Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.345
Filtrar
1.
Clin Epigenetics ; 16(1): 62, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715103

RESUMO

BACKGROUND: Temple syndrome (TS14) is a rare imprinting disorder caused by maternal UPD14, imprinting defects or paternal microdeletions which lead to an increase in the maternal expressed genes and a silencing the paternally expressed genes in the 14q32 imprinted domain. Classical TS14 phenotypic features include pre- and postnatal short stature, small hands and feet, muscular hypotonia, motor delay, feeding difficulties, weight gain, premature puberty along and precocious puberty. METHODS: An exon array comparative genomic hybridization was performed on a patient affected by psychomotor and language delay, muscular hypotonia, relative macrocephaly, and small hand and feet at two years old. At 6 years of age, the proband presented with precocious thelarche. Genes dosage and methylation within the 14q32 region were analyzed by MS-MLPA. Bisulfite PCR and pyrosequencing were employed to quantification methylation at the four known imprinted differentially methylated regions (DMR) within the 14q32 domain: DLK1 DMR, IG-DMR, MEG3 DMR and MEG8 DMR. RESULTS: The patient had inherited a 69 Kb deletion, encompassing the entire DLK1 gene, on the paternal allele. Relative hypermethylation of the two maternally methylated intervals, DLK1 and MEG8 DMRs, was observed along with normal methylation level at IG-DMR and MEG3 DMR, resulting in a phenotype consistent with TS14. Additional family members with the deletion showed modest methylation changes at both the DLK1 and MEG8 DMRs consistent with parental transmission. CONCLUSION: We describe a girl with clinical presentation suggestive of Temple syndrome resulting from a small paternal 14q32 deletion that led to DLK1 whole-gene deletion, as well as hypermethylation of the maternally methylated DLK1-DMR.


Assuntos
Proteínas de Ligação ao Cálcio , Cromossomos Humanos Par 14 , Metilação de DNA , Impressão Genômica , Peptídeos e Proteínas de Sinalização Intercelular , Humanos , Proteínas de Ligação ao Cálcio/genética , Metilação de DNA/genética , Cromossomos Humanos Par 14/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Impressão Genômica/genética , Proteínas de Membrana/genética , Criança , Masculino , Hibridização Genômica Comparativa/métodos , Feminino , Deleção Cromossômica , Pré-Escolar , Fenótipo , Anormalidades Múltiplas/genética , Transtornos da Impressão Genômica , Hipotonia Muscular , Fácies
2.
Clin Epigenetics ; 16(1): 58, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658973

RESUMO

Alzheimer's disease (AD) prevalence is twice as high in non-Hispanic Blacks (NHBs) as in non-Hispanic Whites (NHWs). The objective of this study was to determine whether aberrant methylation at imprint control regions (ICRs) is associated with AD. Differentially methylated regions (DMRs) were bioinformatically identified from whole-genome bisulfite sequenced DNA derived from brain tissue of 9 AD (5 NHBs and 4 NHWs) and 8 controls (4 NHBs and 4 NHWs). We identified DMRs located within 120 regions defined as candidate ICRs in the human imprintome ( https://genome.ucsc.edu/s/imprintome/hg38.AD.Brain_track ). Eighty-one ICRs were differentially methylated in NHB-AD, and 27 ICRs were differentially methylated in NHW-AD, with two regions common to both populations that are proximal to the inflammasome gene, NLRP1, and a known imprinted gene, MEST/MESTIT1. These findings indicate that early developmental alterations in DNA methylation of regions regulating genomic imprinting may contribute to AD risk and that this epigenetic risk differs between NHBs and NHWs.


Assuntos
Doença de Alzheimer , Metilação de DNA , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Doença de Alzheimer/genética , Doença de Alzheimer/etnologia , Negro ou Afro-Americano/genética , Estudos de Casos e Controles , Metilação de DNA/genética , Epigênese Genética/genética , Impressão Genômica/genética , Proteínas NLR/genética , Brancos/genética
3.
Am J Hum Genet ; 111(4): 654-667, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38471507

