Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 479
Filtrar
1.
Chemosphere ; 359: 142354, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759812

RESUMO

Degradation of ibuprofen, one of the most consumed drugs globally, by a mixed bacterial consortium was investigated. A contaminated hospital soil was used to enrich a bacterial consortium possessing the ability to degrade 4 mg/L ibuprofen in 6 days, fed on 6 mM acetate as a supplementary carbon source. Maximum ibuprofen degradation achieved was 99.51%, and for optimum ibuprofen degradation modelled statistically, the initial ibuprofen concentration, and temperature were determined to be 0.515 mg/L and 35 °C, respectively. The bacterial community analyses demonstrated an enrichment of Pseudomonas, Achromobacter, Bacillus, and Enterococcus in the presence of ibuprofen, suggesting their probable association with the biodegradation process. The biodegradation pathway developed using open-source metabolite predictors, GLORYx and BioTransformer suggested multiple degradation routes. Hydroxylation and oxidation were found to be the major mechanisms in ibuprofen degradation. Mono-hydroxylated metabolites were identified as well as predicted by the bioinformatics-based packages. Oxidation, dehydrogenation, super-hydroxylation, and hydrolysis were some other identified mechanisms.


Assuntos
Biodegradação Ambiental , Ibuprofeno , Consórcios Microbianos , Ibuprofeno/metabolismo , Redes e Vias Metabólicas , Bactérias/metabolismo , Microbiologia do Solo , Oxirredução , Hidroxilação , Pseudomonas/metabolismo , Achromobacter/metabolismo , Poluentes do Solo/metabolismo , Bacillus/metabolismo
2.
Biochem Biophys Res Commun ; 722: 150168, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38797156

RESUMO

Human serum albumin (HSA) is the most abundant plasma protein of the circulatory system. It is a multidomain, multifunctional protein that, combining diverse affinities and wide specificity, binds, stores, and transports a variety of biological compounds, pharmacores, and fatty acids. HSA is finding increasing uses in drug-delivery due to its ability to carry functionalized ligands and prodrugs. All this raises the question of competition for binding sites occupancy in case of multiple ligands, which in turn influences the protein structure/dynamic/function relationship and also has an impact on the biomedical applications. In this work, the effects of interactive binding of palmitic acid (PA), warfarin (War) and ibuprofen (Ibu) on the thermal stability of HSA were studied using DSC, ATR-FTIR, and EPR. PA is a high-affinity physiological ligand, while the two drugs are widely used for their anticoagulant (War) and anti-inflammatory (Ibu) efficacy, and are exogenous compounds that accommodate in the deputed drug site DS1 and DS2, respectively overlapping with some of the fatty acid binding sites. The results indicate that HSA acquires the highest thermal stability when it is fully saturated with PA. The binding of this physiological ligand does not hamper the binding of War or Ibu to the native state of the protein. In addition, the three ligands bind simultaneously, suggesting a synergic cooperative influence due to allosteric effects. The increased thermal stability subsequent to binary and multiple ligands binding moderates protein aggregation propensity and restricts protein dynamics. The biophysics findings provide interesting features about protein stability, aggregation, and dynamics in interaction with multiple ligands and are relevant in drug-delivery.


Assuntos
Ibuprofeno , Ligação Proteica , Albumina Sérica Humana , Varfarina , Humanos , Albumina Sérica Humana/metabolismo , Albumina Sérica Humana/química , Ibuprofeno/química , Ibuprofeno/metabolismo , Varfarina/química , Varfarina/metabolismo , Varfarina/farmacologia , Sítios de Ligação , Ácido Palmítico/química , Ácido Palmítico/metabolismo , Temperatura , Estabilidade Proteica/efeitos dos fármacos , Ligantes , Ligação Competitiva
3.
Arch Microbiol ; 206(5): 232, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658486

RESUMO

Ibuprofen (IBU) and naproxen (NPX), as widely prescribed non-steroidal anti-inflammatory drugs (NSAIDs), are largely produced and consumed globally, leading to frequent and ubiquitous detection in various aqueous environments. Previously, the microbial transformation of them has been given a little attention, especially with the isolated fungus. A yeast-like Apiotrichum sp. IB-1 has been isolated and identified, which could simultaneously transform IBU (5 mg/L) and NPX (2.5 mg/L) with maximum efficiencies of 95.77% and 88.31%, respectively. For mono-substrate, the transformation efficiency of IB-1 was comparable to that of co-removal conditions, higher than most of isolates so far. IBU was oxidized mainly through hydroxylation (m/z of 221, 253) and NPX was detoxified mainly via demethylation (m/z of 215) as shown by UPLC-MS/MS results. Based on transcriptome analysis, the addition of IBU stimulated the basic metabolism like TCA cycle. The transporters and respiration related genes were also up-regulated accompanied with higher expression of several dehydrogenase, carboxylesterase, dioxygenase and oxidoreductase encoding genes, which may be involved in the transformation of IBU. The main functional genes responsible for IBU and NPX transformation for IB-1 should be similar in view of previous studies, which needs further confirmation. This fungus would be useful for potential bioremediation of NSAIDs pollution and accelerate the discovery of functional oxidative genes and enzymes different from those of bacteria.


