Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 489
Filtrar
1.
BMC Vet Res ; 20(1): 187, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730463

RESUMO

BACKGROUND: Porcine epidemic diarrhea virus (PEDV), a type of coronavirus, is one of the main pathogens that can infect pigs of all ages. It causes diarrhea and acute death of newborn piglets, resulting in massive economic losses to the worldwide swine industry. While vaccination remains the primary approach in combating PEDV, it often fails to address all the challenges posed by the infection, particularly in light of the emergence of evolving mutant strains. Therefore, there is a critical need to identify potent antiviral drugs that can effectively safeguard pigs against PEDV infection. RESULTS: In this study, the antiviral efficacy of SP2509, a specific antagonist of Lysine-specific demethylase 1(LSD1), was evaluated in vitro. The RT-qPCR, Western blot, TCID50, and IFA showed that at a concentration of 1µmol/L, SP2509 significantly inhibited PEDV infection. Additionally, viral life cycle assays showed that SP2509 operates by impeding PEDV internalization and replication rather than attachment and release. Regarding mechanism, in Huh-7 cells, knockdowns LSD1 can suppress PEDV replication. This indicated that the inhibition effect of SP2509 on PEDV largely depends on the activity of its target protein, LSD1. CONCLUSION: Our results in vitro show that SP2509 can inhibit PEDV infection during the internalization and replication stage and revealed a role of LSD1 as a restriction factor for PEDV. These imply that LSD1 might be a target for interfering with the viral infection, and SP2509 could be developed as an effective anti-PEDV agent.


Assuntos
Antivirais , Histona Desmetilases , Vírus da Diarreia Epidêmica Suína , Replicação Viral , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Animais , Antivirais/farmacologia , Replicação Viral/efeitos dos fármacos , Histona Desmetilases/antagonistas & inibidores , Suínos , Chlorocebus aethiops , Doenças dos Suínos/virologia , Doenças dos Suínos/tratamento farmacológico , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Células Vero
2.
J Cancer Res Clin Oncol ; 150(5): 253, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748285

RESUMO

BACKGROUND: Lysine-specific demethylase 1 (LSD1) is highly expressed in a variety of malignant tumors, rendering it a crucial epigenetic target for anti-tumor therapy. Therefore, the inhibition of LSD1 activity has emerged as a promising innovative therapeutic approach for targeted cancer treatment. METHODS: In our study, we employed innovative structure-based drug design methods to meticulously select compounds from the ZINC15 database. Utilizing virtual docking, we evaluated docking scores and binding modes to identify potential inhibitors. To further validate our findings, we harnessed molecular dynamic simulations and conducted meticulous biochemical experiments to deeply analyze the binding interactions between the protein and compounds. RESULTS: Our results showcased that ZINC10039815 exhibits an exquisite binding mode with LSD1, fitting perfectly into the active pocket and forming robust interactions with multiple critical residues of the protein. CONCLUSIONS: With its significant inhibitory effect on LSD1 activity, ZINC10039815 emerges as a highly promising candidate for the development of novel LSD1 inhibitors.


Assuntos
Inibidores Enzimáticos , Histona Desmetilases , Simulação de Acoplamento Molecular , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Histona Desmetilases/química , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Simulação de Dinâmica Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Desenho de Fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
3.
Nat Commun ; 15(1): 3563, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670969

RESUMO

Synthetic glucocorticoids (GC), such as dexamethasone, are extensively used to treat chronic inflammation and autoimmune disorders. However, long-term treatments are limited by various side effects, including muscle atrophy. GC activities are mediated by the glucocorticoid receptor (GR), that regulates target gene expression in various tissues in association with cell-specific co-regulators. Here we show that GR and the lysine-specific demethylase 1 (LSD1) interact in myofibers of male mice, and that LSD1 connects GR-bound enhancers with NRF1-associated promoters to stimulate target gene expression. In addition, we unravel that LSD1 demethylase activity is required for triggering starvation- and dexamethasone-induced skeletal muscle proteolysis in collaboration with GR. Importantly, inhibition of LSD1 circumvents muscle wasting induced by pharmacological levels of dexamethasone, without affecting their anti-inflammatory activities. Thus, our findings provide mechanistic insights into the muscle-specific GC activities, and highlight the therapeutic potential of targeting GR co-regulators to limit corticotherapy-induced side effects.


