Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 932: 173030, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719043

RESUMO

Antibiotic pollution and biological invasion pose significant risks to freshwater biodiversity and ecosystem health. However, few studies have compared the ecological adaptability and ciprofloxacin (CIPR) degradation potential between alien and native macrophytes. We examined growth, physiological response, and CIPR accumulation, translocation and metabolic abilities of two alien plants (Eichhornia crassipes and Myriophyllum aquaticum) and one native submerged species (Vallisneria natans) exposed to CIPR at 0, 1 and 10 mg/L. We found that E. crassipes and M. aquaticum's growth were unaffected by CIPR while V. natans was significantly hindered under the 10 mg/L treatment. CIPR significantly decreased the maximal quantum yield of PSII, actual quantum yield of PSII and relative electron transfer rate in E. crassipes and V. natans but didn't impact these photosynthetic characteristics in M. aquaticum. All the plants can accumulate, translocate and metabolize CIPR. M. aquaticum and E. crassipes in the 10 mg/L treatment group showed greater CIPR accumulation potential than V. natans indicated by higher CIPR contents in their roots. The oxidative cleavage of the piperazine ring acts as a key pathway for these aquatic plants to metabolize CIPR and the metabolites mainly distributed in plant roots. M. aquaticum and E. crassipes showed a higher production of CIPR metabolites compared to V. natans, with M. aquaticum exhibiting the strongest CIPR metabolic ability, as indicated by the most extensive structural breakdown of CIPR and the largest number of potential metabolic pathways. Taken together, alien species outperformed the native species in ecological adaptability, CIPR accumulation and metabolic capacity. These findings may shed light on the successful invasion mechanisms of alien aquatic species under antibiotic pressure and highlight the potential ecological impacts of alien species, particularly M. aquaticum. Additionally, the interaction of antibiotic contamination and invasion might further challenge the native submerged macrophytes and pose greater risks to freshwater ecosystems.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Espécies Introduzidas , Eichhornia/metabolismo , Eichhornia/fisiologia , Antibacterianos/toxicidade , Hydrocharitaceae/fisiologia , Hydrocharitaceae/metabolismo , Biodegradação Ambiental
2.
J Hazard Mater ; 470: 133740, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569335

RESUMO

The fate of fluoroquinolone antibiotics norfloxacin and ofloxacin were investigated in mesocosmic wetlands, along with their effects on nutrients removal, antibiotic resistance genes (ARGs) and epiphytic microbial communities on Hydrilla verticillate using bionic plants as control groups. Approximately 99% of norfloxacin and ofloxacin were removed from overlaying water, and H. verticillate inhibited fluoroquinolones accumulation in surface sediments compared to bionic plants. Partial least squares path modeling showed that antibiotics significantly inhibited the nutrient removal capacity (0.55) but had no direct effect on plant physiology. Ofloxacin impaired wetland performance more strongly than norfloxacin and more impacted the primary microbial phyla, whereas substrates played the most decisive role on microbial diversities. High antibiotics concentration shifted the most dominant phyla from Proteobacteria to Bacteroidetes and inhibited the Xenobiotics biodegradation function, contributing to the aggravation in wetland performance. Dechloromonas and Pseudomonas were regarded as the key microorganisms for antibiotics degradation. Co-occurrence network analysis excavated that microorganisms degrade antibiotics mainly through co-metabolism, and more complexity and facilitation/reciprocity between microbes attached to submerged plants compared to bionic plants. Furthermore, environmental factors influenced ARGs mainly by altering the community dynamics of differential bacteria. This study offers new insights into antibiotic removal and regulation of ARGs accumulation in wetlands with submerged macrophyte.


Assuntos
Antibacterianos , Biodegradação Ambiental , Microbiota , Norfloxacino , Poluentes Químicos da Água , Áreas Alagadas , Antibacterianos/farmacologia , Poluentes Químicos da Água/metabolismo , Norfloxacino/farmacologia , Microbiota/efeitos dos fármacos , Hydrocharitaceae/metabolismo , Hydrocharitaceae/genética , Resistência Microbiana a Medicamentos/genética , Ofloxacino , Bactérias/genética , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Genes Bacterianos , Fluoroquinolonas/metabolismo
3.
J Agric Food Chem ; 72(8): 4170-4183, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38358942