Assuntos
Anti-Inflamatórios não Esteroides , Biotransformação , Ibuprofeno , Naproxeno , Ibuprofeno/metabolismo , Naproxeno/metabolismo , Anti-Inflamatórios não Esteroides/metabolismo , Biodegradação Ambiental
4.
Curr Protein Pept Sci ; 25(6): 492-506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351694

RESUMO

BACKGROUND: Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are one of the most commonly used groups of medicinal compounds in the world. The wide access to NSAIDs and the various ways of storing them due to their easy accessibility often entail the problem with the stability and durability resulting from the exposure of drugs to external factors. The aim of the research was to evaluate in vitro the mechanism of competition between ibuprofen (IBU) and its degradation products, i.e., 4'-isobutylacetophenone (IBAP) and (2RS)-2-(4- formylphenyl)propionic acid (FPPA) during transport in a complex with fatted (HSA) and defatted (dHSA) human serum albumin. METHODS: The research was carried out using spectroscopic techniques, such as spectrophotometry, infrared spectroscopy and nuclear magnetic resonance spectroscopy. RESULTS: The comprehensive application of spectroscopic techniques allowed, among others, for the determination of the binding constant, the number of classes of binding sites and the cooperativeness constant of the analyzed systems IBU-(d)HSA, IBU-(d)HSA-FPPA, IBU-(d)HSA-IBAP; the determination of the effect of ibuprofen and its degradation products on the secondary structure of albumin; identification and assessment of interactions between ligand and albumin; assessment of the impact of the presence of fatty acids in the structure of albumin and the measurement temperature on the binding of IBU, IBAP and FPPA to (d)HSA. CONCLUSION: The conducted research allowed us to conclude that the presence of ibuprofen degradation products and the increase in their concentration significantly affect the formation of the IBU-albumin complex and thus, the value of the association constant of the drug, changing the concentration of its free fraction in the blood plasma. It was also found that the presence of an ibuprofen degradation product in a complex with albumin affects its secondary structure.


Assuntos
Anti-Inflamatórios não Esteroides , Ibuprofeno , Ligação Proteica , Albumina Sérica Humana , Ibuprofeno/química , Ibuprofeno/metabolismo , Ibuprofeno/farmacologia , Humanos , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/metabolismo , Sítios de Ligação , Acetofenonas/química , Acetofenonas/metabolismo
5.
Eur J Pharm Sci ; 195: 106726, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354986

RESUMO

EMA and FDA are upgrading guidelines on assessing the quality and the equivalence of topically applied drug products for developing copies of originator products and supporting post-marketing variations. For topical products having remarkably similar composition, both EMA and FDA accept the equivalence on the bases of the comparison of rheological properties and in vitro drug release constant (k) and skin permeation flux (J) values, instead of clinical studies. This work aims to evaluate the feasibility to expand this approach to variations of the composition of complex semi-solid preparations. Ibuprofen (IB) creams at two different strengths (i.e., 1 % and 10 %) were used as a model formulation. Two formulative changes were performed: (a) the addition of the humectant to simulate a minor post-marketing variation; (b) the substitution of the emulsifying system to simulate a major one. These variations impacted only in 1 % IB formulations where both the equivalences of rheological data and J-values failed. At the highest concentration, the presence of IB crystals broke down the differences in rheological patterns and lead the IB thermodynamic activity at the maximum figuring out an overlapping of the J-values. Such data suggest the combination of these studies, which are thought mainly for the development of copies, could be also applied to the management of post-marketing variations that involve product composition.