RESUMO

Allele-specific methylation (ASM) is an epigenetic modification whereby one parental allele becomes methylated and the other unmethylated at a specific locus. ASM is most often driven by the presence of nearby heterozygous variants that influence methylation, but also occurs somatically in the context of genomic imprinting. In this study, we investigate ASM using publicly available single-cell reduced representation bisulfite sequencing (scRRBS) data on 608 B cells sampled from six healthy B cell samples and 1,230 cells from 11 chronic lymphocytic leukemia (CLL) samples. We developed a likelihood-based criterion to test whether a CpG exhibited ASM, based on the distributions of methylated and unmethylated reads both within and across cells. Applying our likelihood ratio test, 65,998 CpG sites exhibited ASM in healthy B cell samples according to a Bonferroni criterion (p < 8.4 × 10-9), and 32,862 CpG sites exhibited ASM in CLL samples (p < 8.5 × 10-9). We also called ASM at the sample level. To evaluate the accuracy of our method, we called heterozygous variants from the scRRBS data, which enabled variant-based calls of ASM within each cell. Comparing sample-level ASM calls to the variant-based measures of ASM, we observed a positive predictive value of 76%-100% across samples. We observed high concordance of ASM across samples and an overrepresentation of ASM in previously reported imprinted genes and genes with imprinting binding motifs. Our study demonstrates that single-cell bisulfite sequencing is a potentially powerful tool to investigate ASM, especially as studies expand to increase the number of samples and cells sequenced.


Assuntos
Metilação de DNA , Leucemia Linfocítica Crônica de Células B , Sulfitos , Humanos , Metilação de DNA/genética , Alelos , Leucemia Linfocítica Crônica de Células B/genética , Funções Verossimilhança , Impressão Genômica/genética , Ilhas de CpG/genética
4.
Nature ; 628(8006): 122-129, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448590

RESUMO

Genomic imprinting-the non-equivalence of maternal and paternal genomes-is a critical process that has evolved independently in many plant and mammalian species1,2. According to kinship theory, imprinting is the inevitable consequence of conflictive selective forces acting on differentially expressed parental alleles3,4. Yet, how these epigenetic differences evolve in the first place is poorly understood3,5,6. Here we report the identification and molecular dissection of a parent-of-origin effect on gene expression that might help to clarify this fundamental question. Toxin-antidote elements (TAs) are selfish elements that spread in populations by poisoning non-carrier individuals7-9. In reciprocal crosses between two Caenorhabditis tropicalis wild isolates, we found that the slow-1/grow-1 TA is specifically inactive when paternally inherited. This parent-of-origin effect stems from transcriptional repression of the slow-1 toxin by the PIWI-interacting RNA (piRNA) host defence pathway. The repression requires PIWI Argonaute and SET-32 histone methyltransferase activities and is transgenerationally inherited via small RNAs. Remarkably, when slow-1/grow-1 is maternally inherited, slow-1 repression is halted by a translation-independent role of its maternal mRNA. That is, slow-1 transcripts loaded into eggs-but not SLOW-1 protein-are necessary and sufficient to counteract piRNA-mediated repression. Our findings show that parent-of-origin effects can evolve by co-option of the piRNA pathway and hinder the spread of selfish genes that require sex for their propagation.


Assuntos
Caenorhabditis , Impressão Genômica , RNA de Interação com Piwi , Sequências Repetitivas de Ácido Nucleico , Animais , Feminino , Masculino , Alelos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis/genética , Caenorhabditis/metabolismo , Cruzamentos Genéticos , Pai , Genoma/genética , Impressão Genômica/genética , Organismos Hermafroditas/genética , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Mães , Oócitos/metabolismo , RNA de Interação com Piwi/genética , Biossíntese de Proteínas , Sequências Repetitivas de Ácido Nucleico/genética , RNA Mensageiro/genética , Toxinas Biológicas/genética , Transcrição Gênica
5.
Genes Dev ; 38(3-4): 131-150, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38453481

RESUMO

Maternal inactivation of genes encoding components of the subcortical maternal complex (SCMC) and its associated member, PADI6, generally results in early embryo lethality. In humans, SCMC gene variants were found in the healthy mothers of children affected by multilocus imprinting disturbances (MLID). However, how the SCMC controls the DNA methylation required to regulate imprinting remains poorly defined. We generated a mouse line carrying a Padi6 missense variant that was identified in a family with Beckwith-Wiedemann syndrome and MLID. If homozygous in female mice, this variant resulted in interruption of embryo development at the two-cell stage. Single-cell multiomic analyses demonstrated defective maturation of Padi6 mutant oocytes and incomplete DNA demethylation, down-regulation of zygotic genome activation (ZGA) genes, up-regulation of maternal decay genes, and developmental delay in two-cell embryos developing from Padi6 mutant oocytes but little effect on genomic imprinting. Western blotting and immunofluorescence analyses showed reduced levels of UHRF1 in oocytes and abnormal localization of DNMT1 and UHRF1 in both oocytes and zygotes. Treatment with 5-azacytidine reverted DNA hypermethylation but did not rescue the developmental arrest of mutant embryos. Taken together, this study demonstrates that PADI6 controls both nuclear and cytoplasmic oocyte processes that are necessary for preimplantation epigenetic reprogramming and ZGA.


Assuntos
Oócitos , Zigoto , Animais , Criança , Feminino , Humanos , Camundongos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Citoplasma/genética , Citoplasma/metabolismo , Metilação de DNA/genética , Desenvolvimento Embrionário/genética , Impressão Genômica/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Mol Genet Genomics ; 299(1): 40, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546894

RESUMO

Genomic imprinting is an epigenetic regulation mechanism in mammals resulting in the parentally dependent monoallelic expression of genes. Imprinting disorders in humans are associated with several congenital syndromes and cancers and remain the focus of many medical studies. Cattle is a better model organism for investigating human embryo development than mice. Imprinted genes usually cluster on chromosomes and are regulated by different methylation regions (DMRs) located in imprinting control regions that control gene expression in cis. There is an imprinted locus on human chromosome 16q24.1 associated with congenital lethal developmental lung disease in newborns. However, genomic imprinting on bovine chromosome 18, which is homologous with human chromosome 16 has not been systematically studied. The aim of this study was to analyze the allelic expressions of eight genes (CDH13, ATP2C2, TLDC1, COTL1, CRISPLD2, ZDHHC7, KIAA0513, and GSE1) on bovine chromosome 18 and to search the DMRs associated gene allelic expression. Three transcript variants of the ZDHHC7 gene (X1, X2, and X5) showed maternal imprinting in bovine placentas. In addition, the monoallelic expression of X2 and X5 was tissue-specific. Five transcripts of the KIAA0513 gene showed tissue- and isoform-specific monoallelic expression. The CDH13, ATP2C2, and TLDC1 genes exhibited tissue-specific imprinting, however, COTL1, CRISLPLD2, and GSE1 escaped imprinting. Four DMRs, established after fertilization, were found in this region. Two DMRs were located between the ZDHHC7 and KIAA0513 genes, and two were in exon 1 of the CDH13 and ATP2C2 genes, respectively. The results from this study support future studies on the molecular mechanism to regulate the imprinting of candidate genes on bovine chromosome 18.


Assuntos
Metilação de DNA , Epigênese Genética , Recém-Nascido , Gravidez , Feminino , Humanos , Bovinos/genética , Animais , Camundongos , Metilação de DNA/genética , Cromossomos Humanos Par 18 , Impressão Genômica/genética , Cromossomos , Mamíferos/genética , Proteínas do Tecido Nervoso/genética
7.
HGG Adv ; 5(2): 100271, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38297831

RESUMO

It is only partially understood how constitutive allelic methylation at imprinting control regions (ICRs) interacts with other regulation levels to drive timely parental allele-specific expression along large imprinted domains. The Peg13-Kcnk9 domain is an imprinted domain with important brain functions. To gain insights into its regulation during neural commitment, we performed an integrative analysis of its allele-specific epigenetic, transcriptomic, and cis-spatial organization using a mouse stem cell-based corticogenesis model that recapitulates the control of imprinted gene expression during neurodevelopment. We found that, despite an allelic higher-order chromatin structure associated with the paternally CTCF-bound Peg13 ICR, enhancer-Kcnk9 promoter contacts occurred on both alleles, although they were productive only on the maternal allele. This observation challenges the canonical model in which CTCF binding isolates the enhancer and its target gene on either side and suggests a more nuanced role for allelic CTCF binding at some ICRs.


Assuntos
Metilação de DNA , Impressão Genômica , Alelos , Metilação de DNA/genética , Impressão Genômica/genética , Regiões Promotoras Genéticas/genética , Animais , Camundongos
8.
Genet Med ; 26(5): 101075, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38251460

RESUMO

PURPOSE: This study aims to assess the diagnostic utility and provide reporting recommendations for clinical DNA methylation episignature testing based on the cohort of patients tested through the EpiSign Clinical Testing Network. METHODS: The EpiSign assay utilized unsupervised clustering techniques and a support vector machine-based classification algorithm to compare each patient's genome-wide DNA methylation profile with the EpiSign Knowledge Database, yielding the result that was reported. An international working group, representing distinct EpiSign Clinical Testing Network health jurisdictions, collaborated to establish recommendations for interpretation and reporting of episignature testing. RESULTS: Among 2399 cases analyzed, 1667 cases underwent a comprehensive screen of validated episignatures, imprinting, and promoter regions, resulting in 18.7% (312/1667) positive reports. The remaining 732 referrals underwent targeted episignature analysis for assessment of sequence or copy-number variants (CNVs) of uncertain significance or for assessment of clinical diagnoses without confirmed molecular findings, and 32.4% (237/732) were positive. Cases with detailed clinical information were highlighted to describe various utility scenarios for episignature testing. CONCLUSION: Clinical DNA methylation testing including episignatures, imprinting, and promoter analysis provided by an integrated network of clinical laboratories enables test standardization and demonstrates significant diagnostic yield and clinical utility beyond DNA sequence analysis in rare diseases.


Assuntos
Metilação de DNA , Testes Genéticos , Doenças Raras , Humanos , Metilação de DNA/genética , Doenças Raras/genética , Doenças Raras/diagnóstico , Testes Genéticos/normas , Testes Genéticos/métodos , Feminino , Regiões Promotoras Genéticas/genética , Masculino , Variações do Número de Cópias de DNA/genética , Criança , Adulto , Pré-Escolar , Impressão Genômica/genética
9.
Am J Med Genet A ; 194(2): 383-388, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37850521

RESUMO

PLAGL1 is one of a group of imprinted genes, whose altered expression causes imprinting disorders impacting growth, development, metabolism, and behavior. PLAGL1 over-expression causes transient neonatal diabetes mellitus (TNDM type 1) and, based on murine models, under-expression would be expected to cause growth restriction. However, only some reported individuals with upd(6)mat have growth restriction, giving rise to uncertainty about the role of PLAGL1 in human growth. Here we report three individuals investigated for growth restriction, two with upd(6)mat and one with a mosaic deletion of the paternally-inherited allele of PLAGL1. These cases add to evidence of its involvement in pre- and early post-natal human growth.


Assuntos
Impressão Genômica , Dissomia Uniparental , Recém-Nascido , Humanos , Animais , Camundongos , Impressão Genômica/genética , Fatores de Transcrição/genética , Proteínas de Ciclo Celular/genética , Proteínas Supressoras de Tumor/genética
10.
PLoS Genet ; 19(10): e1010961, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37856383

RESUMO

Imprinted genes are subject to germline epigenetic modification resulting in parental-specific allelic silencing. Although genomic imprinting is thought to be important for maternal behaviour, this idea is based on serendipitous findings from a small number of imprinted genes. Here, we undertook an unbiased systems biology approach, taking advantage of the recent delineation of specific neuronal populations responsible for controlling parental care, to test whether imprinted genes significantly converge to regulate parenting behaviour. Using single-cell RNA sequencing datasets, we identified a specific enrichment of imprinted gene expression in a recognised "parenting hub", the galanin-expressing neurons of the preoptic area. We tested the validity of linking enriched expression in these neurons to function by focusing on MAGE family member L2 (Magel2), an imprinted gene not previously linked to parenting behaviour. We confirmed expression of Magel2 in the preoptic area galanin expressing neurons. We then examined the parenting behaviour of Magel2-null(+/p) mice. Magel2-null mothers, fathers and virgin females demonstrated deficits in pup retrieval, nest building and pup-directed motivation, identifying a central role for this gene in parenting. Finally, we show that Magel2-null mothers and fathers have a significant reduction in POA galanin expressing cells, which in turn contributes to a reduced c-Fos response in the POA upon exposure to pups. Our findings identify a novel imprinted gene that impacts parenting behaviour and, moreover, demonstrates the utility of using single-cell RNA sequencing data to predict gene function from expression and in doing so here, have identified a purposeful role for genomic imprinting in mediating parental behaviour.