RESUMO

Antioxidant peptides were purified from Hydrilla verticillata (Linn. f.) Royle (HVR) protein hydrolysate by ultrafiltration, gel filtration chromatography, and semipreparative reversed-phase HPLC and identified by UPLC-ESI-MS/MS. Therein, TCLGPK and TCLGER were selected to be synthesized, and they displayed desirable radical-scavenging activity to ABTS (99.20 ± 0.56-99.20 ± 0.43%), DPPH (97.32 ± 0.59-97.56 ± 0.97%), hydroxyl radical (54.32 ± 1.27-70.42 ± 2.01%), and superoxide anion (42.93 ± 1.46-52.62 ± 1.11%) at a concentration of 0.96 µmol/mL. They possessed a cytoprotective effect against H2O2-induced oxidative stress in HepG2 cells in a dose-dependent manner. 1.6 µmol/mL of the two peptides could perfectly protect HepG2 cells from H2O2-induced injury. The TCLGPK exhibited higher antioxidant activity and cytoprotective effect than TCLGER. Western blot and molecular docking results indicated that the two peptides achieved antioxidant ability and cytoprotective effect by combining with Kelch-like ECH-associated protein 1 (Keap1) to activate the Keap1-nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response elements signaling pathway, leading to the activity and expression of the related antioxidases in the pathway significantly up-regulating and the intracellular reactive oxygen species level, lipid peroxidation, and cell apoptosis rate significantly down-regulating.


Assuntos
Antioxidantes , Hydrocharitaceae , Humanos , Antioxidantes/química , Peróxido de Hidrogênio/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Hydrocharitaceae/metabolismo , Células Hep G2 , Espectrometria de Massas em Tandem , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Peptídeos/química , Estresse Oxidativo
4.
Sci Total Environ ; 902: 166023, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541516

RESUMO

Microplastics in the aquatic environment can interact with aquatic plants, but the consequences of these interactions are poorly understood. Therefore, the aim of this study was to investigate the effects of microplastics commonly found in the environment, namely polyethylene (PE) fragments, polyacrylonitrile (PAN) fibres, tire wear (TW) particles under a relevant environmental concentration (5000 particles/L) on the growth, cell viability, physiology, and elemental content of the aquatic macrophyte Elodea canadensis. The effects of microplastics were compared to those of natural wood particles. The results showed that all types of microplastics adhered to plant tissues, but the effect on leaves (leaf damage area) was greatest at PE > PAN > TW, while the effect of natural particles was comparable to that of the control. None of the microplastics studied affected plant growth, lipid, carbohydrate, or protein content. Electron transport system activity was significantly higher in plants exposed to PAN fibres and PE fragments, but also when exposed to natural particles, while chlorophyll a content was negatively affected only by PE fragments and TW particles. Elemental analysis of plant tissue showed that in some cases PAN fibres and TW particles caused increased metal content. The results of this study indicated that aquatic macrophytes may respond differently to exposure to microplastics than to natural particles, likely through the combined effects of mechanical damage and chemical stress.


Assuntos
Hydrocharitaceae , Poluentes Químicos da Água , Microplásticos/metabolismo , Plásticos/toxicidade , Plásticos/metabolismo , Clorofila A/metabolismo , Hydrocharitaceae/metabolismo , Sobrevivência Celular , Polietileno/metabolismo , Poluentes Químicos da Água/análise
5.
Aquat Toxicol ; 261: 106606, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331201

RESUMO

Although ammonium (NH4+-N) is an important nutrient for plants, increases in soil nitrogen (N) input and atmospheric deposition have made ammonium toxicity a serious ecological problem. In this study, we explored the effects of NH4+-N stress on the ultrastructure, photosynthesis, and NH4+-N assimilation of Ottelia cordata (Wallich) Dandy, an endangered heteroblastic plant native to China. Results showed that 15 and 50 mg L-1 NH4+-N damaged leaf ultrastructure and decreased the values of maximal quantum yield (Fv/Fm), maximal fluorescence (Fm), and relative electron transport rate (rETR) in the submerged leaves of O. cordata. Furthermore, when NH4+-N was ≥ 2 mg L-1, phosphoenolpyruvate carboxylase activity (PEPC) and soluble sugar and starch contents decreased significantly. The content of dissolved oxygen in the culture water also decreased significantly. The activity of the NH4+-N assimilation enzyme glutamine synthetase (GS) significantly increased when NH4+-N was ≥ 10 mg L-1 and NADH-glutamate synthase (NADH-GOGAT) and Fd-glutamate synthase (Fd-GOGAT) increased when NH4+-N was at 50 mg L-1. However, the activity of nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase (NADH-GDH) and nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase (NADPH-GDH) did not change, indicating that GS/GOGAT cycle may play an important role in NH4+-N assimilation in the submerged leaves of O. cordata. These results show that short-term exposure to a high concentration of NH4+-N is toxic to O. cordata.