Assuntos
Dexametasona , Glucocorticoides , Histona Desmetilases , Músculo Esquelético , Atrofia Muscular , Receptores de Glucocorticoides , Animais , Masculino , Histona Desmetilases/metabolismo , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/genética , Glucocorticoides/farmacologia , Dexametasona/farmacologia , Receptores de Glucocorticoides/metabolismo , Camundongos , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/tratamento farmacológico , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Camundongos Endogâmicos C57BL , Regulação da Expressão Gênica/efeitos dos fármacos
4.
Bioorg Med Chem ; 101: 117651, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401457

RESUMO

Lysine-specific demethylase 1 (LSD1) is a histone lysine demethylase that is significantly overexpressed or dysregulated in different cancers and plays important roles in cell growth, invasion, migration, immune escape, angiogenesis, gene regulation, and transcription. Therefore, it is a superb target for the discovery of novel antitumor agents. However, because of their innate and acquired resistance and low selectivity, LSD1 inhibitors are associated with limited therapeutic efficacy and high toxicity. Furthermore, LSD1 inhibitors synergistically improve the efficacy of additional antitumor drugs, which encourages numerous medicinal chemists to innovate and develop new-generation LSD1-based dual-target agents. This review discusses the theoretical foundation of the design of LSD1-based dual-target agents and summarizes their possible applications in treating cancers.


Assuntos
Antineoplásicos , Histona Desmetilases , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Regulação da Expressão Gênica , Histona Desmetilases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/patologia
5.
PLoS One ; 18(12): e0289860, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38134183

RESUMO

Elevated levels of Fetal Hemoglobin interfere with polymerization of sickle hemoglobin thereby reducing anemia, lessening the severity of symptoms, and increasing life span of patients with sickle cell disease. An affordable, small molecule drug that stimulates HbF expression in vivo would be ideally suited to treat the large numbers of SCD patients that exist worldwide. Our previous work showed that administration of the LSD1 (KDM1A) inhibitor RN-1 to normal baboons increased Fetal Hemoglobin (HbF) and was tolerated over a prolonged treatment period. HbF elevations were associated with changes in epigenetic modifications that included increased levels of H3K4 di-and tri-methyl lysine at the γ-globin promoter. While dramatic effects of the loss of LSD1 on hematopoietic differentiation have been observed in murine LSD1 gene deletion and silencing models, the effect of pharmacological inhibition of LSD1 in vivo on hematopoietic differentiation is unknown. The goal of these experiments was to investigate the in vivo mechanism of action of the LSD1 inhibitor RN-1 by determining its effect on γ-globin expression in highly purified subpopulations of bone marrow erythroid cells enriched for varying stages of erythroid differentiation isolated directly from baboons treated with RN-1 and also by investigating the effect of RN1 on the global transcriptome in a highly purified population of proerythroblasts. Our results show that RN-1 administered to baboons targets an early event during erythroid differentiation responsible for γ-globin repression and increases the expression of a limited number of genes including genes involved in erythroid differentiation such as GATA2, GFi-1B, and LYN.


Assuntos
Anemia Falciforme , Histona Desmetilases , Animais , Humanos , Camundongos , Anemia Falciforme/genética , Hemoglobina Fetal/genética , gama-Globinas/genética , Expressão Gênica , Histona Desmetilases/antagonistas & inibidores , Papio anubis/genética
6.
J Med Chem ; 66(7): 4275-4293, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37014989

RESUMO

Chemotherapy, targeted therapy, and immunotherapy are effective against most tumors, but drug resistance remains a barrier to successful treatment. Lysine-specific demethylase 1 (LSD1), a member of histone demethylation modifications, can regulate invasion, metastasis, apoptosis, and immune escape of tumor cells, which are associated with tumorigenesis and tumor progression. Recent studies suggest that LSD1 ablation regulates resensitivity of tumor cells to anticarcinogens containing immune checkpoint inhibitors (ICIs) via multiple upstream and downstream pathways. In this review, we describe the recent findings about LSD1 biology and its role in the development and progression of cancer drug resistance. Further, we summarize LSD1 inhibitors that have a reversal or resensitive effect on drug resistance and discuss the possibility of targeting LSD1 in combination with other agents to surmount resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Histona Desmetilases , Humanos , Resistência a Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
7.
Biochem Biophys Res Commun ; 647: 23-29, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36709669

