Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 43(4): 1673-1687, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32026274

RESUMO

Nowadays, nanotechnology is one of the most dynamically developing and most promising technologies. However, the safety issues of using metal nanoparticles, their environmental impact on soil and plants are poorly understood. These studies are especially important in terms of copper-based nanomaterials because they are widely used in agriculture. Concerning that, it is important to study the mechanism behind the mode of CuO nanoparticles action at the ultrastructural intracellular level. It is established that the contamination with CuO has had a negative influence on the development of spring barley. A greater toxic effect has been exerted by the introduction of CuO nanoparticles as compared to the macrodispersed form. A comparative analysis of the toxic effects of copper oxides and nano-oxides on plants has shown changes in the tissue and intracellular levels in the barley roots. However, qualitative changes in plant leaves have not practically been observed. In general, conclusions can be made that copper oxide in nano-dispersed form penetrates better from the soil into the plant and can accumulate in large quantities in it.


Assuntos
Cobre/toxicidade , Hordeum/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Poluentes do Solo/toxicidade , Hordeum/ultraestrutura , Óxidos/análise , Folhas de Planta/química , Estações do Ano
2.
Environ Geochem Health ; 43(4): 1551-1562, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32596781

RESUMO

Many studies have been devoted to investigation of toxic benzo(a)pyrene (BaP) compound, but studies involving changes at the cellular level are insufficient to understand the mechanisms of polycyclic aromatic hydrocarbons (PAHs) effect on plants. To study the toxicity of BaP, a model vegetation experiment was conducted on cultivation of spring barley (Hordeum sativum distichum) on artificially polluted BaP soil at different concentrations. The article discusses the intake of BaP from the soil into the plant and its effect on the organismic and cellular levels of plant organization. The BaP content in the organs of spring barley was determined by the method of saponification. With an increase in the concentration of BaP in the soil, its content in plants also rises, which leads to inhibition of growth processes. The BaP content in the green part of Hordeum sativum increased from 0.3 µg kg-1 in control soil up to 2.6 µg kg-1 and 16.8 µg kg-1 under 20 and 400 ng/g BaP applying in soil, as well as in roots: 0.9 µg kg-1, 7.7 µg kg-1, 42.8 µg kg-1, respectively. Using light and electron microscopy, changes in the tissues and cells of plants were found and it was established that accumulation of BaP in plant tissues caused varying degrees of ultrastructural damage depending on the concentration of pollutant. BaP had the greatest effect on the root, significant changes were found in it both at histological and cytological levels, while changes in the leaves were observed only at the cytological level. The results provide significant information about the mechanism of action of BaP on agricultural plants.


Assuntos
Benzo(a)pireno/toxicidade , Hordeum/efeitos dos fármacos , Poluentes do Solo/toxicidade , Hordeum/ultraestrutura , Folhas de Planta/química , Solo/química
3.
Int J Biol Macromol ; 165(Pt B): 2060-2070, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33096180

RESUMO

Naked barley grains were germinated at 25 °C for 12, 24, and 36 h, followed by hot air and infrared drying. Changes in structural, physicochemical, and functional properties of naked barley flour and starch after germination and drying were evaluated. Germinated and dried flour showed loose structure in starch granules surface. Germination and drying enhanced bulk density and water solubility of flour, while oil absorption capacity decreased. Treated barley starch showed greater water holding capacity, viscosity, and gelatinization temperature than those of native ones, and the maximum increase in water holding capacity of germinated barley was 20.25% of the native ones. Moreover, molecular weight, amylopectin long chains, and crystallinity of treated starch decreased, and the maximum decrease in the crystallinity of germinated barley was 78.36% of the native ones. Generally, germination for 24 and 36 h by infrared drying induced significant changes of flour and starch compared with hot air drying ones. Therefore, the combination of germination and infrared drying can be suggested as a promising method for modifying the properties of naked barley flour and starch to promote their application in the food industry.