Assuntos
Absorção Cutânea , Pele , Pele/metabolismo , Ibuprofeno/metabolismo , Termodinâmica , Reologia
6.
J Hazard Mater ; 464: 132970, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976863

RESUMO

Ibuprofen (IBP) is a widely used drug of environmental concern as emerging contaminant due to its low elimination rates by wastewater treatment plants (WWTPs), leading to the contamination of the environment, where IBP is introduced mainly from wastewater discharge and sewage sludge used as fertilizer. This study describes the application of a consortium from sewage sludge and acclimated with ibuprofen (consortium C7) to accelerate its biodegradation both in solution and sewage sludge. 500 mg L-1 IBP was degraded in solution in 28 h, and 66% mineralized in 3 days. IBP adsorbed in sewage sludge (10 mg kg-1) was removed after bioaugmentation with C7 up to 90% in 16 days, with a 5-fold increase in degradation rate. This is the first time that bioaugmentation with bacterial consortia or isolated bacterial strains have been used for IBP degradation in sewage sludge. The bacterial community of consortium C7 was significantly enriched in Sphingomonas wittichii, Bordetella petrii, Pseudomonas stutzeri and Bosea genosp. after IBP degradation, with a special increase in abundance of S. wittichii, probably the main potential bacterial specie responsible for IBP mineralization. Thirteen bacterial strains were isolated from C7 consortium. All of them degraded IBP in presence of glucose, especially Labrys neptuniae. Eight of these bacterial strains (B. tritici, L. neptuniae, S. zoogloeoides, B. petrii, A. denitrificans, S. acidaminiphila, P. nitroreducens, C. flaccumfaciens) had not been previously described as IBP-degraders. The bacterial community that makes up the indigenous consortium C7 appears to have a highly efficient biotic degradation potential to facilitate bioremediation of ibuprofen in contaminated effluents as well as in sewage sludge generated in WWTPs.


Assuntos
Ibuprofeno , Esgotos , Esgotos/microbiologia , Biodegradação Ambiental , Ibuprofeno/metabolismo , Consórcios Microbianos , Águas Residuárias , Bactérias/metabolismo
7.
Sci Rep ; 13(1): 20268, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985716

RESUMO

The report presents robust and high throughput methods, based on liquid chromatography coupled with evaporative light scattering detection (HPLC-ELSD), for the simultaneous determination of major metabolites of ibuprofen (IBU), namely 2-hydroxyibuprofen and carboxyibuprofen (method A) as well as creatinine (Crn) (method B) in human urine. The assays primarily involve straightforward sample purification. For both methods, the chromatographic separation of the analytes is achieved within 8 min at room temperature on Poroshell 120 SB-C18 (75 × 4.6 mm, 2.7 µm) column using gradient elution. The eluents consisted of 0.1% formic acid in water and acetonitrile (method A) or water and methanol (method B) delivered at a flow rate of 1 or 0.5 mL/min, respectively. In relation to metabolites of IBU, the assay linearity was observed within 0.06-0.5 g/L in urine, while the Crn assay linearity was demonstrated within 0.5-30 mmol/L in urine. The limit of quantification for IBU metabolites was determined to be 0.06 g/L, and 0.5 mmol/L for Crn. These methods were successfully applied to urine samples delivered by ten apparently healthy donors showing that the HPLC-ELSD assays are suitable for human urine screening.


Assuntos
Ibuprofeno , Água , Humanos , Ibuprofeno/metabolismo , Creatinina , Cromatografia Líquida de Alta Pressão/métodos
8.
Exp Eye Res ; 234: 109584, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37460082

RESUMO

The metabolic pathways leading from hypoxia to retinal vasodilatation can involve effects of both purines and prostaglandins, but the effects of these compounds at different vascular branching levels are unknown. The purpose of the present study was to investigate differential effects of purines and prostaglandins in hypoxia-induced dilatation of retinal arterioles, precapillary arterioles and capillaries ex vivo. Porcine hemiretinas were mounted in a tissue chamber while monitoring temperature, pH, and oxygen tension. The effect of hypoxia on the diameter of larger arterioles, precapillary arterioles and capillaries was studied in the presence of the ecto-nucleotidase inhibitor AOPCP, the nonselective P2 purinoreceptor antagonist PPADS, the A2B adenosine receptor antagonist MRS 1754, the A3 adenosine receptor antagonist MRS 1523, the EP1 receptor antagonist SC-19220, the EP2 receptor antagonist PF-04418948, the EP3 receptor antagonist L-798,106, the EP4 receptor antagonist L-161-982, the prostaglandin synthesis inhibitor ibuprofen, and ibuprofen combined with AOPCP or ATP. Hypoxia-induced dilatation in arterioles was reduced by the A2B adenosine receptor antagonist (p < 0.01) and increased by the EP2 and the EP3 receptor antagonists (p < 0.01 for both comparisons). In precapillary arterioles the dilatation was reduced by the EP2 receptor antagonist (p < 0.04) and increased by the EP1 receptor antagonist (p < 0.03), whereas in capillaries the dilatation was increased by both the A3 adenosine receptor antagonist (p < 0.01), by ibuprofen in combination with the unspecific ecto-nucleotidase inhibitor AOPCP (p = 0.04) and by the prostaglandin EP3 receptor antagonist. Hypoxia-induced dilatation of retinal vessels is influenced by adenosine A2B and A3 receptors, and by the prostaglandin EP1, EP2 and EP3 receptors. The effects mediated by these receptors differ at different branching levels of the resistance vessels.