Assuntos
Galanina , Poder Familiar , Feminino , Animais , Camundongos , Galanina/genética , Galanina/metabolismo , Hipotálamo/metabolismo , Impressão Genômica/genética , Fenótipo , Antígenos de Neoplasias/genética , Proteínas/genética
11.
DNA Cell Biol ; 42(11): 689-696, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37843913

RESUMO

Genomic imprinting refers to the expression of parent-specific genes in diploid mammalian cells. MAGEL2 gene is a maternally imprinted gene that has been identified in mice and humans and is associated with the onset of puberty. The purpose of this study was to investigate its imprinting status and its relationship with the onset of puberty in Dolang sheep. The sequence of 3734 bp cDNA of MAGEL2 in Dolang sheep was obtained by cloning and sequencing, encoding 1173 amino acids. The results of the nucleotide and amino acid similarity analysis showed that it was highly conserved among different mammalian species. The MAGEL2 gene was expressed monoallelically in the tissues of adult and neonatal umbilical cords, and the expressed allele was paternally inherited. Real Time quantitative PCR (RT-qPCR) results showed that the MAGEL2 gene was highly expressed in the hypothalamus and pituitary gland, increased significantly from prepuberty to puberty, and decreased significantly after puberty. This study suggests that MAGEL2 is a paternally expressed and maternally imprinted gene in Dolang sheep, which may be involved in the initiation of puberty in Dolang sheep. This study provides a theoretical basis for further research on the mechanism of the imprinted gene MAGEL2 regulating the onset of puberty in sheep, and provides a new idea for the future research on the mechanism of onset of puberty in sheep.


Assuntos
Impressão Genômica , Puberdade , Camundongos , Humanos , Animais , Ovinos/genética , Impressão Genômica/genética , Puberdade/genética , Mamíferos/metabolismo , Proteínas/metabolismo
12.
Genes Dev ; 37(17-18): 829-843, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37821107

RESUMO

Differences in chromatin state inherited from the parental gametes influence the regulation of maternal and paternal alleles in offspring. This phenomenon, known as genomic imprinting, results in genes preferentially transcribed from one parental allele. While local epigenetic factors such as DNA methylation are known to be important for the establishment of imprinted gene expression, less is known about the mechanisms by which differentially methylated regions (DMRs) lead to differences in allelic expression across broad stretches of chromatin. Allele-specific higher-order chromatin structure has been observed at multiple imprinted loci, consistent with the observation of allelic binding of the chromatin-organizing factor CTCF at multiple DMRs. However, whether allelic chromatin structure impacts allelic gene expression is not known for most imprinted loci. Here we characterize the mechanisms underlying brain-specific imprinted expression of the Peg13-Kcnk9 locus, an imprinted region associated with intellectual disability. We performed region capture Hi-C on mouse brains from reciprocal hybrid crosses and found imprinted higher-order chromatin structure caused by the allelic binding of CTCF to the Peg13 DMR. Using an in vitro neuron differentiation system, we showed that imprinted chromatin structure precedes imprinted expression at the locus. Additionally, activation of a distal enhancer induced imprinted expression of Kcnk9 in an allelic chromatin structure-dependent manner. This work provides a high-resolution map of imprinted chromatin structure and demonstrates that chromatin state established in early development can promote imprinted expression upon differentiation.


Assuntos
Metilação de DNA , Impressão Genômica , Animais , Camundongos , Alelos , Metilação de DNA/genética , Impressão Genômica/genética , Cromatina , Neurogênese/genética
13.
Mol Psychiatry ; 28(8): 3182-3193, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37626134

RESUMO

Genomic imprinting disorders are caused by the disruption of genomic imprinting processes leading to a deficit or increase of an active allele. Their unique molecular mechanisms underlying imprinted genes offer an opportunity to investigate epigenetic-based therapy for reactivation of an inactive allele or reduction of an active allele. Current treatments are based on managing symptoms, not targeting the molecular mechanisms underlying imprinting disorders. Here, we highlight molecular approaches of therapeutic candidates in preclinical and clinical studies for individual imprinting disorders. These include the significant progress of discovery and testing of small molecules, antisense oligonucleotides, and CRISPR mediated genome editing approaches as new therapeutic strategies. We discuss the significant challenges of translating these promising therapies from the preclinical stage to the clinic, especially for genome editing based approaches.