Assuntos
Dessecação , Farinha/análise , Germinação , Hordeum/fisiologia , Raios Infravermelhos , Amido/química , Ar , Amilopectina/química , Varredura Diferencial de Calorimetria , Hordeum/ultraestrutura , Temperatura Alta , Peso Molecular , Óleos/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/ultraestrutura , Água , Difração de Raios X
4.
Plant J ; 103(4): 1477-1489, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32412127

RESUMO

The architecture of endosperm cell walls in Hordeum vulgare (barley) differs remarkably from that of other grass species and is affected by germination or malting. Here, the cell wall microstructure is investigated using (bio)chemical analyses, cryogenic scanning electron microscopy (cryo-SEM) and confocal laser scanning microscopy (CLSM) as the main techniques. The relative proportions of ß-glucan, arabinoxylan and pectin in cell walls were 61, 34 and 5%, respectively. The average thickness of a single endosperm cell wall was 0.30 µm, as estimated by the cryo-SEM analysis of barley seeds, which was reduced to 0.16 µm after malting. After fluorescent staining, 3D confocal multiphoton microscopy (multiphoton CLSM) imaging revealed the complex cell wall architecture. The endosperm cell wall is composed of a structure in which arabinoxylan and pectin are colocalized on the outside, with ß-glucan depositions on the inside. During germination, arabinoxylan and ß-glucan are hydrolysed, but unlike ß-glucan, arabinoxylan remains present in defined cell walls in malt. Integrating the results, an enhanced model for the endosperm cell walls in barley is proposed.


Assuntos
Parede Celular/metabolismo , Endosperma/metabolismo , Hordeum/metabolismo , Pectinas/metabolismo , Xilanos/metabolismo , beta-Glucanas/metabolismo , Parede Celular/ultraestrutura , Microscopia Crioeletrônica , Endosperma/ultraestrutura , Hordeum/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica de Varredura
5.
Environ Geochem Health ; 42(1): 45-58, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30874936

RESUMO

Effects of Cu toxicity from contaminated soil were analysed in spring barley (Hordeum sativum distichum), a widely cultivated species in South Russia. In this study, H. sativum was planted outdoors in one of the most fertile soils-Haplic Chernozem spiked with high concentration of Cu and examined between the boot and head emergence phase of growth. Copper toxicity was observed to cause slow ontogenetic development of plants, changing their morphometric parameters (shape, size, colour). To the best of our knowledge, the ultrastructural changes in roots, stems and leaves of H. sativum induced by excess Cu were fully characterized for the first time using transmission electron microscopy. The plant roots were the most effected, showing degradation of the epidermis, reduced number of parenchyma cells, as well as a significant decrease in the diameter of the stele and a disruption and modification to its cell structure. The comparative analysis of the ultrastructure of control plants and plants exposed to the toxic effects of Cu has made it possible to reveal significant disruption of the integrity of the cell wall and cytoplasmic membranes in the root with deposition of electron-dense material. The changes in the ultrastructure of the main cytoplasmic organelles-endoplasmic reticulum, mitochondria, chloroplasts and peroxisomes-in the stem and leaves were found. The cellular Cu deposition, anatomical and ultrastructural modifications could mainly account for the primary impact points of metal toxicity. Therefore, this work extends the available knowledge of the mechanisms of the Cu effect tolerance of barley.


Assuntos
Cobre/toxicidade , Hordeum/efeitos dos fármacos , Poluentes do Solo/toxicidade , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Citoplasma/efeitos dos fármacos , Citoplasma/ultraestrutura , Hordeum/anatomia & histologia , Hordeum/citologia , Hordeum/ultraestrutura , Microscopia Eletrônica de Transmissão , Células Vegetais/efeitos dos fármacos , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/ultraestrutura , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/ultraestrutura , Caules de Planta/citologia , Caules de Planta/efeitos dos fármacos , Caules de Planta/ultraestrutura , Federação Russa
6.
J Exp Bot ; 70(21): 6057-6069, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31403664

RESUMO

Chloroplast protein degradation is known to occur both inside chloroplasts and in the vacuole. Genes encoding cysteine proteases have been found to be highly expressed during leaf senescence. However, it remains unclear where they participate in chloroplast protein degradation. In this study HvPAP14, which belongs to the C1A family of cysteine proteases, was identified in senescing barley (Hordeum vulgare L.) leaves by affinity enrichment using the mechanism-based probe DCG-04 targeting cysteine proteases and subsequent mass spectrometry. Biochemical analyses and expression of a HvPAP14:RFP fusion construct in barley protoplasts was used to identify the subcellular localization and putative substrates of HvPAP14. The HvPAP14:RFP fusion protein was detected in the endoplasmic reticulum and in vesicular bodies. Immunological studies showed that HvPAP14 was mainly located in chloroplasts, where it was found in tight association with thylakoid membranes. The recombinant enzyme was activated by low pH, in accordance with the detection of HvPAP14 in the thylakoid lumen. Overexpression of HvPAP14 in barley revealed that the protease can cleave LHCB proteins and PSBO as well as the large subunit of Rubisco. HvPAP14 is involved in the normal turnover of chloroplast proteins and may have a function in bulk protein degradation during leaf senescence.


