibition of senescence. In this study, we investigate the role of MOZ in cellular senescence and show that MOZ is a potent inhibitor of senescence via the INK4A-ARF pathway. Primary mouse embryonic fibroblasts (MEFs) isolated from Moz-deficient embryos exhibit premature senescence, which was rescued on the Ink4a-Arf(-/-) background. Importantly, senescence resulting from the absence of MOZ was not accompanied by DNA damage, suggesting that MOZ acts independently of the DNA damage response. Consistent with the importance of senescence in cancer, expression profiling revealed that genes overexpressed in aggressive and highly proliferative cancers are expressed at low levels in Moz-deficient MEFs. We show that MOZ is required to maintain normal levels of histone 3 lysine 9 (H3K9) and H3K27 acetylation at the transcriptional start sites of at least four genes, Cdc6, Ezh2, E2f2 and Melk, and normal mRNA levels of these genes. CDC6, EZH2 and E2F2 are known inhibitors of the INK4A-ARF pathway. Using chromatin immunoprecipitation, we show that MOZ occupies the Cdc6, Ezh2 and Melk loci, thereby providing a direct link between MOZ, H3K9 and H3K27 acetylation, and normal transcriptional levels at these loci. This work establishes that MOZ is an upstream inhibitor of the INK4A-ARF pathway, and suggests that inhibiting MOZ may be one way to induce senescence in proliferative tumour cells.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fibroblastos/fisiologia , Histona Acetiltransferases/metabolismo , Transdução de Sinais , Acetilação , Animais , Células Cultivadas , Senescência Celular , Dano ao DNA , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Histona Acetiltransferases/deficiência , Histonas/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...