Assuntos
Compostos de Amônio , Hydrocharitaceae , Poluentes Químicos da Água , Compostos de Amônio/toxicidade , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/farmacologia , Hydrocharitaceae/metabolismo , Poluentes Químicos da Água/toxicidade , Fotossíntese , Glutamato-Amônia Ligase/farmacologia , Folhas de Planta , Nitrogênio/farmacologia
6.
J Hazard Mater ; 458: 131910, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37390681

RESUMO

Hazardous chemicals, such as perfluoroalkyl substances (PFASs) and antibiotics, coexist in aquatic environments and pose a severe threat to aquatic organisms. However, research into the toxicity of these pollutants on submerged macrophytes and their periphyton is still limited. To assess their combined toxicity, Vallisneria natans (V. natans) was exposed to perfluorooctanoic acid (PFOA) and sulfadiazine (SD) at environmental concentrations. Photosynthetic parameters such as chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids were lower in the SD exposure group, indicating that SD had a significant effect on the photosynthesis of aquatic plants. Single and combined exposures effectively induced antioxidant responses, with increases in superoxide dismutase, peroxidase activities, and ribulose-1,5-bisphosphate carboxylase concentrations, as well as malondialdehyde content. Accordingly, antagonistic toxicity was assessed between PFOA and SD. Furthermore, metabolomics revealed that V. natans improved stress tolerance through changes in enoic acid, palmitic acid, and palmitoleoyloxymyristic acid related to the fatty acid metabolism pathway responding to the coexisting pollutants. Additionally, PFOA and SD in combination induced more effects on the microbial community of biofilm. The alternation of α- and ß-D-glucopyranose polysaccharides and the increased content of autoinducer peptides and N-acylated homoserine lactones indicated that PFOA and SD changed the structure and function of biofilm. These investigations provide a broader perspective and comprehensive analysis of the responses of aquatic plants and periphyton biofilms to PFAS and antibiotics in the environment.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Hydrocharitaceae , Perifíton , Sulfadiazina/metabolismo , Clorofila A , Perifíton/fisiologia , Fluorocarbonos/metabolismo , Antioxidantes/metabolismo , Biofilmes , Hydrocharitaceae/metabolismo , Antibacterianos/farmacologia , Poluentes Ambientais/metabolismo
7.
J Environ Manage ; 344: 118496, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37384996

RESUMO

The effects of raw attapulgite clay and thermally modified attapulgite clay on the growth status of submerged plant Vallisneria Spiralis (V. spiralis) and the microenvironment of sediment were first explored. The results demonstrated that the attapulgite could effectively promote the development of V. spiralis and improve plant stress resistance by enhancing the activity of antioxidant enzymes. The 10% addition of attapulgite clay increased the biomass of V. spiralis by 27%∼174%, and the promoted rate of raw attapulgite clay was 2∼5 times of modified attapulgite clay. The attapulgite increased redox potential in sediment (P < 0.05) and provided proper niches for organism propagation, further promoting the degradation of organic matter and nutrient metabolism in sediment. The value of Shannon, Chao, and Ace was 9.98, 4865.15, 5029.08 in the 10% modified attapulgite group, and 10.12, 4856.85, 4947.78 in the 20% raw attapulgite group, respectively, indicating that the attapulgite could increase the microbial diversity and abundance in sediment. Additionally, the nutrient elements, such as Ca, Na, S, Mg, K, Zn, and Mo, that dissolved from attapulgite may also promote the V. spiralis growth. This study provided an environment-friendly approach to facilitating submerged macrophyte restoration in the eutrophic lake ecosystem.