Assuntos
Ibuprofeno , Prostaglandinas , Suínos , Animais , Prostaglandinas/metabolismo , Prostaglandinas/farmacologia , Ibuprofeno/metabolismo , Ibuprofeno/farmacologia , Dilatação , Vasos Retinianos/metabolismo , Hipóxia/metabolismo , Adenosina/farmacologia
9.
Biomed Pharmacother ; 161: 114531, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36934555

RESUMO

BACKGROUND: The use of NSAIDs have caused stomach injury by inhibiting endogenous mucosal prostaglandin production. Cucumis melo is reported to possess antiulcer potential. This study investigates the mechanism underlying the antiulcer potentials of Cucumis melo (CUM). METHODS: Thirty-five male Wistar rat were randomly assigned to each of seven groups; A(control given water and rat pellets), B(gastric ulcer induced with ibuprofen 400 mg/kg), C (Misoprotol 200 µg/kg), D to G (pretreated with different variation of CUM extract; 25 %, 50 %, 75 % and 100 % at a dose of 1 ml/kg for 3 weeks prior to gastric ulcer induction). Ulcer score, ulcer index and percentage inhibition, total gastric acidity was measured. Antioxidant activities, Malondialdehyde, H+/K+ ATPase, PGE2, TNF-α was done by spectrophotometry. Molecular docking investigation of Cucumis melo compounds against Prostaglandin E2 was carried out. Level of significance was tested at P ≤ 0.05 using Tukey post hoc. RESULT: Total gastric acidity, ulcer score, ulcer index, MDA, TNF-α significantly decreased after CUM treatment when compared to group B. The percentage inhibition, antioxidant activities, PGE2 concentration was significantly increased in all treatment groups compared to group B. Interactions of selected compounds of CUM with Prostaglandin E2 at various docking pockets showed folic acid has highest binding affinity followed by delta7-avenasterol and codisterol to PGE2 receptor. this study shows that one of the mechanisms by which CUM exhibits its antiulcer potential by enhancing Prostaglandin synthesis and antioxidant capacity. Therefore, Cucumis melo can therefore be explored as novel antiulcer agents.


Assuntos
Cucumis , Úlcera Gástrica , Ratos , Masculino , Animais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/metabolismo , Ibuprofeno/metabolismo , Dinoprostona/metabolismo , Simulação de Acoplamento Molecular , Antioxidantes/metabolismo , Ratos Wistar , Cucumis/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Mucosa Gástrica/metabolismo
10.
Genes (Basel) ; 14(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36833369

RESUMO

The NSAID ibuprofen (2-(4-isobutylphenyl)propanoic acid) and the structurally related 3-phenylpropanoic acid (3PPA), are widely used pharmaceutical and personal care products (PPCPs) which enter municipal waste streams but whose relatively low rates of elimination by wastewater treatment plants (WWTPs) are leading to the contamination of aquatic resources. Here, we report the isolation of three bacterial strains from a municipal WWTP, which as a consortium are capable of mineralizing ibuprofen. These were identified as the Pseudomonas citronellolis species, termed RW422, RW423 and RW424, in which the first two of these isolates were shown to contain the catabolic ipf operon responsible for the first steps of ibuprofen mineralization. These ipf genes which are associated with plasmids could, experimentally, only be transferred between other Sphingomonadaceae species, such as from the ibuprofen degrading Sphingopyxis granuli RW412 to the dioxins degrading Rhizorhabdus wittichii RW1, generating RW421, whilst a transfer from the P. citronellolis isolates to R. wittichii RW1 was not observed. RW412 and its derivative, RW421, as well as the two-species consortium RW422/RW424, can also mineralize 3PPA. We show that IpfF can convert 3PPA to 3PPA-CoA; however, the growth of RW412 with 3PPA produces a major intermediate that was identified by NMR to be cinnamic acid. This and the identification of other minor products from 3PPA allows us to propose the major pathway used by RW412 to mineralize 3PPA. Altogether, the findings in this study highlight the importance of ipf genes, horizontal gene transfer, and alternative catabolic pathways in the bacterial populations of WWTPs to eliminate ibuprofen and 3PPA.