RESUMO

The epigenetic regulation for gene expression determines cell plasticity. Oral squamous cell carcinoma (SCC) exhibits bidirectional cell plasticity, i.e. epithelial differentiation and epithelial to mesenchymal transition (EMT). The epigenetic regulator LSD1 is a histone H3-specific demethylase to which chemical inhibitors for its activity had been developed as an anti-cancer therapeutics. The bidirectional plasticity of the oral SCC cell line OM-1 had been characterized, but it remained unclear how chemical LSD1 inhibitors affect cell plasticity. Here we reported an adverse effect against cancer therapeutics, which was EMT induction in vitro by the chemical LSD1 inhibitor. The LSD1 inhibitor caused EMT-TF ZEB1 in OM-1 to undergo EMT. Furthermore, an additional EMT-TF Snail-dependent partial EMT phenotype in OM-1 progressed to complete EMT in conjunction with LSD1 inhibitor-dependent ZEB1 induction. The promotor activity of ZEB1 was up-regulated under LSD1 inhibition. The regulatory chromatin regions of ZEB1 accumulated histone H3 methylation under the chemical inhibition of LSD1. The LSD1 inhibitor also upregulates epithelial gene expression in vitro; however, the bidirectional effect of LSD1 inhibitor should be considered in cancer therapeutics.


Assuntos
Histona Desmetilases , Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Linhagem Celular Tumoral , Epigênese Genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Histonas/metabolismo , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
8.
Eur J Med Chem ; 244: 114818, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36223680

RESUMO

The epigenetic regulator lysine specific demethylase 1 (LSD1), a MYCN cofactor, cooperatively silences MYCN suppressor genes. Furthermore, LSD1 has been correlated with adverse effects in neuroblastic tumors by propagating an undifferentiated, malignant phenotype. We observed that high LSD1 mRNA expression in MYCN-expressing neuroblastoma (NB) correlated with poor prognosis, implicating LSD1 as an oncogenic accomplice in high-grade NB. Thus, LSD1 inhibition is a potential strategy for targeting treatment-resistant MYCN-expressing NB. Tranylcypromine-based covalent LSD1 inhibitors have demonstrated anti-tumor activity but are associated with undesirable off-target effects, such that only 2 non-covalent LSD1 inhibitors are in clinical trials. We now report 3 novel scaffolds for reversible LSD1 inhibition: 2-(arylsulfonamido)benzoic acid, N-(2-(1H-tetrazol-5-yl)phenyl)benzenesulfonamide and 2-(arylcarboxamido)benzoic acid analogues. The most active of these analogues, compound 48, exhibited potent and selective mixed reversible inhibition of LSD1 (IC50 = 0.58 µM) and significantly increased global H3K4me2 in NB cells. In addition, combination treatment with 48 and bortezomib in NB cells results in a synergistic effect.


Assuntos
Histona Desmetilases , Neuroblastoma , Humanos , Linhagem Celular Tumoral , Histona Desmetilases/antagonistas & inibidores , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Benzoatos/farmacologia , Benzoatos/uso terapêutico
9.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012674

RESUMO

Diabetic kidney disease (DKD) can cause inflammation and fibrosis, in addition to being the main complication of diabetes. Among many factors, epigenetic alterations in aberrant histone modifications play a key role in causing DKD. In this study, the mechanism of GSK-J4, a histone demethylase KDM6A inhibitor, was evaluated in streptozotocin-induced diabetic mice. It was confirmed that GSK-J4, via dickkopf-1 (DKK1) modulation, could significantly reduce proteinuria and glomerulosclerosis in diabetic mice. The mRNA accumulation levels of DKK1, TGF-ß1, fibronectin, and collagen IV were significantly elevated in diabetic mice. In contrast, the mRNA accumulations of those genes were significantly reduced in diabetic mice treated with GSK-J4 compared to those in diabetic mice, relatively speaking. The protein accumulation levels of fibronectin and collagen IV were significantly elevated in diabetic mice. Furthermore, GSK-J4 attenuated the high glucose-induced expression of profibrotic factors in mesangial cells via DKK1. In conclusion, our study provides a novel strategy to eliminate fibrosis in the kidneys of DKD mice. Using GSK-J4 reduces DKK1 expression, thereby ameliorating renal insufficiency, glomerulosclerosis morphological abnormalities, inflammation, and fibrosis in diabetic mice.