Assuntos
Proteínas de Cloroplastos/metabolismo , Cisteína Proteases/metabolismo , Hordeum/enzimologia , Proteólise , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Hordeum/ultraestrutura , Concentração de Íons de Hidrogênio , Modelos Biológicos , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Transporte Proteico , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
7.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234423

RESUMO

Aluminum (Al) is one of the most important crust elements causing reduced plant production in acidic soils. Barley (Hordeum vulgare L.) is considered to be one of the crops that is most sensitive to Al, and the root cell wall is the primary target of Al toxicity. In this study, we evaluate the possible involvement of specific pectic epitopes in the cells of barley roots in response to aluminum exposure. We targeted four different pectic epitopes recognized by LM5, LM6, LM19, and LM20 antibodies using an immunocytochemical approach. Since Al becomes available and toxic to plants in acidic soils, we performed our analyses on barley roots that had been grown in acidic conditions (pH 4.0) with and without Al and in control conditions (pH 6.0). Differences connected with the presence and distribution of the pectic epitopes between the control and Al-treated roots were observed. In the Al-treated roots, pectins with galactan sidechains were detected with a visually lower fluorescence intensity than in the control roots while pectins with arabinan sidechains were abundantly present. Furthermore, esterified homogalacturonans (HGs) were present with a visually higher fluorescence intensity compared to the control, while methyl-esterified HGs were present in a similar amount. Based on the presented results, it was concluded that methyl-esterified HG can be a marker for newly arising cell walls. Additionally, histological changes were detected in the roots grown under Al exposure. Among them, an increase in root diameter, shortening of root cap, and increase in the size of rhizodermal cells and divisions of exodermal and cortex cells were observed. The presented data extend upon the knowledge on the chemical composition of the cell wall of barley root cells under stress conditions. The response of cells to Al can be expressed by the specific distribution of pectins in the cell wall and, thus, enables the knowledge on Al toxicity to be extended by explaining the mechanism by which Al inhibits root elongation.


Assuntos
Alumínio/toxicidade , Hordeum/crescimento & desenvolvimento , Pectinas/análise , Raízes de Plantas/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Parede Celular/química , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Hordeum/química , Hordeum/efeitos dos fármacos , Hordeum/ultraestrutura , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/ultraestrutura
8.
Sci Rep ; 9(1): 7939, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138873

RESUMO

Asexual urediniospore infection of primary cereal hosts by Puccinia graminis f. sp. tritici (Pgt), the wheat stem rust pathogen, was considered biphasic. The first phase, spore germination and appressoria formation, requires a dark period and moisture. The second phase, host entry by the penetration peg originating from the appressoria formed over the guard cells, was thought to require light to induce natural stomata opening. Previous studies concluded that inhibition of colonization by the dark was due to lack of penetration through closed stomata. A sensitive WGA-Alexa Fluor 488 fungal staining, surface creation and biovolume analysis method was developed enabling visualization and quantification of fungal growth in planta at early infection stages surpassing visualization barriers using previous methods. The improved method was used to investigate infection processes of Pgt during stomata penetration and colonization in barley and wheat showing that penetration is light independent. Based on the visual growth and fungal biovolume analysis it was concluded that the differences in pathogen growth dynamics in both resistant and susceptible genotypes was due to light induced pathogen growth after penetration into the substomatal space. Thus, light induced plant or pathogen cues triggers pathogen growth in-planta post penetration.