Assuntos
Ecossistema , Hydrocharitaceae , Argila , Biomassa , Compostos de Magnésio , Hydrocharitaceae/metabolismo , Lagos
8.
Ecotoxicol Environ Saf ; 256: 114905, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37060802

RESUMO

The aquatic plant Elodea canadensis is considered a good candidate for ecotoxicological investigations. Cadmium (Cd) is a widespread contaminant in aquatic systems. In this study, to better elucidate the underlying tolerance mechanism and molecular impact of environmentally relevant Cd concentration in aquatic plants, subcellular distribution, chemical forms, and gas chromatography-mass spectrometry-based non-targeted metabolomics profiles were comprehensively analyzed in E. canadensis subjected to 0 and 10 µM Cd treatment for 5 d. Subcellular fractionation analysis of Cd-containing leaves showed that 67% of Cd was compartmentalized in cell wall followed by the soluble fraction (24 %) and organelles (9 %). The majority of Cd (90 %) was found in the extraction using 1 M NaCl. Metabolomic analysis using unsupervised principal component analyses and a supervised partial least squares discriminant analysis revealed clear differences in metabolic profiles between the two groups, demonstrating the metabolic effects of Cd. The 155 identified compounds altered by Cd were mainly from primary metabolism, including sugars, amino acids, organic acids, and their derivatives. Secondary metabolites such as polyphenols and phenolamides were also detected. The massive up-regulation of metabolites, including trehalose, proline, sarcosine, nicotianamine, putrescine, α-ketoglutaric acid, citric acid, and phytol might represent a detoxification mechanism. These findings highlighted the mechanistic strategies that E. canadensis employs to defend against Cd toxicity.


Assuntos
Cádmio , Hydrocharitaceae , Cádmio/toxicidade , Hydrocharitaceae/metabolismo , Metabolômica , Metaboloma , Aminoácidos/metabolismo
9.
Ecotoxicol Environ Saf ; 250: 114484, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608570

RESUMO

Aluminum (Al) is a concentration-dependent toxic metal found in the crust of earth that has no recognized biological use. Nonetheless, the mechanism of Al toxicity to submerged plants remains obscure, especially from a cell/subcellular structure and functional group perspective. Therefore, multiple dosages of Al3+ (0, 0.3, 0.6, 1.2, and 1.5 mg/L) were applied hydroponically to the submerged plant Vallisneria natans in order to determine the accumulation potential of Al at the subcellular level and their ultrastructural toxicity. More severe structural and ultrastructural damage was determined when V. natans exposed to ≥ 0.6 mg/L Al3+. In 1.2 and 1.5 mg/L Al3+ treatment groups, the total chlorophyll content of leaves significantly reduced 3.342, 3.838 mg/g FW, some leaves even exhibited chlorosis and fragility. Under 0.3 mg/L Al3+ exposure, the middle-age and young leaves were potent phytoexcluders, whereas at 1.5 mg/L Al3+, a large amount of Al could be transferred from the roots to other parts, among which the aged leaves were the most receptive tissues (7.306 mg/g). Scanning/Transmission electron microscopy analysis displayed the Al-mediated disruption of vascular bundle structure in leaf cells, intercellular space and several vegetative tissues, and demonstrated that Al in vacuole and chloroplast subcellular segregation into electron dense deposition. Al and P accumulation in the roots, stolons and leaves varied significantly among treatments and different tissues (P < 0.05). Fourier transform infrared spectroscopy of plant biomass also indicated possible metabolites (amine, unsaturated hydrocarbon, etc.) of V. natans that may bind Al3+. Conclusively, results revealed that Al3+ disrupts the cellular structure of leaves and roots or binds to functional groups of biological tissues, thereby affecting plant nutrient uptake and photosynthesis. Findings might have scientific and practical significance for the restoration of submerged vegetation in Al-contaminated lakes.


Assuntos
Hydrocharitaceae , Toxinas Biológicas , Alumínio/metabolismo , Clorofila/metabolismo , Fotossíntese , Plantas/metabolismo , Hydrocharitaceae/metabolismo , Folhas de Planta/metabolismo
10.
J Environ Manage ; 332: 117340, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36716543

RESUMO

To identify key species associated with pyrene degradation in Vallisneria natans (V.natans) rhizosphere sediment, this work investigated the temporal and spatial changes in the rhizosphere microbial community and the relationship between the changes and the pyrene degradation process through a three-compartment rhizome-box experiment under pyrene stress. The degradation kinetics of pyrene showed that the order of degradation rate was rhizosphere > near-rhizosphere > non-rhizosphere. The difference in the pyrene degradation behavior in the sediments corresponded to the change in the proportions of dominant phyla (Firmicutes and Proteobacteria) and genera (g_Massilia f_Comamonadaceae, g_Sphingomonas). The symbiosis networks and hierarchical clustering analysis indicated that the more important phyla related to the pyrene degradation in the rhizosphere was Proteobacteria, while g_Sphigomonas, f_Comamonadaceae, and especially g_Massilia were the core genera. Among them, f_Comamonadaceae was the genus most affected by rhizosphere effects. These findings strengthened our understanding of the PAHs-degradation microorganisms in V.natans rhizosphere and are of great significance for enhancing phytoremediation on PAHs-contaminated sediment.