Assuntos
Benzazepinas , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Histona Desmetilases , Peptídeos e Proteínas de Sinalização Intercelular , Pirimidinas , Animais , Benzazepinas/farmacologia , Colágeno/metabolismo , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrose , Histona Desmetilases/antagonistas & inibidores , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Rim/metabolismo , Camundongos , Pirimidinas/farmacologia , RNA Mensageiro/metabolismo
10.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35887001

RESUMO

JIB-04, a pan-histone lysine demethylase (KDM) inhibitor, targets drug-resistant cells, along with colorectal cancer stem cells (CSCs), which are crucial for cancer recurrence and metastasis. Despite the advances in CSC biology, the effect of JIB-04 on liver CSCs (LCSCs) and the malignancy of hepatocellular carcinoma (HCC) has not been elucidated yet. Here, we showed that JIB-04 targeted KDMs, leading to the growth inhibition and cell cycle arrest of HCC, and abolished the viability of LCSCs. JIB-04 significantly attenuated CSC tumorsphere formation, growth, relapse, migration, and invasion in vitro. Among KDMs, the deficiency of KDM4B, KDM4D, and KDM6B reduced the viability of the tumorspheres, suggesting their roles in the function of LCSCs. RNA sequencing revealed that JIB-04 affected various cancer-related pathways, especially the PI3K/AKT pathway, which is crucial for HCC malignancy and the maintenance of LCSCs. Our results revealed KDM6B-dependent AKT2 expression and the downregulation of E2F-regulated genes via JIB-04-induced inhibition of the AKT2/FOXO3a/p21/RB axis. A ChIP assay demonstrated JIB-04-induced reduction in H3K27me3 at the AKT2 promoter and the enrichment of KDM6B within this promoter. Overall, our results strongly suggest that the inhibitory effect of JIB-04 on HCC malignancy and the maintenance of LCSCs is mediated via targeting the KDM6B-AKT2 pathway, indicating the therapeutic potential of JIB-04.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Pontos de Checagem do Ciclo Celular , Histona Desmetilases , Histona Desmetilases com o Domínio Jumonji , Neoplasias Hepáticas , Aminopiridinas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Histona Desmetilases/farmacologia , Histonas/metabolismo , Humanos , Hidrazonas , Histona Desmetilases com o Domínio Jumonji/farmacologia , Histona Desmetilases com o Domínio Jumonji/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Lisina/metabolismo , Recidiva Local de Neoplasia/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
Eur J Med Chem ; 239: 114523, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35732082

RESUMO

Lysine-specific demethylase 1 (LSD1) is a FAD-dependent histone demethylase to catalyze the demethylation of H3K4 and H3K9 and thus is an attractive target for therapeutic cancer. Starting with a high micromolar compound 17i, structure-based optimization of novel indole derivatives is described by a bioelectronic isosteric strategy. Grounded by molecular modeling, medicinal chemistry has efficiently yielded low nanomolar LSD1 inhibitors. One of the compounds, B35, exhibited excellent LSD1 inhibition (IC50 = 0.050 ± 0.005 µM) and anti-proliferation against A549 cells (IC50 = 0.74 ± 0.14 µM). The further PK studies indicated compound B35 possessed favorable metabolic stability, in which the plasma t1/2 of p.o. and i.v. were 6.27 ± 0.72 h and 8.78 ± 1.31 h, respectively. Additionally, inhibitor B35 shows a strong antitumor effect and good safety in vivo. Meanwhile, compound B35 regulated genes are closely associated with transcriptional dislocation in cancer and PI3K/AKT pathway involving IGFBP3. Taken together, B35 could be a potent LSD1 inhibitor for further drug development.


