Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 85(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31585988

RESUMO

A number of anaerobic ciliates, unicellular eukaryotes, intracellularly possess methanogenic archaea and bacteria as symbiotic partners. Although this tripartite relationship is of interest in terms of the fact that each participant is from a different domain, the difficulty in culture and maintenance of those host species with symbiotic partners has disturbed both ecological and functional studies so far. In this study, we obtained a stable culture of a small anaerobic scuticociliate, strain GW7. By transmission electron microscopic observation and fluorescent in situ hybridization with domain-specific probes, we demonstrate that GW7 possesses both archaeal and bacterial endosymbionts in its cytoplasm. These endosymbionts are in dependently associated with hydrogenosomes, which are organelle producing hydrogen and ATP under anaerobic conditions. Clone library analyses targeting prokaryotic 16S rRNA genes, fluorescent in situ hybridization with endosymbiont-specific probes, and molecular phylogenetic analyses revealed the phylogenetic affiliations and intracellular localizations of these endosymbionts. The endosymbiotic archaeon is a methanogen belonging to the genus Methanoregula (order Methanomicrobiales); a member of this genus has previously been described as the endosymbiont of an anaerobic ciliate from the genus Metopus (class Armophorea), which is only distantly related to strain GW7 (class Oligohymenophorea). The endosymbiotic bacterium belongs to the family Holosporaceae of the class Alphaproteobacteria, which also comprises several endosymbionts of various aerobic ciliates. For this endosymbiotic bacterium, we propose a novel candidate genus and species, "Candidatus Hydrogenosomobacter endosymbioticus."IMPORTANCE Tripartite symbioses between anaerobic ciliated protists and their intracellular archaeal and bacterial symbionts are not uncommon, but most reports have been based mainly on microscopic observations. Deeper insights into the function, ecology, and evolution of these fascinating symbioses involving partners from all three domains of life have been hampered by the difficulties of culturing anaerobic ciliates in the laboratory and the frequent loss of their prokaryotic partners during long-term cultivation. In the present study, we report the isolation of an anaerobic scuticociliate, strain GW7, which has been stably maintained in our laboratory for more than 3 years without losing either of its endosymbionts. Unexpectedly, molecular characterization of the endosymbionts revealed that the bacterial partner of GW7 is phylogenetically related to intranuclear endosymbionts of aerobic ciliates. This strain will enable future genomic, transcriptomic, and proteomic analyses of the interactions in this tripartite symbiosis and a comparison with endosymbioses in aerobic ciliates.


Assuntos
Alphaproteobacteria/metabolismo , Anaerobiose/fisiologia , Cilióforos/microbiologia , Euryarchaeota/metabolismo , Holosporaceae/fisiologia , Organelas/microbiologia , Simbiose , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Meios de Cultura/química , Euryarchaeota/classificação , Euryarchaeota/genética , Holosporaceae/classificação , Holosporaceae/genética , Hibridização in Situ Fluorescente , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação , Análise de Sequência de DNA
2.
Microb Ecol ; 77(4): 1092-1106, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30627761

RESUMO

We characterized a novel Holospora-like bacterium (HLB) (Alphaproteobacteria, Holosporales) living in the macronucleus of the brackish water ciliate Frontonia salmastra. This bacterium was morphologically and ultrastructurally investigated, and its life cycle and infection capabilities were described. We also obtained its 16S rRNA gene sequence and performed in situ hybridization experiments with a specifically-designed probe. A new taxon, "Candidatus Hafkinia simulans", was established for this HLB. The phylogeny of the family Holosporaceae based on 16S rRNA gene sequences was inferred, adding to the already available data both the sequence of the novel bacterium and those of other Holospora and HLB species recently characterized. Our phylogenetic analysis provided molecular support for the monophyly of HLBs and placed the new endosymbiont as the sister genus of Holospora. Additionally, the host ciliate F. salmastra, recorded in Europe for the first time, was concurrently described through a multidisciplinary study. Frontonia salmastra's phylogenetic position in the subclass Peniculia and the genus Frontonia was assessed according to 18S rRNA gene sequencing. Comments on the biodiversity of this genus were added according to past and recent literature.