Assuntos
Hydrocharitaceae , Microbiota , Hidrocarbonetos Policíclicos Aromáticos , Rizoma/metabolismo , Pirenos/metabolismo , Hydrocharitaceae/metabolismo , Biodegradação Ambiental
11.
Water Res ; 229: 119403, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36446174

RESUMO

Extreme precipitation events caused by climate change leads to large variation of nitrogen input to aquatic ecosystems. Our previous study demonstrated the significant effect of different ammonium pulse patterns (differing in magnitude and frequency) on submersed macrophyte growth based on six plant morphological traits. However, how connectivity among plant traits responds to nitrogen pulse changes, which in turn affects plant performance, has not yet been fully elucidated. The response of three common submersed macrophytes (Myriophyllum spicatum, Vallisneria natans and Potamogeton maackianus) to three ammonium pulse patterns was tested using plant trait network (PTN) analysis based on 18 measured physiological and morphological traits. We found that ammonium pulses enhanced trait connectivity in PTN, which may enable plants to assimilate ammonium and/or mitigate ammonium toxicity. Large input pulses with low frequency had stronger effects on PTNs compared to low input pulses with high frequency. Due to the cumulative and time-lagged effect of the plant response to the ammonium pulse, there was a profound and prolonged effect on plant performance after the release of the pulse. The highly connected traits in PTN were those related to biomass allocation (e.g., plant biomass, stem ratio, leaf ratio and ramet number) rather than physiological traits, while phenotype-related traits (e.g., plant height, root length and AB ratio) and energy storage-related traits (e.g., stem starch) were least connected. V. natans showed clear functional divergence among traits, making it more flexible to cope with unfavorable habitats (i.e., high input pulses with low frequencies). M. spicatum with high RGR revealed strong correlations among traits and thus supported nitrogen accumulation from favourable environments (i.e., low input pulses with high frequencies). Our study highlights the responses of PTN for submerged macrophytes to ammonium pulses depends on their intrinsic metabolic rates, the magnitude, frequency and duration of the pulses, and our results contribute to the understanding of the impact of resource pulses on the population dynamics of submersed macrophytes within the context of global climate change.


Assuntos
Compostos de Amônio , Hydrocharitaceae , Ecossistema , Compostos de Amônio/metabolismo , Biomassa , Hydrocharitaceae/metabolismo , Nitrogênio/metabolismo
12.
Environ Res ; 216(Pt 2): 114381, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243051

RESUMO

Multi-species submerged plants grow with succession patterns in the same habit and play an important role in the aquatic ecosystems. The decomposition of submerged plants in aquatic environments was a disturbance that affected the water quality and microbial community structures. However, the responses of the microbial community function in surface water to the disturbance remain poorly understood. In this study, the effects of submerged macrophyte Potamogeton crispus L decomposition on the water quality and microbial carbon metabolism functions (MCMF) in the overlying water were investigated in the presence/absence of Vallisneria natans. The result showed that the decomposition rapidly released a large amount of organic matter and nutrients into the overlying water. The presence of Vallisneria natans promoted the removal of dissolved organic carbon and fluorescent component C3, resulting in lower values of the percentage content of C3 (C3%). Under various decomposition processes, the MCMF changed over time and significantly negatively correlated with C3%. The functional diversity of MCMF significantly correlated with the fluorescence organic matters, such as the richness and Simpson index correlated with the amount of C1, C1+C2+C3, and C3%. But UV-visible absorption indexes and nutrients in the overlying water had no relationship with the MCMF, except for the total nitrogen correlated with the richness. These results suggested that under various decomposition conditions, the fluorescent dissolved organic matter could be used as an indicator for quick prediction of MCMF in surface water.