Assuntos
Ibuprofeno , Purificação da Água , Ibuprofeno/química , Ibuprofeno/metabolismo , Anti-Inflamatórios não Esteroides , Bactérias/metabolismo , Biodegradação Ambiental
11.
Neurotherapeutics ; 20(2): 578-601, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36697994

RESUMO

Destruction of cochlear hair cells by aminoglycoside antibiotics leads to gradual death of the spiral ganglion neurons (SGNs) that relay auditory information to the brain, potentially limiting the efficacy of cochlear implants. Because the reasons for this cochlear neurodegeneration are unknown, there are no neuroprotective strategies for patients. To investigate this problem, we assessed transcriptomic changes in the rat spiral ganglion following aminoglycoside antibiotic (kanamycin)-induced hair cell destruction. We observed selectively increased expression of immune and inflammatory response genes and increased abundance of activated macrophages in spiral ganglia by postnatal day 32 in kanamycin-deafened rats, preceding significant SGN degeneration. Treatment with the anti-inflammatory medications dexamethasone and ibuprofen diminished long-term SGN degeneration. Ibuprofen and dexamethasone also diminished macrophage activation. Efficacy of ibuprofen treatment was augmented by co-administration of the nicotinamide adenine dinucleotide-stabilizing agent P7C3-A20. Our results support a critical role of neuroinflammation in SGN degeneration after aminoglycoside antibiotic-mediated cochlear hair cell loss, as well as a neuroprotective strategy that could improve cochlear implant efficacy.


Assuntos
Ibuprofeno , Gânglio Espiral da Cóclea , Ratos , Animais , Ibuprofeno/metabolismo , Células Ciliadas Auditivas/metabolismo , Aminoglicosídeos/toxicidade , Aminoglicosídeos/metabolismo , Antibacterianos/toxicidade , Canamicina/toxicidade , Canamicina/metabolismo , Neurônios , Anti-Inflamatórios/metabolismo , Dexametasona
12.
Fish Physiol Biochem ; 49(5): 787-799, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36717424

RESUMO

Globally, the prevalence and pollution of pharmaceutical drugs in aquatic environments have been steadily increasing. This study sought to evaluate the effects of 14 days of exposure to environmental-relevant doses (ibuprofen 0.5, 5, and 50 µg/L, and carbamazepine 0.005, 1, and 10 µg/L) of the nonsteroidal anti-inflammatory drugs ibuprofen and carbamazepine in the freshwater fish Oreochromis mossambicus. The results showed a significant (P < 0.05) decrease in O. mossambicus superoxide dismutase, catalase, biotransformation enzymes, glutathione-s-transferase, glutathione peroxidase, oxidative stress lipid peroxidation, protein carbonyl activity, cellular damage metallothionine, reduced glutathione, immunological activities, and respiratory burst activity. Consequently, the acquired data revealed that O. mossambicus treated with ibuprofen and carbamazepine shows more significant alterations in metabolic depression, biochemical parameters, and oxidative stress. In addition, increased neurotoxic effects were observed in ibuprofen and carbamazepine treated O. mossambicus.


Assuntos
Tilápia , Animais , Tilápia/metabolismo , Antioxidantes/metabolismo , Ibuprofeno/toxicidade , Ibuprofeno/metabolismo , Estresse Oxidativo , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Peroxidação de Lipídeos , Carbamazepina/toxicidade , Carbamazepina/metabolismo
13.
Connect Tissue Res ; 64(1): 14-25, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35647871

RESUMO

PURPOSE: The effect of ibuprofen, an NSAID, on biological characteristics such as proliferation, viability, DNA damage and cell cycle in dental pulp derived stem cells (DPSCs) can be important for regenerative medicine. Our aim is to investigate how low and high doses of ibuprofen affect stem cell characteristics in DPSCs. MATERIALS AND METHODS: DPSCs were isolated from human teeth and characterized by flow cytometry and differentiation tests. Low dose (0.1 mmol/L) and high dose (3 mmol/L) ibuprofen were administered to DPSCs. Surface markers between groups were analyzed by immunofluorescence staining. Membrane depolarization, DNA damage, viability and cell cycle analysis were performed between groups using biological activity test kits. Cellular proliferation was measured by the MTT and cell count kit. Statistical analyzes were performed using GraphPad Prism software. RESULTS: High dose ibuprofen significantly increased CD44 and CD73 expression in DPSCs. High-dose ibuprofen significantly reduced mitochondrial membrane depolarization in DPSCs. It was determined that DNA damage in DPSCs decreased significantly with high dose ibuprofen. Parallel to this, cell viability increased significantly in the ibuprofen applied groups. High-dose ibuprofen was found to increase mitotic activity in DPSCs. Proliferation in DPSCs increased in parallel with the increase in mitosis stage because of high-dose ibuprofen administration compared to the control and low-dose ibuprofen groups. Our proliferation findings appeared to support cell cycle analyses. CONCLUSION: High dose ibuprofen improved the immunophenotypes and biological activities of DPSCs. The combination of ibuprofen in the use of DPSCs in regenerative medicine can make stem cell therapy more effective.