Assuntos
Holosporaceae/fisiologia , Peniculina/microbiologia , Simbiose , Holosporaceae/classificação , Holosporaceae/genética , Holosporaceae/ultraestrutura , Itália , Macronúcleo/microbiologia , Microscopia Eletrônica de Transmissão , Peniculina/fisiologia , Filogenia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , RNA Ribossômico 18S/análise , Análise de Sequência de DNA
3.
FEMS Microbiol Ecol ; 94(7)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718229

RESUMO

Holospora and related bacteria are a group of obligate Paramecium symbionts. Characteristic features are their infectivity, the presence of two distinct morphotypes, and usually a strict specialization for a single Paramecium species as host and for a nuclear compartment (either somatic or generative nucleus) for reproduction. Holospora caryophila steps out of line, naturally occurring in Paramecium biaurelia and Paramecium caudatum. This study addresses the phylogenetic relationship among H. caryophila and other Holospora species based on 16S rRNA gene sequence comparison analyzing the type strain and seven new macronuclear symbionts. Key aspects of Holospora physiology such as infectivity, symbiosis establishment and host range were determined by comprehensive infection assays. Detailed morphological investigations and sequence-based phylogeny confirmed a high similarity between the type strain of H. caryophila and the novel strains. Surprisingly, they are only distantly related to other Holospora species suggesting that they belong to a new genus within the family Holosporaceae, here described as Preeria caryophila comb. nov. Adding to this phylogenetic distance, we also observed a much broader host range, comprising at least eleven Paramecium species. As these potential host species exhibit substantial differences in frequency of sexual processes, P. caryophila demonstrates which adaptations are crucial for macronuclear symbionts facing regular destruction of their habitat.


Assuntos
Holosporaceae/classificação , Holosporaceae/genética , Paramecium/microbiologia , Simbiose/fisiologia , Aclimatação , Animais , Sequência de Bases , Especificidade de Hospedeiro/fisiologia , Estágios do Ciclo de Vida , Filogenia , RNA Ribossômico 16S/genética
4.
PLoS One ; 11(12): e0167928, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27992463

RESUMO

Ciliated protists often form symbioses with many diverse microorganisms. In particular, symbiotic associations between ciliates and green algae, as well as between ciliates and intracellular bacteria, are rather wide-spread in nature. In this study, we describe the complex symbiotic system between a very rare ciliate, Paramecium chlorelligerum, unicellular algae inhabiting its cytoplasm, and novel bacteria colonizing the host macronucleus. Paramecium chlorelligerum, previously found only twice in Germany, was retrieved from a novel location in vicinity of St. Petersburg in Russia. Species identification was based on both classical morphological methods and analysis of the small subunit rDNA. Numerous algae occupying the cytoplasm of this ciliate were identified with ultrastructural and molecular methods as representatives of the Meyerella genus, which before was not considered among symbiotic algae. In the same locality at least fifteen other species of "green" ciliates were found, thus it is indeed a biodiversity hot-spot for such protists. A novel species of bacterial symbionts living in the macronucleus of Paramecium chlorelligerum cells was morphologically and ultrastructurally investigated in detail with the description of its life cycle and infection capabilities. The new endosymbiont was molecularly characterized following the full-cycle rRNA approach. Furthermore, phylogenetic analysis confirmed that the novel bacterium is a member of Holospora genus branching basally but sharing all characteristics of the genus except inducing connecting piece formation during the infected host nucleus division. We propose the name "Candidatus Holospora parva" for this newly described species. The described complex system raises new questions on how these microorganisms evolve and interact in symbiosis.