Assuntos
Hydrocharitaceae , Potamogetonaceae , Potamogetonaceae/metabolismo , Matéria Orgânica Dissolvida , Ecossistema , Carbono/metabolismo , Hydrocharitaceae/metabolismo , Plantas
13.
Sci Total Environ ; 864: 160974, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36563757

RESUMO

Humic substances are widely present in aquatic environments. Due to the high affinity of humic substances for metals, the interactions have been particularly studied. To assess the effect of humic acid (HA) on submerged macrophytes and biofilms exposed to heavy metal stress, Vallisneria natans was exposed to solutions containing different concentrations of HA (0.5-2.0 mg·L-1), Pb2+ (1 mg·L-1) and Cd2+ (1 mg·L-1). Results suggested that HA positively affected the plant growth and alleviated toxicity by complexing with metals. HA increased the accumulation of metals in plant tissues and effectively induced antioxidant responses and protein synthesis. It was also noted that the exposure of HA and metals promoted the abundance and altered the structure of microbial communities in biofilms. Moreover, the positive effects of HA were considered to be related to the expression of related genes resulting from altered DNA methylation levels, which were mainly reflected in the altered type of demethylation. These results demonstrate that HA has a protective effect against heavy metal stress in Vallisneria natans by inducing effective defense mechanisms, altering biofilms and DNA methylation patterns in aquatic ecosystems.


Assuntos
Hydrocharitaceae , Metais Pesados , Microbiota , Substâncias Húmicas/análise , Cádmio/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Metais Pesados/metabolismo , Hydrocharitaceae/metabolismo
14.
Environ Technol ; 44(18): 2770-2780, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35184699

RESUMO

The contamination of aquatic environments with heavy metals is an important issue, and in turn, it is crucial to study remediation techniques that can be applied in situ. In this work, the use of a containment system with macrophytes Limnobium laevigatum is explored in the laboratory to evaluate the remotion of Cr in contaminated sediments. The roots of the plants were placed in contact with the bottom sediment through a containment system. The concentration of Cr in macrophyte and sediment samples exposed to different exposure times (1, 4 and 7 days) was determined by laser-induced breakdown spectroscopy technique. The initial concentration of Cr in the sediment was 112 ± 5 mg/kg and decreased by 65% to the control (p < 0.05) after 24 h of exposure. The removal continued throughout the study time until reaching values of 23 ± 1 mg/kg. In macrophytes, the Cr concentration increased from 20 ± 5 mg/kg to 2066 ± 216 mg/kg after seven days of exposure. The correlation coefficient between Cr concentrations in both matrices was -0.96. Finally, the bioaccumulation factor of Cr in L. laevigatum was 95.22 ± 8.51. Therefore, the system studied could be a potential tool to remedy the bottom sediments of streams and lakes contaminated with heavy metals in situ.


Assuntos
Hydrocharitaceae , Metais Pesados , Poluentes Químicos da Água , Hydrocharitaceae/metabolismo , Biodegradação Ambiental , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Metais Pesados/análise
15.
J Ethnopharmacol ; 300: 115729, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36162544

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The North-eastern parts of India have immense therapeutic floras, Ottelia alismoides is an aquatic plant that has been in use for a long time in traditional medicine for treating diseases like cancer, tuberculosis, diabetes, febrifuge, hemorrhoids, and rubefacient. In lung and skin carcinoma cells with a high rate of proliferation and metastasis including drug resistance and non-specific target activity, generates important challenges towards their treatment strategy. Thus, finding novel therapeutic targets to treat lung and skin cancer progression is essential to enhance the patients' survival with treatment. AIM OF THE STUDY: The purpose of this study was to evaluate the apoptotic potential of acetone extract of O. alismoides (L.) Pers. (OA-AC) and to identify the compounds responsible for this effect, HRLC-MS-QTOF analysis of the extract has been undertaken along with in-silico molecular docking analysis of the identified compounds. MATERIALS AND METHODS: A549 and A431 cells were treated with acetone extract of O. alismoides (OA-AC) at 24 h and 48 h exposure and cell cycle phase distribution was evaluated and also apoptosis induction activity was evaluated by OA-EtBr staining and Mitochondrial outer membrane potential assay. Western blotting was performed for the evaluation of apoptotic protein expression. At last, the HR-LCMS of OA-AC was analyzed to identify the compounds responsible for the apoptotic activity of the extract. RESULTS: The cell cycle phase distribution analysis in A549 and A431 cells at 24hrs exposure with 10 µg/mL and 25 µg/mL of OA-AC showed a potent arrest or blockage at the G2/M phase of the cell cycle with reduced expression of cyclin B and p-Cdc2. At 48 h exposure, apoptosis was observed in these cancer cells with elevated expression of Bax, p21 and cleaved caspase 3 and reduced expression of the Bcl2. CONCLUSION: AO-EtBr staining of these cancer cells reveals that the death induced by OA-AC was apoptotic in nature with depolarization of mitochondrial membrane due to loss or damage of the mitochondrial membrane. The HRLC-MS-QTOF analysis of OA-AC depicted 14 major isolable compounds and molecular docking analysis displayed 4 compounds that might act as an inhibitor of cyclin B for G2/M phase arrest that leads to apoptotic induction in the cells.


