Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Nucleic Acids Res ; 51(9): 4252-4265, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36840717

RESUMO

Linker H1 histones play an important role in animal and human pathogenesis, but their function in plant immunity is poorly understood. Here, we analyzed mutants of the three canonical variants of Arabidopsis H1 histones, namely H1.1, H1.2 and H1.3. We observed that double h1.1h1.2 and triple h1.1h1.2h1.3 (3h1) mutants were resistant to Pseudomonas syringae and Botrytis cinerea infections. Transcriptome analysis of 3h1 mutant plants showed H1s play a key role in regulating the expression of early and late defense genes upon pathogen challenge. Moreover, 3h1 mutant plants showed enhanced production of reactive oxygen species and activation of mitogen activated protein kinases upon pathogen-associated molecular pattern (PAMP) treatment. However, 3h1 mutant plants were insensitive to priming with flg22, a well-known bacterial PAMP which induces enhanced resistance in WT plants. The defective defense response in 3h1 upon priming was correlated with altered DNA methylation and reduced global H3K56ac levels. Our data place H1 as a molecular gatekeeper in governing dynamic changes in the chromatin landscape of defense genes during plant pathogen interaction.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Histonas , Interações Hospedeiro-Patógeno , Doenças das Plantas , Imunidade Vegetal , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/imunologia , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Histonas/genética , Histonas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Pseudomonas syringae/imunologia , Pseudomonas syringae/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
J Integr Plant Biol ; 65(5): 1312-1327, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36633200

RESUMO

Plant cells recognize microbial patterns with the plasma-membrane-localized pattern-recognition receptors consisting mainly of receptor kinases (RKs) and receptor-like proteins (RLPs). RKs, such as bacterial flagellin receptor FLS2, and their downstream signaling components have been studied extensively. However, newly discovered regulatory components of RLP-mediated immune signaling, such as the nlp20 receptor RLP23, await identification. Unlike RKs, RLPs lack a cytoplasmic kinase domain, instead recruiting the receptor-like kinases (RLKs) BAK1 and SOBIR1. SOBIR1 specifically works as an adapter for RLP-mediated immunity. To identify new regulators of RLP-mediated signaling, we looked for SOBIR1-binding proteins (SBPs) in Arabidopsis thaliana using protein immunoprecipitation and mass spectrometry, identifying two G-type lectin RLKs, SBP1 and SBP2, that physically interacted with SOBIR1. SBP1 and SBP2 showed high sequence similarity, were tandemly repeated on chromosome 4, and also interacted with both RLP23 and BAK1. sbp1 sbp2 double mutants obtained via CRISPR-Cas9 gene editing showed severely impaired nlp20-induced reactive oxygen species burst, mitogen-activated protein kinase (MAPK) activation, and defense gene expression, but normal flg22-induced immune responses. We showed that SBP1 regulated nlp20-induced immunity in a kinase activity-independent manner. Furthermore, the nlp20-induced the RLP23-BAK1 interaction, although not the flg22-induced FLS2-BAK1 interaction, was significantly reduced in sbp1 sbp2. This study identified SBPs as new regulatory components in RLP23 receptor complex that may specifically modulate RLP23-mediated immunity by positively regulating the interaction between the RLP23 receptor and the BAK1 co-receptor.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Imunidade Vegetal , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Imunidade/genética , Imunidade/imunologia , Lectinas/genética , Lectinas/imunologia , Lectinas/metabolismo , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Mitogênicos/metabolismo
3.
Nature ; 613(7942): 145-152, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36517600

RESUMO

Phytohormone signalling pathways have an important role in defence against pathogens mediated by cell-surface pattern recognition receptors and intracellular nucleotide-binding leucine-rich repeat class immune receptors1,2 (NLR). Pathogens have evolved counter-defence strategies to manipulate phytohormone signalling pathways to dampen immunity and promote virulence3. However, little is known about the surveillance of pathogen interference of phytohormone signalling by the plant innate immune system. The pepper (Capsicum chinense) NLR Tsw, which recognizes the effector nonstructural protein NSs encoded by tomato spotted wilt orthotospovirus (TSWV), contains an unusually large leucine-rich repeat (LRR) domain. Structural modelling predicts similarity between the LRR domain of Tsw and those of the jasmonic acid receptor COI1, the auxin receptor TIR1 and the strigolactone receptor partner MAX2. This suggested that NSs could directly target hormone receptor signalling to promote infection, and that Tsw has evolved a LRR resembling those of phytohormone receptors LRR to induce immunity. Here we show that NSs associates with COI1, TIR1 and MAX2 through a common repressor-TCP21-which interacts directly with these phytohormone receptors. NSs enhances the interaction of COI1, TIR1 or MAX2 with TCP21 and blocks the degradation of corresponding transcriptional repressors to disable phytohormone-mediated host immunity to the virus. Tsw also interacts directly with TCP21 and this interaction is enhanced by viral NSs. Downregulation of TCP21 compromised Tsw-mediated defence against TSWV. Together, our findings reveal that a pathogen effector targets TCP21 to inhibit phytohormone receptor function, promoting virulence, and a plant NLR protein has evolved to recognize this interference as a counter-virulence strategy, thereby activating immunity.