Assuntos
Basidiomycota/fisiologia , Grão Comestível/microbiologia , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Basidiomycota/ultraestrutura , Resistência à Doença , Grão Comestível/ultraestrutura , Hordeum/genética , Hordeum/ultraestrutura , Interações Hospedeiro-Patógeno , Fotoperíodo , Doenças das Plantas/genética , Estômatos de Plantas/microbiologia , Estômatos de Plantas/ultraestrutura
9.
New Phytol ; 223(4): 2120-2133, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31059138

RESUMO

Plant viruses have been used as rapid and cost-effective expression vectors for heterologous protein expression in genomic studies. However, delivering large or multiple foreign proteins in monocots and insect pests is challenging. Here, we recovered a recombinant plant cytorhabdovirus, Barley yellow striate mosaic virus (BYSMV), for use as a versatile expression platform in cereals and the small brown planthopper (SBPH, Laodelphax striatellus) insect vector. We engineered BYSMV vectors to provide versatile expression platforms for simultaneous expression of three foreign proteins in barley plants and SBPHs. Moreover, BYSMV vectors could express the c. 600-amino-acid ß-glucuronidase (GUS) protein and a red fluorescent protein stably in systemically infected leaves and roots of cereals, including wheat, barley, foxtail millet, and maize plants. Moreover, we have demonstrated that BYSMV vectors can be used in barley to analyze biological functions of gibberellic acid (GA) biosynthesis genes. In a major technical advance, BYSMV vectors were developed for simultaneous delivery of CRISPR/Cas9 nuclease and single guide RNAs for genomic editing in Nicotiana benthamiana leaves. Taken together, our results provide considerable potential for rapid screening of functional proteins in cereals and planthoppers, and an efficient approach for developing other insect-transmitted negative-strand RNA viruses.


Assuntos
Grão Comestível/genética , Grão Comestível/virologia , Genoma de Planta , Genômica , Hemípteros/virologia , Vírus de Plantas/fisiologia , Rhabdoviridae/fisiologia , Animais , Sequência de Bases , DNA Complementar/genética , Edição de Genes , Vetores Genéticos/metabolismo , Glucuronidase/metabolismo , Hordeum/ultraestrutura , Hordeum/virologia , Folhas de Planta/virologia , Vírus de Plantas/ultraestrutura , RNA Guia de Cinetoplastídeos/metabolismo , Rhabdoviridae/ultraestrutura , Nicotiana/ultraestrutura , Nicotiana/virologia
10.
Plant Cell ; 31(7): 1430-1445, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31023840

RESUMO

Chloroplasts fuel plant development and growth by converting solar energy into chemical energy. They mature from proplastids through the concerted action of genes in both the organellar and the nuclear genome. Defects in such genes impair chloroplast development and may lead to pigment-deficient seedlings or seedlings with variegated leaves. Such mutants are instrumental as tools for dissecting genetic factors underlying the mechanisms involved in chloroplast biogenesis. Characterization of the green-white variegated albostrians mutant of barley (Hordeum vulgare) has greatly broadened the field of chloroplast biology, including the discovery of retrograde signaling. Here, we report identification of the ALBOSTRIANS gene HvAST (also known as Hordeum vulgare CCT Motif Family gene 7, HvCMF7) by positional cloning as well as its functional validation based on independently induced mutants by Targeting Induced Local Lesions in Genomes (TILLING) and RNA-guided clustered regularly interspaced short palindromic repeats-associated protein 9 endonuclease-mediated gene editing. The phenotypes of the independent HvAST mutants imply residual activity of HvCMF7 in the original albostrians allele conferring an imperfect penetrance of the variegated phenotype even at homozygous state of the mutation. HvCMF7 is a homolog of the Arabidopsis (Arabidopsis thaliana) CONSTANS, CO-like, and TOC1 (CCT) Motif transcription factor gene CHLOROPLAST IMPORT APPARATUS2, which was reported to be involved in the expression of nuclear genes essential for chloroplast biogenesis. Notably, in barley we localized HvCMF7 to the chloroplast, without any clear evidence for nuclear localization.


Assuntos
Cloroplastos/metabolismo , Genes de Plantas , Hordeum/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Cloroplastos/ultraestrutura , Mapeamento Cromossômico , Proteínas de Fluorescência Verde/metabolismo , Hordeum/ultraestrutura , Mutagênese Sítio-Dirigida , Mutação/genética , Folhas de Planta/ultraestrutura , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , RNA de Plantas/metabolismo
11.
Chromosoma ; 128(1): 7-13, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30175387

RESUMO

The high-order structure of metaphase chromosomes remains still under investigation, especially the 30-nm structure that is still controversial. Advanced 3D imaging has provided useful information for our understanding of this detailed structure. It is evident that new technologies together with improved sample preparations and image analyses should be adequately combined. This mini review highlights 3D imaging used for chromosome analysis so far with future imaging directions also highlighted.