Assuntos
Ibuprofeno , Células-Tronco Mesenquimais , Humanos , Ibuprofeno/farmacologia , Ibuprofeno/metabolismo , Células Cultivadas , Polpa Dentária , Diferenciação Celular , Proliferação de Células , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/metabolismo , Células-Tronco Mesenquimais/metabolismo
14.
Microb Ecol ; 86(2): 1438-1441, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36112189

RESUMO

Water is the most indispensable natural resource; yet, organic pollution of freshwater sources is widespread. In recent years, there has been increasing concern over the vast array of emerging organic contaminants (EOCs) in the effluent of wastewater treatment plants (WWTPs). Several of these EOCs are degraded within the pore space of riverbeds by active microbial consortia. However, the mechanisms behind this ecosystem service are largely unknown. Here, we report how phosphate concentration and predator-prey interactions drive the capacity of bacteria to process a model EOC (ibuprofen). The presence of phosphate had a significant positive effect on the population growth rate of an ibuprofen-degrading strain. Thus, when phosphate was present, ibuprofen removal efficiency increased. Moreover, low and medium levels of predation, by a ciliated protozoan, stimulated bacterial population growth. This unimodal effect of predation was lost under high phosphate concentration, resulting in the flattening of the relationships between predator density and population growth of ibuprofen degraders. Our results suggest that moderate nutrient and predation levels promote the growth rate of bacterial degraders and, consequently, the self-purifying capability of the system. These findings enhance our understanding of the mechanisms by which riverbed communities drive the processing of EOCs.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Ibuprofeno/metabolismo , Comportamento Predatório , Bactérias/metabolismo
15.
Environ Sci Pollut Res Int ; 30(5): 13118-13131, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36123556

RESUMO

Non-steroidal anti-inflammatory drugs like ibuprofen (IBU) are extensively used, causing substantial amounts to end up in aquatic ecosystems. Unfortunately, little research has been done on how these medications influence the physiology of phytoplankton. This study aimed to investigate the toxicological and physiological effects of IBU on the cyanobacteria Microcystis aeruginosa LE3 and Microcystis aeruginosa EAWAG 198, and the chlorophyte Chlorella sorokiniana. Exponential growth phase cultures were exposed to IBU at 10 to 10,000 µg/L for 96 h. The medium effect concentrations revealed varied sensitivity to IBU in the order Chlorella sorokiniana > Microcystis aeruginosa LE3 > Microcystis aeruginosa EAWAG 198. The drug caused a significant difference from control in cell density and chlorophyll-a of the three strains, except for chlorophyll-a in M. aeruginosa EAWAG 198 cultures where a significant difference occurred at 100 µg/L. The cell density of M. aeruginosa LE3 cultures exposed to 10 µg/L IBU increased 24 h post-exposure. Increasing concentrations of IBU induced higher total microcystins content of the Microcystis aeruginosa. Intracellular hydrogen peroxide content, peroxidase, and glutathione S-transferase activities, and lipid peroxidation increased as a function of IBU exposure. Total lipid, carbohydrate, and protein content of Chlorella sorokiniana were stimulated following IBU exposure. We conclude that the increasing presence of IBU in aquatic ecosystems could significantly alter the population dynamics of the investigated and other phytoplankton species.