Assuntos
Chlorella/classificação , Água Doce/parasitologia , Holosporaceae/classificação , Paramecium/classificação , Chlorella/genética , Chlorella/isolamento & purificação , Citoplasma/química , DNA Ribossômico/análise , Holosporaceae/genética , Holosporaceae/isolamento & purificação , Macronúcleo/genética , Paramecium/genética , Paramecium/isolamento & purificação , Paramecium/microbiologia , Filogenia , RNA Ribossômico/análise , Simbiose
5.
Int J Syst Evol Microbiol ; 63(Pt 5): 1930-1933, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23504970

RESUMO

'Holospora acuminata' infects micronuclei of Paramecium bursaria (Protozoa, Ciliophora), whereas 'Holospora curviuscula' infects the macronucleus in other clones of the same host species. Because these micro-organisms have not been cultivated, their description has been based only on some morphological properties and host and nuclear specificities. One16S rRNA gene sequence of 'H. curviuscula' is present in databases. The systematic position of the representative strain of 'H. curviuscula', strain MC-3, was determined in this study. Moreover, for the first time, two strains of 'H. acuminata', KBN10-1 and AC61-10, were investigated. Phylogenetic analysis indicated that all three strains belonged to the genus Holospora, family Holosporaceae, order Rickettsiales within the Alphaproteobacteria.


Assuntos
Holosporaceae/classificação , Macronúcleo/microbiologia , Paramecium/microbiologia , Filogenia , DNA Bacteriano/genética , Holosporaceae/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
6.
Microb Ecol ; 65(1): 255-67, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22940732

RESUMO

The genus Holospora (Rickettsiales) includes highly infectious nuclear symbionts of the ciliate Paramecium with unique morphology and life cycle. To date, nine species have been described, but a molecular characterization is lacking for most of them. In this study, we have characterized a novel Holospora-like bacterium (HLB) living in the macronuclei of a Paramecium jenningsi population. This bacterium was morphologically and ultrastructurally investigated in detail, and its life cycle and infection capabilities were described. We also obtained its 16S rRNA gene sequence and developed a specific probe for fluorescence in situ hybridization experiments. A new taxon, "Candidatus Gortzia infectiva", was established for this HLB according to its unique characteristics and the relatively low DNA sequence similarities shared with other bacteria. The phylogeny of the order Rickettsiales based on 16S rRNA gene sequences has been inferred, adding to the available data the sequence of the novel bacterium and those of two Holospora species (Holospora obtusa and Holospora undulata) characterized for the purpose. Our phylogenetic analysis provided molecular support for the monophyly of HLBs and showed a possible pattern of evolution for some of their features. We suggested to classify inside the family Holosporaceae only HLBs, excluding other more distantly related and phenotypically different Paramecium endosymbionts.


Assuntos
Holosporaceae/classificação , Paramecium/microbiologia , Filogenia , Simbiose , DNA Bacteriano/genética , Holosporaceae/genética , Hibridização in Situ Fluorescente , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
8.
Syst Appl Microbiol ; 32(7): 490-500, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19679418

RESUMO

An intracellular bacterium was discovered in two isolates of Paramecium sexaurelia from an aquarium with tropical fish in Münster (Germany) and from a pond in the Wilhelma zoological-botanical garden, Stuttgart (Germany). The bacteria were regularly observed in the cytoplasm of the host, but on some occasions they were found in the macronucleus of the host cell. In these cases, only a few, if any, bacteria were observed remaining in the cytoplasm. The bacterium was not infectious to P. sexaurelia or other species of Paramecium and appeared to be an obligate intracellular bacterium, while bacteria-free host cells were completely viable. The fluorescence in situ hybridisation (FISH) and comparative 16SrDNA sequence analyses showed that the bacterium belonged to a new genus, and was most closely, yet quite distantly, related to Holospora obtusa. In spite of this relationship, the new bacteria differed from Holospora by at least two biological features. Whereas all Holospora species reside exclusively in the nuclei of various species of Paramecium and show a life cycle with a morphologically distinct infectious form, for the new bacterium no infectious form and no life cycle have been observed. For the new bacterium, the name Candidatus Paraholospora nucleivisitans is suggested. The host P. sexaurelia is usually known from tropical and subtropical areas and is not a species typically found in Germany and central Europe. Possibly, it had been taken to Germany with fish or plants from tropical or subtropical waters. Candidatus Paraholospora nucleivisitans may therefore be regarded as an intracellular neobacterium for Germany.


Assuntos
Núcleo Celular/microbiologia , Citoplasma/microbiologia , Holosporaceae/classificação , Holosporaceae/fisiologia , Paramecium/microbiologia , Animais , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Alemanha , Holosporaceae/genética , Holosporaceae/isolamento & purificação , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA