RESUMO
OBJECTIVE: To investigate the gene expression profile of CSCs and to explore the key pathways and specific molecular signatures involved in the characteristic of CSCs. MATERIALS AND METHODS: CD133+ /CD44+ CSCs and bulk population (non-CSCs) were isolated from DU-145 cells using fluorescence-activated cell sorting (FACS). We used Illumina HumanHT-12 v4 Expression to investigate gene expression profiling of CSCs and non-CSCs. Protein-protein interaction (PPI) network analysis was performed using the STRING database. Biomarkers selected based on gene expression profiling were visually analyzed using immunofluorescence staining method. An image analysis program, ImageJ®, was used for the analysis of fluorescence intensity. RESULTS: In microarray analysis, we found that many ribosomal proteins and translation initiation factors that constitute the mTOR complex were highly expressed. PPI analysis using the 33 genes demonstrated that there was a close interaction between ribosome biogenesis, translation, and mTOR signaling. The fluorescence amount of mTOR and MLST8 were higher in CSCs compared to non-CSCs. CONCLUSIONS: The increase in a number of genes associated with ribosome biogenesis, translation, and mTOR signaling may be important to evaluate prognosis and determine treatment approach for prostate cancer (PCa). A better understanding of the molecular pathways associated with CSCs may be promising to develop targeted therapies to prolong survival in PCa.
Assuntos
Fatores de Iniciação em Eucariotos/genética , Células-Tronco Neoplásicas/metabolismo , Biogênese de Organelas , Neoplasias da Próstata/genética , Ribossomos/genética , Serina-Treonina Quinases TOR/genética , Transcriptoma , Homólogo LST8 da Proteína Associada a mTOR/genética , Antígeno AC133/metabolismo , Linhagem Celular Tumoral , Fatores de Iniciação em Eucariotos/metabolismo , Citometria de Fluxo , Humanos , Receptores de Hialuronatos/metabolismo , Masculino , Neoplasias da Próstata/metabolismo , Mapas de Interação de Proteínas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Esferoides Celulares , Serina-Treonina Quinases TOR/metabolismo , Homólogo LST8 da Proteína Associada a mTOR/metabolismoRESUMO
INTRODUCTION: AIM2 inflammasome activation leads to the release of IL-ß, which plays an important role in rheumatoid arthritis pathogenesis. In this work, we evaluated AIM2 expression and activity in RA patients and healthy controls. METHODS: AIM2 and RANKL expression were evaluated by flow cytometry. Inflammasome activity was determined in monocyte cultures stimulated with synthetic DNA by measuring IL-1ß levels in supernatants using an ELISA assay. The caspase-1 expression in monocytes was measured by western blot, the POP3 expression was analysed by qPCR, and serum levels of IFN-γ were evaluated using ELISA assay. RESULTS: We observed a diminution of CD14+AIM2+ cells in RA patients, associated with disease activity and evolution. Likewise, the levels of IL-1ß were increased in monocyte cultures un-stimulated and stimulated with LPS from RA patients with DAS28 ≥ 4. The Caspase-1 activity and RANKL + monocytes in RA patients were slightly increased. Finally, augmented POP3 expression and diminished IFN-γ serum levels were detected in RA patients. CONCLUSION: Our results showed that the monocytes from RA patients were prone to release IL-1ß in the absence of the AIM2 inflammasome signal. The down-regulation of AIM2 to a systemic level in RA patients might be a consequence of augmented POP3 expression and might imply the survival of pro-inflammatory cells contributing to the inflammation process.