Assuntos
Chlorella , Microcystis , Antioxidantes/metabolismo , Ibuprofeno/metabolismo , Chlorella/metabolismo , Ecossistema , Clorofila/metabolismo , Microcistinas/metabolismo , Fitoplâncton
16.
PLoS One ; 17(10): e0275906, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36227963

RESUMO

BACKGROUND: Immunotherapy is now considered as the new pillar in treatment of cancer patients. Dendritic cells (DCs) play an essential role in stimulating anti-tumor immune responses, as they are capable of cross-presenting exogenous tumor antigens in MHCI complexes to activate naïve CD8+ T cells. Analgesics, like non-steroid anti-inflammatory drugs (NSAIDs), are frequently given to cancer patients to help relieve pain, however little is known about their impact on DC function. METHODS: Here, we investigated the effect of the NSAIDs diclofenac, ibuprofen and celecoxib on the three key processes of DCs required for proper CD8+ cytotoxic T cell induction: antigen cross-presentation, co-stimulatory marker expression, and cytokine production. RESULTS: Our results show that TLR-induced pro- and anti-inflammatory cytokine excretion by human monocyte derived and murine bone-marrow derived DCs is diminished after NSAID exposure. CONCLUSIONS: These results indicate that various NSAIDs can affect DC function and warrant further investigation into the impact of NSAIDs on DC priming of T cells and cancer immunotherapy efficacy.


Assuntos
Células Dendríticas , Neoplasias , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Antígenos de Neoplasias/metabolismo , Linfócitos T CD8-Positivos , Celecoxib/metabolismo , Celecoxib/farmacologia , Citocinas/metabolismo , Diclofenaco/metabolismo , Humanos , Ibuprofeno/metabolismo , Camundongos , Neoplasias/terapia
17.
Sci Total Environ ; 849: 157921, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35952865

RESUMO

One of the main contributors to pharmaceutical pollution of surface waters are non-steroidal anti-inflammatory drugs (NSAIDs) that contaminate the food chain and affect non-target water species. As there are not many studies focusing on toxic effects of NSAIDs on freshwater fish species and specially effects after dietary exposure, we selected rainbow trout (Oncorhynchus mykiss) as the ideal model to examine the impact of two NSAIDs - diclofenac (DCF) and ibuprofen (IBP). The aim of our study was to test toxicity of environmentally relevant concentrations of these drugs together with exposure doses of 100× higher, including their mixture; and to deepen knowledge about the mechanism of toxicity of these drugs. This study revealed kidneys as the most affected organ with hyalinosis, an increase in oxidative stress markers, and changes in gene expression of heat shock protein 70 to be signs of renal toxicity. Furthermore, hepatotoxicity was confirmed by histopathological analysis (i.e. dystrophy, congestion, and inflammatory cell increase), change in biochemical markers, increase in heat shock protein 70 mRNA, and by oxidative stress analysis. The gills were locally deformed and showed signs of inflammatory processes and necrotic areas. Given the increase in oxidative stress markers and heat shock protein 70 mRNA, severe impairment of oxygen transport may be one of the toxic pathways of NSAIDs. Regarding the microbiota, an overgrowth of Gram-positive species was detected; in particular, significant dysbiosis in the Fusobacteria/Firmicutes ratio was observed. In conclusion, the changes observed after dietary exposure to NSAIDs can influence the organism homeostasis, induce ROS production, potentiate inflammations, and cause gut dysbiosis. Even the environmentally relevant concentration of NSAIDs pose a risk to the aquatic ecosystem as it changed O. mykiss health parameters and we assume that the toxicity of NSAIDs manifests itself at the level of mitochondria and proteins.


Assuntos
Microbioma Gastrointestinal , Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Biomarcadores/metabolismo , Diclofenaco/metabolismo , Surtos de Doenças , Disbiose , Ecossistema , Proteínas de Choque Térmico HSP70/metabolismo , Ibuprofeno/metabolismo , Ibuprofeno/toxicidade , Inflamação/induzido quimicamente , Oncorhynchus mykiss/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Preparações Farmacêuticas/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Água/metabolismo , Poluentes Químicos da Água/metabolismo
18.
Molecules ; 27(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807248

RESUMO

Hyperglycemia is reported to be associated with oxidative stress. It can result in changes in the activities of drug-metabolizing enzymes and membrane-integrated transporters, which can modify the fate of drugs and other xenobiotics; furthermore, it can result in the formation of non-enzyme catalyzed oxidative metabolites. The present work aimed to investigate how experimental hyperglycemia affects the intestinal and biliary appearance of the oxidative and Phase II metabolites of ibuprofen in rats. In vivo studies were performed by luminal perfusion of 250 µM racemic ibuprofen solution in control and streptozotocin-treated (hyperglycemic) rats. Analysis of the collected intestinal perfusate and bile samples was performed by HPLC-UV and HPLC-MS. No oxidative metabolites could be detected in the perfusate samples. The biliary appearance of ibuprofen, 2-hydroxyibuprofen, ibuprofen glucuronide, hydroxylated ibuprofen glucuronide, and ibuprofen taurate was depressed in the hyperglycemic animals. However, no specific non-enzymatic (hydroxyl radical initiated) hydroxylation product could be detected. Instead, the depression of biliary excretion of ibuprofen and ibuprofen metabolites turned out to be the indicative marker of hyperglycemia. The observed changes impact the pharmacokinetics of drugs administered in hyperglycemic individuals.