Assuntos
Inibidores Enzimáticos , Histona Desmetilases , Indóis , Células A549 , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Apoptose , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Humanos , Indóis/síntese química , Indóis/farmacologia , Masculino , Camundongos Endogâmicos BALB C , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Enzyme Inhib Med Chem ; 37(1): 973-985, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35317680

RESUMO

As regioisomers/bioisosteres of 1a, a 4-phenylbenzamide tranylcypromine (TCP) derivative previously disclosed by us, we report here the synthesis and biological evaluation of some (hetero)arylbenzoylamino TCP derivatives 1b-6, in which the 4-phenyl moiety of 1a was shifted at the benzamide C3 position or replaced by 2- or 3-furyl, 2- or 3-thienyl, or 4-pyridyl group, all at the benzamide C4 or C3 position. In anti-LSD1-CoREST assay, all the meta derivatives were more effective than the para analogues, with the meta thienyl analogs 4b and 5b being the most potent (IC50 values = 0.015 and 0.005 µM) and the most selective over MAO-B (selectivity indexes: 24.4 and 164). When tested in U937 AML and prostate cancer LNCaP cells, selected compounds 1a,b, 2b, 3b, 4b, and 5a,b displayed cell growth arrest mainly in LNCaP cells. Western blot analyses showed increased levels of H3K4me2 and/or H3K9me2 confirming the involvement of LSD1 inhibition in these assays.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Tranilcipromina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Histona Desmetilases/metabolismo , Humanos , Estrutura Molecular , Monoaminoxidase/metabolismo , Relação Estrutura-Atividade , Tranilcipromina/síntese química , Tranilcipromina/química , Células Tumorais Cultivadas
13.
Pharmacol Res ; 175: 105958, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718134

RESUMO

LSD1 was the first histone demethylase identified by Professor Shi Yang and his team members in 2004. LSD1 employs FAD as its cofactor, which catalyzes the demethylation of H3K4 and H3K9. It is aberrantly overexpressed in different types of cancers and is associated with the growth, invasion, and metastasis of cancer cells. The knockout or inhibition of LSD1 could effectively suppress tumor development, and thus, it has become an attractive molecular target for cancer therapy. Moreover, many LSD1 inhibitors have been developed in preclinical and clinical trials to treat solid tumors and hematological malignancy. This study made an extensive review of the research obtained from the literature retrieval of electronic databases, such as PubMed, Web of Science, RCSB PDB, ClinicalTrials.gov, and EU clinical trials register. This review summarizes recent studies on the advances of LSD1 inhibitors in the literature, covering January 2015 to June 2021. It focuses on the function of LSD1 in tumor cells, summarizes the crystal structures of Homo sapiens LSD1, reviews the structural characteristics of LSD1 inhibitors, compares the screening methods of LSD1 inhibitors, and proposes guidelines for the future exploitation of LSD1 inhibitors.


Assuntos
Antineoplásicos/uso terapêutico , Histona Desmetilases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Animais , Humanos
14.
Cancer Lett ; 524: 219-231, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34673129

RESUMO

Endometrial cancer (EC) often exhibit aberrant activation of PI3K/Akt/mTOR signaling and targeted therapies using mTOR inhibitors showed limited success. The epigenetic modifier, lysine-specific histone demethylase-1A (KDM1A/LSD1) is overexpressed in EC, however, the mechanistic and therapeutic implications of KDM1A in EC are poorly understood. Here, using 119 FDA-approved drugs screen, we identified that KDM1A inhibition is highly synergistic with mTOR inhibitors. Combination therapy of KDM1A and mTOR inhibitors potently reduced the cell viability, survival, and migration of EC cells. Mechanistic studies demonstrated that KDM1A inhibition attenuated the activation of mTOR signaling cascade and abolished rapamycin induced feedback activation of Akt. RNA-seq analysis identified that KDM1A inhibition downregulated the expression of genes involved in rapamycin induced activation of Akt, including the mTORC2 complex. Chromatin immunoprecipitation experiments confirmed KDM1A recruitment to the promoter regions of mTORC2 complex genes and that KDM1A inhibition promoted enrichment of repressive H3K9me2 marks at their promoters. Combination therapy of KDM1A inhibitor and rapamycin reduced the tumor growth in EC xenograft and patient derived xenograft models in vivo and patient derived tumor explants ex vivo. Importantly, in silico analysis of TCGA EC patients data sets revealed that KDM1A expression positively correlated with the levels of PI3K/Akt/mTOR genes. Collectively, our results provide compelling evidence that KDM1A inhibition potentiates the activity of mTOR inhibitors by attenuating the feedback activation of Akt survival signaling. Furthermore, the use of concurrent KDM1A and mTOR inhibitors may be an attractive targeted therapy for EC patients.