Assuntos
Capsicum , Doenças das Plantas , Reguladores de Crescimento de Plantas , Imunidade Vegetal , Proteínas de Plantas , Receptores de Reconhecimento de Padrão , Leucina , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Reguladores de Crescimento de Plantas/metabolismo , Imunidade Vegetal/imunologia , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Receptores de Reconhecimento de Padrão/química , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Reconhecimento da Imunidade Inata , Capsicum/imunologia , Capsicum/metabolismo , Capsicum/virologia , Virulência
4.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35131901

RESUMO

In this article, we describe the development of the plant immunity field, starting with efforts to understand the genetic basis for disease resistance, which ∼30 y ago led to the discovery of diverse classes of immune receptors that recognize and respond to infectious microbes. We focus on knowledge gained from studies of the rice XA21 immune receptor that recognizes RaxX (required for activation of XA21 mediated immunity X), a sulfated microbial peptide secreted by the gram-negative bacterium Xanthomonas oryzae pv. oryzae. XA21 is representative of a large class of plant and animal immune receptors that recognize and respond to conserved microbial molecules. We highlight the complexity of this large class of receptors in plants, discuss a possible role for RaxX in Xanthomonas biology, and draw attention to the important role of sulfotyrosine in mediating receptor-ligand interactions.


Assuntos
Resistência à Doença/imunologia , Oryza/imunologia , Proteínas de Plantas/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Agricultura/história , Alergia e Imunologia/história , Alergia e Imunologia/tendências , Infecções Bacterianas/genética , Proteínas de Bactérias/genética , Resistência à Doença/genética , História do Século XIX , História do Século XX , História do Século XXI , Peptídeos/química , Doenças das Plantas/microbiologia , Imunidade Vegetal/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
5.
Sci Rep ; 12(1): 1081, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058538

RESUMO

Sphingolipid long chain bases (LCBs) are building blocks of sphingolipids and can serve as signalling molecules, but also have antimicrobial activity and were effective in reducing growth of a range of human pathogens. In plants, LCBs are linked to cell death processes and the regulation of defence reactions against pathogens, but their role in directly influencing growth of plant-interacting microorganisms has received little attention. Therefore, we tested the major plant LCB phytosphingosine in in vitro tests with the plant pathogenic fungi Verticillium longisporum, Fusarium graminearum and Sclerotinia sclerotiorum, the plant symbiotic fungal endophyte Serendipita indica, the bacterial pathogens Pseudomonas syringae pv. tomato (Pst), Agrobacterium tumefaciens, and the related beneficial strain Rhizobium radiobacter. Phytosphingosine inhibited growth of these organisms at micromolar concentrations. Among the fungal pathogens, S. sclerotiorum was the most, and F. graminearum was the least sensitive. 15.9 µg/mL phytosphingosine effectively killed 95% of the three bacterial species. Plant disease symptoms and growth of Pst were also inhibited by phytosphingosine when co-infiltrated into Arabidopsis leaves, with no visible negative effect on host tissue. Taken together, we demonstrate that the plant LCB phytosphingosine inhibits growth of plant-interacting microorganisms. We discuss the potential of elevated LCB levels to enhance plant pathogen resistance.


Assuntos
Fungos/efeitos dos fármacos , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Agrobacterium tumefaciens , Antifúngicos/farmacologia , Arabidopsis , Fungos/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Folhas de Planta/metabolismo , Pseudomonas syringae , Esfingosina/metabolismo , Esfingosina/farmacologia
6.
Front Immunol ; 12: 771065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938291

RESUMO

Unlike animals, plants do not have specialized immune cells and lack an adaptive immune system. Instead, plant cells rely on their unique innate immune system to defend against pathogens and coordinate beneficial interactions with commensal and symbiotic microbes. One of the major convergent points for plant immune signaling is the nucleus, where transcriptome reprogramming is initiated to orchestrate defense responses. Mechanisms that regulate selective transport of nuclear signaling cargo and chromatin activity at the nuclear boundary play a pivotal role in immune activation. This review summarizes the current knowledge of how nuclear membrane-associated core protein and protein complexes, including the nuclear pore complex, nuclear transport receptors, and the nucleoskeleton participate in plant innate immune activation and pathogen resistance. We also discuss the role of their functional counterparts in regulating innate immunity in animals and highlight potential common mechanisms that contribute to nuclear membrane-centered immune regulation in higher eukaryotes.