Assuntos
Hiperglicemia , Ibuprofeno , Animais , Cromatografia Líquida de Alta Pressão , Glucuronídeos/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Ibuprofeno/metabolismo , Intestinos , Fígado/metabolismo , Ratos
19.
World J Microbiol Biotechnol ; 38(7): 125, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35657493

RESUMO

Biofilm formation and antibiotic efflux are two determinant factors in the development of drug resistance phenotype by Pseudomonas aeruginosa. Non-steroid anti-inflammatory drugs have shown the antimicrobial potential to be used in combination with antibiotics against bacterial pathogens. In this work, the effect of ibuprofen alone and in combination with ciprofloxacin on some virulence traits and the expression of the alginate synthesis and efflux pump genes of clinical isolates of P. aeruginosa was investigated. The checkerboard titration assay was used to evaluate the synergism of the drugs. P. aeruginosa strains were grown in the presence of sub-inhibitory concentrations of the drug and their biofilm formation level, swarming, swimming, and hemolytic activity were assessed. Also, the relative expression of the alg44, algT/U, mexB, and oprM genes was determined by qPCR assay. The MIC of ibuprofen and ciprofloxacin were measured 2048 and 32 µg/mL and the drugs showed synergic antibacterial activity (FIC = 0.4). Moreover, ibuprofen alone and in combination with ciprofloxacin, significantly reduced the expression of alg44 (0.22 and 0.25 folds) and algT/U (0.26 and 0.37 folds) genes, while increased the expression of the mexB (1.64 and 1.83 folds) and oprM (1.36 and 1.92 folds) genes. Simultaneous treatment of bacterial cells with ibuprofen and ciprofloxacin significantly decreased bacterial biofilm formation (65%), swimming, swarming, and hemolytic activity (85%), compared with the control. This work suggests that ibuprofen has considerable anti-virulence potential against P. aeruginosa and could be employed for combination therapy with antibiotics after further characterizations.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Ciprofloxacina/farmacologia , Humanos , Ibuprofeno/metabolismo , Ibuprofeno/farmacologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Fenótipo , Infecções por Pseudomonas/tratamento farmacológico , Virulência/genética
20.
Plant Mol Biol ; 110(3): 219-234, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35759052

RESUMO

KEY MESSAGE: Identification of infection process and defense response during M. oryzae infecting Acuce. Magnaporthe oryzae is a destructive rice pathogen. Recent studies have focused on the initial infectious stage, with a few studies conducted to elucidate the characteristics of the late infectious stages. This study aims to decipher the characteristics at different stages (biotrophic, biotrophy-necrotrophy switch (BNS), and necrotrophic) between the interaction of two M. oryzae-rice combinations and investigate the resistance mechanisms of rice to M. oryzae using cytological and molecular methods. The biotrophic phase of M. oryzae-LTH compatible interaction was found to be longer than that of M. oryzae-Acuce incompatible interaction. We also found that jasmonic acid (JA) signaling plays an important role in defense by regulating antimicrobial compound accumulation in infected Acuce via a synergistic interaction of JA-salicylic acid (SA) and JA-ethylene (ET). In infected LTH, JA-ET/JA-SA showed antagonistic interaction. Ibuprofen (IBU) is a JA inhibitor. Despite the above findings, we found that exogenous JA-Ile and IBU significantly alleviated blast symptoms in infected LTH at 36 hpi (biotrophic) and 72 hpi (BNS), indicating these two-time points may be critical for managing blast disease in the compatible interaction. Conversely, IBU significantly increased blast symptoms on the infected Acuce at 36 hpi, confirming that the JA signal plays a central role in the defense response in infected Acuce. According to transcriptional analysis, the number of genes enriched in the plant hormone signal pathway was significantly higher than in other pathways. Our findings suggested that JA-mediated defense mechanism is essential in regulating Acuce resistance, particularly during the biotrophic and BNS phases.


Assuntos
Magnaporthe , Oryza , Ascomicetos , Ciclopentanos , Etilenos/metabolismo , Ibuprofeno/metabolismo , Magnaporthe/metabolismo , Oryza/metabolismo , Oxilipinas , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Ácido Salicílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...