Assuntos
Cromossomos/ultraestrutura , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Imageamento Tridimensional/métodos , Microscopia Eletrônica/métodos , Coloração e Rotulagem/métodos , Animais , Proteínas Cromossômicas não Histona/ultraestrutura , DNA/ultraestrutura , Histonas/ultraestrutura , Hordeum/genética , Hordeum/ultraestrutura , Humanos , Imageamento Tridimensional/instrumentação , Imuno-Histoquímica/métodos , Metáfase , Microscopia de Força Atômica , Microscopia Eletrônica/instrumentação , Manejo de Espécimes/instrumentação , Manejo de Espécimes/métodos
12.
New Phytol ; 221(4): 1950-1965, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30339269

RESUMO

Hordeum species develop a central spikelet flanked by two lateral spikelets at each inflorescence node. In 'two-rowed' spikes, the central spikelet alone is fertile and sets grain, while in 'six-rowed' spikes, lateral spikelets can also produce grain. Induced loss-of-function alleles of any of five Six-rowed spike (VRS) genes (VRS1-5) cause complete to intermediate gains of lateral spikelet fertility. Current six-row cultivars contain natural defective vrs1 and vrs5 alleles. Little information is known about VRS mechanism(s). We used comparative developmental, expression and genetic analyses on single and double vrs mutants to learn more about how VRS genes control development and assess their agronomic potential. We show that all VRS genes repress fertility at carpel and awn emergence in developing lateral spikelets. VRS4, VRS3 and VRS5 work through VRS1 to suppress fertility, probably by inducing VRS1 expression. Pairing vrs3, vrs4 or vrs5 alleles increased lateral spikelet fertility, despite the presence of a functional VRS1 allele. The vrs3 allele caused loss of spikelet identity and determinacy, improved grain homogeneity and increased tillering in a vrs4 background, while with vrs5, decreased tiller number and increased grain weight. Interactions amongst VRS genes control spikelet infertility, determinacy and outgrowth, and novel routes to improving six-row grain.


Assuntos
Grão Comestível/genética , Epistasia Genética , Genes de Plantas , Hordeum/genética , Meristema/genética , Alelos , Regulação da Expressão Gênica de Plantas , Hordeum/anatomia & histologia , Hordeum/ultraestrutura , Meristema/ultraestrutura , Mutação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Methods Mol Biol ; 1900: 153-166, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30460564

RESUMO

Microscopic investigations of biological objects are an integral part in plant research and most fields of life sciences. They allow the description of morphological, histological, and structural aspects of individual cells or tissues. Based on various cell biological tools and methods it is possible to characterize different plant genotypes or study their adaptation to changing environmental conditions. In combination with antibodies raised against specific antigens and epitopes light and electron microscopy enable investigation of the function of single genes/proteins in plant growth and development or their role related to abiotic or biotic stresses.Here, we describe sample preparation of barley roots for cell biological investigations using light and electron microscopy, to characterize morphological, structural, and functional aspects on root sections and the root surface.


Assuntos
Hordeum/imunologia , Hordeum/ultraestrutura , Microscopia Eletrônica/métodos , Raízes de Plantas/imunologia , Raízes de Plantas/ultraestrutura , Dessecação , Hordeum/citologia , Micro-Ondas , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Polimerização , Coloração e Rotulagem , Fixação de Tecidos
14.
Environ Pollut ; 243(Pt B): 872-881, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30245449