Assuntos
Neoplasias do Endométrio/tratamento farmacológico , Histona Desmetilases/genética , Inibidores de MTOR/farmacologia , Serina-Treonina Quinases TOR/genética , Animais , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Desmetilases/antagonistas & inibidores , Humanos , Inibidores de MTOR/química , Masculino , Camundongos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
15.
FASEB J ; 36(1): e22122, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34958158

RESUMO

Lysine-specific histone demethylase 1 (LSD1) as the first identified histone/lysine demethylase regulates gene expression and protein functions in diverse diseases. In this study, we show that the expression of LSD1 is increased in mouse kidneys with unilateral ureteral obstruction (UUO) and in cultured NRK-52E cells undergoing TGF-ß1-induced epithelial-mesenchymal transition (EMT). Inhibition of LSD1 with its specific inhibitor ORY1001 attenuated renal EMT and fibrosis, which was associated with decreased the deposition of extracellular matrix proteins and the expression of fibrotic markers, including α-smooth muscle actin (α-SMA) and fibronectin, and the recovery of E-cadherin expression and decrease of N-cadherin expression in UUO kidneys and in NRK-52E cells induced with TGF-ß1. Targeting LSD1 also decreased the expression of Snail family transcriptional repressor 1 (Snail-1) and its interaction with LSD1 in UUO kidneys and in NRK-52E cells treated with TGF-ß1. In addition, we identified a novel LSD1-14-3-3ζ-PKCα axis in the regulation of the activation of AKT and Stat3 and then the activation of fibroblasts. This study suggests that LSD1 plays a critical role in regulation of renal EMT and fibrosis through activation of diverse signaling pathways and places an emphasis that LSD1 has potential as a therapeutic target for the treatment of renal fibrosis.


Assuntos
Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Histona Desmetilases , Rim/enzimologia , Animais , Linhagem Celular , Transição Epitelial-Mesenquimal/genética , Fibrose , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/enzimologia , Nefropatias/genética , Masculino , Camundongos , Ratos
16.
Arch Pharm (Weinheim) ; 355(2): e2100311, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34862974

RESUMO

The abnormal expression of lysine-specific histone demethylase 1 (LSD1) is associated with different cancer types, and it is increasingly recognized as a potential therapeutic target in oncology. Here, utilizing core hopping and conformational restriction strategies, we designed and synthesized a series of coumarin analogs that were shown to be potent LSD1 inhibitors in the enzyme assay. Furthermore, several potent compounds were selected to evaluate their antiproliferative activity on A549 cells and MGC-803 cells with high expression of LSD1. Among them, YX10 showed an anticlonogenic effect on A549 cells and MGC-803 cells, with IC50 values of 1.52 ± 0.16 and 0.98 ± 0.18 µM, respectively. Modeling suggested that the inhibitors would bind to the active site of the protein located around the key residues of Asp555 and Lys661. Meanwhile, a preliminary druggability evaluation showed that compound YX10 showed favorable liver microsomal and moderate plasma stability and weak inhibitory activity against cytochrome P450 isoforms at 10 µM. All the results indicated that compound YX10 could represent a promising lead compound for further development.


Assuntos
Antineoplásicos/farmacologia , Cumarínicos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/química , Humanos , Concentração Inibidora 50 , Microssomos Hepáticos/metabolismo , Relação Estrutura-Atividade
17.
Eur J Pharmacol ; 916: 174725, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34953802

RESUMO

Dual target compounds have become a hot spot in the treatment of cancer in recent years. Histone lysine specific demethylase 1 (LSD1) is identified as histone demethylase and acts as a key regulator involved in many other cellular activities through its demethylation function. We have reported a triazolo [1,5-α] pyrimidine-based DCN1(defective in cullin neddylation protein 1) inhibitor compound 383 (IC50 = 11 nM) which could selectively inhibit Cullin 3/1 neddylation in MGC-803 cells. In this research, we investigated that compound 383 could target LSD1 and inhibit the biological function of LSD1 in MGC-803 cells (IC50 = 0.53 µM). We found that compound 383 could induce the degradation of LSD1 and inhibit MGC-803 cell proliferation, migration and invasion in a dose-dependent manner. Compound 383 could cause cell cycle arrest at G2/M phase by down-regulating the expression of LSD1. In addition, compound 383 could significantly reverse epithelial-mesenchymal transition (EMT) through increase H3K4me methylation at E-cadherin promotor. Furthermore, the in vivo inhibitory effect of compound 383 without obvious toxicity was confirmed in nude mouse transplanted MGC-803 tumor cells model. Collectively, these results suggest that the DCN1 inhibitor compound 383 exhibits antiproliferative activity in gastric cancer cells by targeting LSD1 which promotes compound 383 as a good starting point for the development of dual-target therapeutics for gastric cancer.