Assuntos
Edição de Genes , Impressão Genômica , Impressão Genômica/genética , Metilação de DNA
14.
Int J Biol Sci ; 19(10): 3128-3142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37416777

RESUMO

Since its discovery in 1991, genomic imprinting has been the subject of numerous studies into its mechanisms of establishment and regulation, evolution and function, and presence in multiple genomes. Disturbance of imprinting has been implicated in a range of diseases, ranging from debilitating syndromes to cancers to fetal deficiencies. Despite this, studies done on the prevalence and relevance of imprinting on genes have been limited in scope, tissue types available, and focus, by both availability and resources. This has left a gap in comparative studies. To address this, we assembled a collection of imprinted genes available in current literature covering five species. Here we sought to identify trends and motifs in the imprinted gene set (IGS) in three distinct arenas: evolutionary conservation, across-tissue expression, and health phenomics. Overall, we found that imprinted genes displayed less conservation and higher proportions of non-coding RNA while maintaining synteny. Maternally expressed genes (MEGs) and paternally expressed genes (PEGs) occupied distinct roles in tissue expression and biological pathway use, while imprinted genes collectively showed a broader tissue range, notable preference for tissue specific expression and limited gene pathways than comparable sex differentiation genes. Both human and murine imprinted genes showed the same clear phenotypic trends, that were distinct from those displayed by sex differentiation genes which were less involved in mental and nervous system disease. While both sets had representation across the genome, the IGS showed clearer clustering as expected, with PEGs significantly more represented than MEGs.


Assuntos
Fenômica , Transcriptoma , Humanos , Animais , Camundongos , Transcriptoma/genética , Impressão Genômica/genética , Perfilação da Expressão Gênica , Genômica
15.
Plant Physiol ; 191(2): 986-1001, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36437711

RESUMO

Genomic imprinting promotes differential expression of parental alleles in the endosperm of flowering plants and is regulated by epigenetic modification such as DNA methylation and histone tail modifications in chromatin. After fertilization, the endosperm develops through a syncytial stage before it cellularizes and becomes a nutrient source for the growing embryo. Regional compartmentalization has been shown both in early and late endosperm development, and different transcriptional domains suggest divergent spatial and temporal regional functions. The analysis of the role of parent-of-origin allelic expression in the endosperm as a whole and the investigation of domain-specific functions have been hampered by the inaccessibility of the tissue for high-throughput transcriptome analyses and contamination from surrounding tissue. Here, we used fluorescence-activated nuclear sorting (FANS) of nuclear targeted GFP fluorescent genetic markers to capture parental-specific allelic expression from different developmental stages and specific endosperm domains. This approach allowed us to successfully identify differential genomic imprinting with temporal and spatial resolution. We used a systematic approach to report temporal regulation of imprinted genes in the endosperm, as well as region-specific imprinting in endosperm domains. Analysis of our data identified loci that are spatially differentially imprinted in one domain of the endosperm, while biparentally expressed in other domains. These findings suggest that the regulation of genomic imprinting is dynamic and challenge the canonical mechanisms for genomic imprinting.


Assuntos
Metilação de DNA , Endosperma , Endosperma/genética , Endosperma/metabolismo , Alelos , Metilação de DNA/genética , Impressão Genômica/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas
16.
Curr Opin Genet Dev ; 78: 102015, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36577293

RESUMO

Genomic imprinting is illustrative of intergenerational epigenetic inheritance. The passage of parental genomes into the embryo is accompanied by epigenetic modifications, resulting in imprinted monoallelic gene expression in mammals. Some imprinted genes are regulated by maternal inheritance of H3K27me3, which is termed noncanonical imprinting. Noncanonical imprinting is established by Polycomb repressive complexes during oogenesis and maintained in preimplantation embryos and extraembryonic tissues, including the placenta. Recent studies of noncanonical imprinting have contributed to our understanding of chromatin regulation in oocytes and early embryos, imprinted X-chromosome inactivation, secondary differentially DNA-methylated regions, and the anomalies of cloned mice. Here, I summarize the current knowledge of noncanonical imprinting and remark on analogous mechanisms in invertebrates and plants.