RESUMO

The main objective of this study was to assess the uptake and translocation of MnFe2O4 magnetic nanoparticles (MNPs) in hydroponically grown barley (Hordeum vulgare L.). Hydrothermally synthesized and well characterized MNPs (average crystallite size of 14.5 ±â€¯0.5 nm) with varied doses (62.5, 125, 250, 500, and 1000 mg L-1) were subjected to the plants at germination and early growing stages (three weeks). The tissues analyzed by vibrating-sample magnetometer (VSM) and transmission electron microscopy (TEM) revealed the uptake and translocation of MNPs, as well as their internalization in the leaf cells. Also, elemental analysis proved that manganese (Mn) and iron (Fe) contents were ∼7-9 times and ∼4-7 times higher in the leaves of MNPs-treated plants than the ones for non-treated control, respectively. 250 mg L-1 of MNPs significantly (at least p < 0.05) promoted the fresh weight (FW, %10.25). However, higher concentrations (500 and 1000 mg L-1) remarkably reduced the increase to %8 and %5, respectively, possibly due to the restricted water uptake. Also, catalase activity was increased from 91 (µM H2O2 min-1 mg-1) to 138 in leaves, and decreased to 66 in roots upon 1000 mg L-1 of MNPs application. Chlorophyll and carotenoid contents were not significantly changed, except chlorophyll a (%6 increase at 1000 mg L-1, p < 0.05). Overall, MnFe2O4 NPs were up-taken from the roots and migrated to the leaves which promoted the growth parameters of barley. Hence, MNPs can be suggested for barley breeding programs and can be proposed as effective delivery system for agrochemicals. However, the possible negative effect of MNPs due to its potential horizontal transfer from plants to animals via the food chain must be also considered.


Assuntos
Compostos Férricos/toxicidade , Hordeum/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Clorofila/análise , Ativação Enzimática/efeitos dos fármacos , Germinação/efeitos dos fármacos , Hordeum/enzimologia , Hordeum/ultraestrutura , Hidroponia , Magnetismo , Compostos de Manganês , Microscopia Eletrônica de Transmissão , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/ultraestrutura , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/ultraestrutura
15.
Plant Physiol ; 178(2): 654-671, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30126868

RESUMO

Barley crop model was analyzed for early and late events during the dark-induced leaf senescence (DILS) as well as for deciphering critical time limit for reversal of the senescence process. Chlorophyll fluorescence vitality index Rfd was determined as the earliest parameter that correlated well with the cessation of photosynthesis prior to microautophagy symptoms, initiation of DNA degradation, and severalfold increase in the endonuclease BNUC1. DILS was found characterized by up-regulation of processes that enable recycling of degraded macromolecules and metabolites, including increased NH4 + remobilization, gluconeogenesis, glycolysis, and partial up-regulation of glyoxylate and tricarboxylate acid cycles. The most evident differences in gene medleys between DILS and developmental senescence included hormone-activated signaling pathways, lipid catabolic processes, carbohydrate metabolic processes, low-affinity ammonia remobilization, and RNA methylation. The mega-autophagy symptoms were apparent much later, specifically on day 10 of DILS, when disruption of organelles-nucleus and mitochondria -became evident. Also, during this latter-stage programmed cell death processes, namely, shrinking of the protoplast, tonoplast interruption, and vacuole breakdown, chromatin condensation, more DNA fragmentation, and disintegration of the cell membrane were prominent. Reversal of DILS by re-exposure of the plants from dark to light was possible until but not later than day 7 of dark exposure and was accompanied by regained photosynthesis, increase in chlorophyll, and reversal of Rfd, despite activation of macro-autophagy-related genes.


Assuntos
Regulação da Expressão Gênica de Plantas , Hordeum/fisiologia , Modelos Biológicos , Folhas de Planta/fisiologia , Apoptose , Autofagia , Metabolismo dos Carboidratos , Núcleo Celular/metabolismo , Escuridão , Perfilação da Expressão Gênica , Hordeum/genética , Hordeum/efeitos da radiação , Hordeum/ultraestrutura , Luz , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Folhas de Planta/ultraestrutura , Protoplastos , Fatores de Tempo , Regulação para Cima , Vacúolos/metabolismo
16.
New Phytol ; 217(2): 713-725, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29044534

RESUMO

Tritrophic interactions involving a biocontrol agent, a pathogen and a plant have been analyzed predominantly from the perspective of the biocontrol agent. We have conducted the first comprehensive transcriptomic analysis of all three organisms in an effort to understand the elusive properties of Pseudozyma flocculosa in the context of its biocontrol activity against Blumeria graminis f.sp. hordei as it parasitizes Hordeum vulgare. After inoculation of P. flocculosa, the tripartite interaction was monitored over time and samples collected for scanning electron microscopy and RNA sequencing. Based on our observations, P. flocculosa indirectly parasitizes barley, albeit transiently, by diverting nutrients extracted by B. graminis from barley leaves through a process involving unique effectors. This brings novel evidence that such molecules can also influence fungal-fungal interactions. Their release is synchronized with a higher expression of powdery mildew haustorial effectors, a sharp decline in the photosynthetic machinery of barley and a developmental peak in P. flocculosa. The interaction culminates with a collapse of B. graminis haustoria, thereby stopping P. flocculosa growth, as barley plants show higher metabolic activity. To conclude, our study has uncovered a complex and intricate phenomenon, described here as hyperbiotrophy, only achievable through the conjugated action of the three protagonists.