Assuntos
Inibidores Enzimáticos , Histona Desmetilases , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Gástricas , Linhagem Celular Tumoral , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Histona Desmetilases/antagonistas & inibidores , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neoplasias Gástricas/tratamento farmacológico , Relação Estrutura-Atividade
18.
Eur J Med Chem ; 228: 114042, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34915312

RESUMO

Lysine-specific demethylase 1 (LSD1/KDM1A) has emerged as a promising epigenetic target for disease treatment. Several LSD1 inhibitors have advanced into clinical trials. Following our last annual review on LSD1 inhibitors in 2020 (Eur. J. Med. Chem. 2021, 214, 113254), in this review we aim to update LSD1 inhibitors including natural products, synthetic compounds and cyclic peptides reported during 2021. Design strategies, structure-activity relationships, binding model analysis and modes of action are highlighted. In particular, two FDA-approved antihypertensive drugs raloxifene and fenoldopam were repurposed as reversible LSD1 inhibitors. The clinical candidate TAK-418 for treating neurodevelopmental disorders and PET imaging agent [18F]30 for LSD1 were identified. Moreover, dual inhibitors targeting both LSD1 and HDAC6 or tubulin displayed enhanced anti-cancer effects than single agents. These compounds further enrich the structural types of LSD1 inhibitors.


Assuntos
Produtos Biológicos/farmacologia , Inibidores Enzimáticos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Produtos Biológicos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Histona Desmetilases/metabolismo , Humanos , Estrutura Molecular , Peptídeos Cíclicos/química
19.
J Med Chem ; 64(24): 17824-17845, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34908406

RESUMO

Pragmatic insertion of pargyline, a LSD1 inhibitor, as a surface recognition part in the HDAC inhibitory pharmacophore was planned in pursuit of furnishing potent antiprostate cancer agents. Resultantly, compound 14 elicited magnificent cell growth inhibitory effects against the PC-3 and DU-145 cell lines and led to remarkable suppression of tumor growth in human prostate PC-3 and DU-145 xenograft nude mouse models. The outcome of the enzymatic assays ascertained that the substantial antiproliferative effects of compound 14 were mediated through HDAC6 isoform inhibition as well as selective MAO-A and LSD1 inhibition. Moreover, the signatory feature of LSD1 inhibition by 14 in the context of H3K4ME2 accumulation was clearly evident from the results of western blot analysis. Gratifyingly, hydroxamic acid 14 demonstrates good human hepatocytic stability and good oral bioavailability in rats and exhibits enough promise to emerge as a therapeutic for the treatment of prostate cancer in the near future.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desmetilases/antagonistas & inibidores , Pargilina/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Humanos , Masculino , Pargilina/uso terapêutico
20.
Molecules ; 26(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34946572

RESUMO

A machine learning approach has been applied to virtual screening for lysine specific demethylase 1 (LSD1) inhibitors. LSD1 is an important anti-cancer target. Machine learning models to predict activity were constructed using Morgan molecular fingerprints. The dataset, consisting of 931 molecules with LSD1 inhibition activity, was obtained from the ChEMBL database. An evaluation of several candidate algorithms on the main dataset revealed that the support vector regressor gave the best model, with a coefficient of determination (R2) of 0.703. Virtual screening, using this model, identified five predicted potent inhibitors from the ZINC database comprising more than 300,000 molecules. The virtual screening recovered a known inhibitor, RN1, as well as four compounds where activity against LSD1 had not previously been suggested. Thus, we performed a machine-learning-enabled virtual screening of LSD1 inhibitors using only the structural information of the molecules.


Assuntos
Inibidores Enzimáticos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Lisina/farmacologia , Aprendizado de Máquina , Bases de Dados Factuais , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Histona Desmetilases/metabolismo , Humanos , Lisina/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...