Assuntos
Carcinoma , Hydrocharitaceae , Acetona , Apoptose , Carcinoma/tratamento farmacológico , Caspase 3 , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Humanos , Hydrocharitaceae/metabolismo , Irritantes , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2
16.
J Hazard Mater ; 442: 130052, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36182878

RESUMO

The off-flavor compound 2-methylisoborneol (2-MIB) is generally associated with the proliferation and metabolism of filamentous cyanobacteria in shallow freshwater ecosystems. Here field monitoring in East Taihu Lake from July to October 2021, along with cultural experiments, was conducted to determine the impact of submerged macrophytes on the growth and 2-MIB production of filamentous cyanobacteria. Pseudanabaena sp. was identified as the 2-MIB producer with the highest detection rate (100%) and correlation coefficient (R=0.68, p < 0.001). The 2-MIB concentration and algal growth in the macrophyte-dominated zones were markedly decreased compared with those in the phytoplankton-dominated zone. Five submerged macrophytes classified into flat-leaf type (Vallisneria natans and Potamogeton crispus) and thin-leaf type (Hydrilla verticillata, Ceratophyllum demersum, and Myriophyllum spicatum) exhibited strong inhibition effects against Pseudanabaena sp.: Overall inhibition efficiencies (IEs) of 92.7% ± 6.8% and 92.7% ± 8.4% for cell growth and 2-MIB production were achieved, respectively. Moreover, the thin-leaf macrophytes exhibited significant higher IEs for cell growth (94.0% vs. 84.7%) and 2-MIB production (99.4% vs. 82.6%) than the flat-leaf macrophytes and can be selected as pioneer species in controlling odor problems. Nutrient uptake, increasing water clarity, shading effects, and allelopathic effects of the submerged macrophytes were found to be the dominant inhibition mechanisms.


Assuntos
Cianobactérias , Hydrocharitaceae , Ecossistema , Hydrocharitaceae/metabolismo , Lagos , Água
17.
Artigo em Inglês | MEDLINE | ID: mdl-36554877

RESUMO

Phytoremediation is an environmentally friendly and economical method for removing organic contaminants from water. The purpose of the present study was to use Limnobium laevigatum for the phytoremediation of water from sulfamethoxazole (SMX) and trimethoprim (TRI) residues. The experiment was conducted for 14 days, in which the loss of the pharmaceuticals in water and their concentration in plant tissues was monitored. Determination of SMX and TRI was conducted using liquid chromatography coupled with tandem mass spectrometry. The results revealed that various factors affected the removal of the contaminants from water, and their bioaccumulation coefficients were obtained. Additionally, the transformation products of SMX and TRI were identified. The observed decrease in SMX and TRI content after 14 days was 96.0% and 75.4% in water, respectively. SMX removal mainly involved photolysis and hydrolysis processes, whereas TRI was mostly absorbed by the plant. Bioaccumulation coefficients of the freeze-dried plant were in the range of 0.043-0.147 for SMX and 2.369-2.588 for TRI. Nine and six transformation products related to SMX and TRI, respectively, were identified in water and plant tissues. The detected transformation products stemmed from metabolic transformations and photolysis of the parent compounds.