Assuntos
Ascomicetos/fisiologia , Basidiomycota/fisiologia , Hordeum/microbiologia , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Ascomicetos/genética , Ascomicetos/ultraestrutura , Basidiomycota/ultraestrutura , Transporte Biológico , Celobiose/análogos & derivados , Celobiose/farmacologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Glicolipídeos/farmacologia , Hordeum/ultraestrutura , Modelos Biológicos , Fenótipo , Fotossíntese , Transcriptoma/genética
17.
BMC Plant Biol ; 17(1): 107, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28629324

RESUMO

BACKGROUND: While most water loss from leaf surfaces occurs via stomata, part of this loss also occurs through the leaf cuticle, even when the stomata are fully closed. This component, termed residual transpiration, dominates during the night and also becomes critical under stress conditions such as drought or salinity. Reducing residual transpiration might therefore be a potentially useful mechanism for improving plant performance when water availability is reduced (e.g. under saline or drought stress conditions). One way of reducing residual transpiration may be via increased accumulation of waxes on the surface of leaf. Residual transpiration and wax constituents may vary with leaf age and position as well as between genotypes. This study used barley genotypes contrasting in salinity stress tolerance to evaluate the contribution of residual transpiration to the overall salt tolerance, and also investigated what role cuticular waxes play in this process. Leaves of three different positions (old, intermediate and young) were used. RESULTS: Our results show that residual transpiration was higher in old leaves than the young flag leaves, correlated negatively with the osmolality, and was positively associated with the osmotic and leaf water potentials. Salt tolerant varieties transpired more water than the sensitive variety under normal growth conditions. Cuticular waxes on barley leaves were dominated by primary alcohols (84.7-86.9%) and also included aldehydes (8.90-10.1%), n-alkanes (1.31-1.77%), benzoate esters (0.44-0.52%), phytol related compounds (0.22-0.53%), fatty acid methyl esters (0.14-0.33%), ß-diketones (0.07-0.23%) and alkylresorcinols (1.65-3.58%). A significant negative correlation was found between residual transpiration and total wax content, and residual transpiration correlated significantly with the amount of primary alcohols. CONCLUSIONS: Both leaf osmolality and the amount of total cuticular wax are involved in controlling cuticular water loss from barley leaves under well irrigated conditions. A significant and negative relationship between the amount of primary alcohols and a residual transpiration implies that some cuticular wax constituents act as a water barrier on plant leaf surface and thus contribute to salinity stress tolerance. It is suggested that residual transpiration could be a fundamental mechanism by which plants optimize water use efficiency under stress conditions.


Assuntos
Hordeum/fisiologia , Transpiração Vegetal , Plantas Tolerantes a Sal/fisiologia , Hordeum/ultraestrutura , Concentração Osmolar , Epiderme Vegetal/fisiologia , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , Estresse Fisiológico , Água , Ceras
18.
PLoS One ; 11(12): e0167304, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936004

RESUMO

Fusarium crown rot (FCR), caused by various Fusarium species, is a chronic disease of cereals in many semi-arid regions worldwide. To clarify what effects drought-stress may have on FCR development, visual assessment, histological analysis and quantitative PCR were used to analyse the infection process of F. pseudograminearum in barley. This study observed for the first time that the severity of FCR symptom reflects the quantity of pathogens in infected tissues of barley under both drought-stressed and well-watered conditions. Drought-stress prolongs the initial infection phase but enhances the proliferation and spread of Fusarium pathogens after the initial infection phase. Under drought-stressed conditions, the invading hyphae were frequently observed to re-emerge from stomata and invade again the surrounding epidermis cells. Under the well-watered conditions, however, very few hyphae re-emerged from stomata and most infection was caused by hyphae intracellularly grown. It was also observed that drought-stress increased the length and density of trichomes dramatically especially in the susceptible genotypes, and that the length and density of trichomes were positively related to fungal biomass of F. pseudograminearum in plants.