Assuntos
Metilação de DNA , Impressão Genômica , Animais , Camundongos , Cromatina , Metilação de DNA/genética , Epigênese Genética/genética , Impressão Genômica/genética , Proteínas do Grupo Polycomb/genética
18.
J Med Genet ; 60(2): 134-136, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35772847

RESUMO

BACKGROUND: Imprinting centre 2 (IC2) in the chromosomal region 11p15.5 regulates the monoallelic expression of imprinted genes by differential methylation of paternal and maternal chromosomes. Copy number variants in IC2 are associated with Beckwith-Wiedemann syndrome and Silver-Russell syndrome (SRS). Clinical outcome of IC2 deletions seems to depend on the parental origin of the chromosome, deletion size and inclusion or exclusion of enhancer and promoter regions. RESULTS: A paternally inherited 132 bp deletion within the KCNQ1OT1 gene was found in a proband with an SRS clinical phenotype. The patient's father and paternal grandmother, who both carry the deletion on their maternal chromosome, are unaffected. Review of other IC2 deletions and their associated clinical presentation was useful in understanding the genetic-phenotypic correlation. CONCLUSION: Only six cases have been reported with deletions involving exclusively IC2, one being identical to our proband's 132 bp deletion. Our study, which is based on more extensive segregation data than the previous 132 bp deletion report, confirms the association of this deletion with growth restriction when paternally inherited. Remarkably, even though our patient has the same deletion, he has more pronounced phenotypic features; our findings thus suggest that some degree of clinical variability may be associated with this loss.


Assuntos
Síndrome de Beckwith-Wiedemann , RNA Longo não Codificante , Síndrome de Silver-Russell , Humanos , Masculino , Síndrome de Beckwith-Wiedemann/genética , Metilação de DNA/genética , Impressão Genômica/genética , Fenótipo , Síndrome de Silver-Russell/genética , Feminino , RNA Longo não Codificante/genética
19.
Plant Physiol ; 191(1): 299-316, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36173333

RESUMO

Genomic imprinting is an epigenetic phenomenon in which differential allele expression occurs in a parent-of-origin-dependent manner. Imprinting in plants is tightly linked to transposable elements (TEs), and it has been hypothesized that genomic imprinting may be a consequence of demethylation of TEs. Here, we performed high-throughput sequencing of ribonucleic acids from four maize (Zea mays) endosperms that segregated newly silenced Mutator (Mu) transposons and identified 110 paternally expressed imprinted genes (PEGs) and 139 maternally expressed imprinted genes (MEGs). Additionally, two potentially novel paternally suppressed MEGs are associated with de novo Mu insertions. In addition, we find evidence for parent-of-origin effects on expression of 407 conserved noncoding sequences (CNSs) in maize endosperm. The imprinted CNSs are largely localized within genic regions and near genes, but the imprinting status of the CNSs are largely independent of their associated genes. Both imprinted CNSs and PEGs have been subject to relaxed selection. However, our data suggest that although MEGs were already subject to a higher mutation rate prior to their being imprinted, imprinting may be the cause of the relaxed selection of PEGs. In addition, although DNA methylation is lower in the maternal alleles of both the maternally and paternally expressed CNSs (mat and pat CNSs), the difference between the two alleles in H3K27me3 levels was only observed in pat CNSs. Together, our findings point to the importance of both transposons and CNSs in genomic imprinting in maize.


Assuntos
Metilação de DNA , Zea mays , Alelos , Zea mays/genética , Metilação de DNA/genética , Impressão Genômica/genética , Endosperma/genética , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas
20.
Hum Mol Genet ; 32(3): 402-416, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35994039

RESUMO

Genomic imprinting results in gene expression bias caused by parental chromosome of origin and occurs in genes with important roles during human brain development. However, the cell-type and temporal specificity of imprinting during human neurogenesis is generally unknown. By detecting within-donor allelic biases in chromatin accessibility and gene expression that are unrelated to cross-donor genotype, we inferred imprinting in both primary human neural progenitor cells and their differentiated neuronal progeny from up to 85 donors. We identified 43/20 putatively imprinted regulatory elements (IREs) in neurons/progenitors, and 133/79 putatively imprinted genes in neurons/progenitors. Although 10 IREs and 42 genes were shared between neurons and progenitors, most putative imprinting was only detected within specific cell types. In addition to well-known imprinted genes and their promoters, we inferred novel putative IREs and imprinted genes. Consistent with both DNA methylation-based and H3K27me3-based regulation of imprinted expression, some putative IREs also overlapped with differentially methylated or histone-marked regions. Finally, we identified a progenitor-specific putatively imprinted gene overlapping with copy number variation that is associated with uniparental disomy-like phenotypes. Our results can therefore be useful in interpreting the function of variants identified in future parent-of-origin association studies.


Assuntos
Variações do Número de Cópias de DNA , Metilação de DNA , Humanos , Metilação de DNA/genética , Impressão Genômica/genética , Dissomia Uniparental , Diferenciação Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...