Assuntos
Hydrocharitaceae , Poluentes Químicos da Água , Sulfametoxazol/química , Trimetoprima/análise , Hydrocharitaceae/metabolismo , Água/química , Poluentes Químicos da Água/análise
18.
Water Sci Technol ; 86(6): 1358-1372, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36178811

RESUMO

Submerged plants and biofilms have significant advantages in hydro-ecology rehabilitation, but their tolerance and physiological responses to heavy metal stress have thus far been under-investigated. This study investigated the influence of lead on physiological and biochemical responses, as well as variation in bacterial communities and functional characteristics of submerged plant biofilms. The results showed that chlorophyll a content of two submerged plants decreased with increased lead concentration. The concentration of malondialdehyde of both submerged plants was higher under high lead concentrations than under low lead concentrations, and the concentrations of malondialdehyde and hydrogen peroxide in Vallisneria natans were more stable. The antioxidant enzyme systems of the two plants played protective roles against lead stress. High lead concentration can inhibit the bacterial community and lead to decreased diversity. The most abundant bacterial phyla were Proteobacteria (40.9%), Cyanobacteria (21.5%), and Bacteroidetes (14.3%). Proteobacteria abundance decreased with increased lead concentration, while Cyanobacteria abundance increased. The lead concentration in plants (19.7%, P < 0.01) and the lead concentration in aquatic environment (17.7%, P < 0.01) were significantly correlated with variation in bacterial communities. High lead concentration inhibits the activity of these bacteria related to the conversion of nitrogen and sulfur.


Assuntos
Cianobactérias , Hydrocharitaceae , Metais Pesados , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Biofilmes , Clorofila A/metabolismo , Clorofila A/farmacologia , Hydrocharitaceae/metabolismo , Peróxido de Hidrogênio , Chumbo/metabolismo , Chumbo/toxicidade , Malondialdeído/metabolismo , Malondialdeído/farmacologia , Metais Pesados/metabolismo , Nitrogênio/metabolismo , Proteobactérias , Enxofre/metabolismo
19.
Sci Rep ; 12(1): 16444, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180578

RESUMO

Ecologically, Halophila beccarii Asch. is considered as a colonizing or a pioneer seagrass species and a "tiny but mighty" seagrass species, since it may recover quickly from disturbance generally. The use of transcriptome technology can provide a better understanding of the physiological processes of seagrasses. To date, little is known about the genome and transcriptome information of H. beccarii. In this study, we used single molecule real-time (SMRT) sequencing to obtain full-length transcriptome data and characterize the transcriptome structure. A total of 11,773 of the 15,348 transcripts were successfully annotated in seven databases. In addition, 1573 long non-coding RNAs, 8402 simple sequence repeats and 2567 transcription factors were predicted in all the transcripts. A GO analysis showed that 5843 transcripts were divided into three categories, including biological process (BP), cellular component (CC) and molecular function (MF). In these three categories, metabolic process (1603 transcripts), protein-containing complex (515 transcripts) and binding (3233 transcripts) were the primary terms in BP, CC, and MF, respectively. The major types of transcription factors were involved in MYB-related and NF-YB families. To the best of our knowledge, this is the first report of the transcriptome of H. beccarii using SMRT sequencing technology.


Assuntos
Hydrocharitaceae , Transcriptoma , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hydrocharitaceae/metabolismo , Repetições de Microssatélites , Anotação de Sequência Molecular , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Sci Total Environ ; 851(Pt 1): 158189, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35995166

RESUMO

Renewed interest in phosphite, an analog of phosphate, has increased due to its widespread distribution and increasing abundance in many waterbodies. However, up until recently very little is known about their ecological effects on aquatic organisms. Herein we studied the effects of phosphite via root and foliar exposure on the growth responses of the dominant pioneer macrophyte V. natans. Overall, both exposures of phosphite to V. natans resulted in significant reductions in the leaf length, root length, relative growth rate (RGR) and photosynthetic pigments, suggesting phosphite had an inhibitory effect on the plant growth. Our results further confirmed phosphite could induce the oxidative stresses in the V. natans cells, as indicated by the significantly increased intracellular enzyme activities i.e. superoxide dismutase activity (SOD) and malondialdehyde (MDA). Microscopic evidence also showed phosphite penetrated the cell membrane and destroyed membrane integrity under high phosphite stress. Besides, V. natans leaves exhibited intuitive deterioration symptoms, which seemed to be more sensitive to phosphite toxicity than roots. It is concluded that the increased abundance of phosphite in waterbodies cannot be utilized as a bioavailable P source but impose adverse physiological and metabolic limitations to plant growth, which should be receive more attention in the ecological risk assessment. Our result is necessary to build a comprehensive understanding of phosphite biogeochemical behaviors in aquatic ecosystems.


Assuntos
Hydrocharitaceae , Fosfitos , Ecossistema , Hydrocharitaceae/metabolismo , Malondialdeído/metabolismo , Fosfatos/metabolismo , Fosfitos/metabolismo , Fosfitos/toxicidade , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...