Assuntos
Fusarium/fisiologia , Hordeum/microbiologia , Hordeum/fisiologia , Doenças das Plantas/microbiologia , Água/metabolismo , Biomassa , Secas , Genótipo , Hordeum/genética , Hordeum/ultraestrutura , Hifas/fisiologia , Doenças das Plantas/genética , Estresse Fisiológico
19.
Microsc Res Tech ; 79(9): 838-44, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27357263

RESUMO

Rice false smut, caused by the fungal pathogen Villosiclava virens, is one of the most important rice diseases in the world. Previous studies reported that the pathogen has less number of cell wall-degraded genes and attacks dominantly rice stamen filaments and extends intercellularly. To reveal why the fungus infects plant stamen filaments, inoculation test on barley was carried out with the similar protocol to rice. The experimental results showed that the fungus could penetrate quickly into barley stamen filaments and extends both intracellularly and intercellularly, usually resulting in severe damage of the stamen filament tissues. It also attacked young barley lodicules and grew intercellularly by chance. The light microscopic observations found that the epidermal and cortex cells in barley stamen filaments arranged loosely with very thick cell walls and large cell gaps. Cellulose microfibrils in barley stamen filament cell walls arranged very sparsely so that the cell walls looked like transparent. The cell walls were very soft and flexible, and often folded. However, V. virens extended dominantly in the noncellulose regions and seemed never to degrade microfibrils in barley and rice cell walls. This suggested that the unique structures of rice and barley stamen filaments should be fit for their function of elongation in anthesis, and also endow with the susceptibility to the fungus, V. virens.


Assuntos
Parede Celular/ultraestrutura , Flores , Hordeum , Hypocreales/ultraestrutura , Oryza , Flores/microbiologia , Flores/ultraestrutura , Hordeum/microbiologia , Hordeum/ultraestrutura , Microscopia , Microscopia Eletrônica de Transmissão , Oryza/microbiologia , Oryza/ultraestrutura , Doenças das Plantas/microbiologia
20.
J Plant Physiol ; 186-187: 15-24, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26318643

RESUMO

The aim of this study was to determine the impact of lead (Pb) stress as 0.6mM Pb(NO3)2 on the content of free, thylakoid- and chromatin-bound polyamines (PAs) and diamine oxidase (DAO) activity in detached greening barley leaves. Additionally, photosynthetic-related parameters, generation of hydrogen peroxide (H2O2) and malondialdehyde (MDA) content and ultrastructural changes under Pb-stress were studied. The level of putrescine (Put) was reduced progressively to 56% at 24h of Pb stress, and it was correlated with 38% increase of DAO activity. Spermidine (Spd) content was not affected by Pb-stress, while the free spermine (Spm) level significantly increased by about 83% at 6h, and in that time the lowest level of H2O2 was observed. The exogenous applied Spm to Pb-treated leaves caused a decrease in the content of H2O2. In greening leaves exposed to Pb an accumulation of chlorophylls a and b was inhibited by about 39 and 47%, respectively, and photosynthetic parameters of efficiency of electron transport and photochemical reaction in chloroplasts as ΦPSII, ETR and RFd were lowered by about 23-32%. The level of thylakoid-bound Put decreased by about 22%. Moreover, thylakoids isolated from chloroplasts of Pb-treated leaves were characterized with lower Put/Spm ratio as compared to control leaves. In the presence of Pb the significant decrease in the number of thylakoids per granum and cap-shape invaginations of cytoplasmic material were noticed. In Pb-stressed leaves the level of chromatin-bound Spm increased by about 48% and sometimes condensed chromatin in nuclei was observed. We conclude that in greening barley leaves exposed to Pb-stress changes in free, thylakoid- and chromatin-bound PAs play some role in the functioning of leaves or plants in heavy metal stress conditions.


Assuntos
Hordeum/metabolismo , Chumbo/toxicidade , Fotossíntese/efeitos dos fármacos , Poliaminas/metabolismo , Clorofila/metabolismo , Cromatina/metabolismo , Hordeum/efeitos dos fármacos , Hordeum/ultraestrutura , Peróxido de Hidrogênio/metabolismo , Chumbo/metabolismo , Malondialdeído/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Putrescina/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Estresse Fisiológico , Tilacoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...