Assuntos
Imunidade Inata/imunologia , Membrana Nuclear/imunologia , Complexo de Proteínas Formadoras de Poros Nucleares/imunologia , Imunidade Vegetal/imunologia , Proteínas de Plantas/imunologia , Plantas/imunologia , Transporte Ativo do Núcleo Celular/imunologia , Núcleo Celular/imunologia , Núcleo Celular/metabolismo , Modelos Imunológicos , Poro Nuclear/imunologia , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transdução de Sinais/imunologia
7.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829975

RESUMO

Autophagy is an important pathway of degrading excess and abnormal proteins and organelles through their engulfment into autophagosomes that subsequently fuse with the vacuole. Autophagy-related genes (ATGs) are essential for the formation of autophagosomes. To date, about 35 ATGs have been identified in Arabidopsis, which are involved in the occurrence and regulation of autophagy. Among these, 17 proteins are related to resistance against plant pathogens. The transcription coactivator non-expressor of pathogenesis-related genes 1 (NPR1) is involved in innate immunity and acquired resistance in plants, which regulates most salicylic acid (SA)-responsive genes. This paper mainly summarizes the role of ATGs and NPR1 in plant immunity and the advancement of research on ATGs in NPR1 metabolism, providing a new idea for exploring the relationship between ATGs and NPR1.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Autofagia/genética , Imunidade Vegetal/genética , Proteínas de Arabidopsis/metabolismo , Autofagossomos/genética , Autofagossomos/metabolismo , Autofagia/imunologia , Regulação da Expressão Gênica de Plantas/genética , Doenças das Plantas/genética , Imunidade Vegetal/imunologia , Plantas Geneticamente Modificadas/genética , Ácido Salicílico/metabolismo
8.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34769521

RESUMO

The WRKY transcription factors (TFs) network is composed of WRKY TFs' subset, which performs a critical role in immunity regulation of plants. However, functions of WRKY TFs' network remain unclear, particularly in non-model plants such as pepper (Capsicum annuum L.). This study functionally characterized CaWRKY30-a member of group III Pepper WRKY protein-for immunity of pepper against Ralstonia solanacearum infection. The CaWRKY30 was detected in nucleus, and its transcriptional expression levels were significantly upregulated by R. solanacearum inoculation (RSI), and foliar application ethylene (ET), abscisic acid (ABA), and salicylic acid (SA). Virus induced gene silencing (VIGS) of CaWRKY30 amplified pepper's vulnerability to RSI. Additionally, the silencing of CaWRKY30 by VIGS compromised HR-like cell death triggered by RSI and downregulated defense-associated marker genes, like CaPR1, CaNPR1, CaDEF1, CaABR1, CaHIR1, and CaWRKY40. Conversely, transient over-expression of CaWRKY30 in pepper leaves instigated HR-like cell death and upregulated defense-related maker genes. Furthermore, transient over-expression of CaWRKY30 upregulated transcriptional levels of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. On the other hand, transient over-expression of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40 upregulated transcriptional expression levels of CaWRKY30. The results recommend that newly characterized CaWRKY30 positively regulates pepper's immunity against Ralstonia attack, which is governed by synergistically mediated signaling by phytohormones like ET, ABA, and SA, and transcriptionally assimilating into WRKY TFs networks, consisting of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. Collectively, our data will facilitate to explicate the underlying mechanism of crosstalk between pepper's immunity and response to RSI.


Assuntos
Capsicum/imunologia , Resistência à Doença/imunologia , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/farmacocinética , Imunidade Vegetal/imunologia , Proteínas de Plantas/metabolismo , Ralstonia solanacearum/fisiologia , Sequência de Aminoácidos , Capsicum/efeitos dos fármacos , Capsicum/crescimento & desenvolvimento , Capsicum/microbiologia , Morte Celular , Resistência à Doença/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Homologia de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Plant Sci ; 312: 111017, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34620426

RESUMO

As a critical second messenger in plants, Ca2+ is involved in numerous biological processes including biotic and abiotic stress responses. The CBL-interacting protein kinases, known as CIPKs, are essential components in Ca2+-mediated signal transduction pathways. Here, we found that CIPK14 plays a role in the process of regulating immune response in Arabidopsis. The CIPK14 loss-of-function mutants exhibited enhanced resistance to the P. syringae, whereas CIPK14 overexpression plants were more susceptible to bacterial pathogen. Enhanced resistance in cipk14 mutants were accompanied by increased accumulation of SA and elevated expression of defense marker genes (PR1, EDS1, EDS5, ICS1). Overexpression of CIPK14 suppressed Pst DC3000, Pst DC3000 hrcC and flg22 induced generation of ROS and callose deposition. As compared with wild type plants, the expression levels of MPK3/6-dependent PTI marker genes (FRK1, CYP81F2, WAK2, FOX) were up-regulated in cipk14 mutants but down-regulated in CIPK14 overexpression plants after flg22 and elf18 treatment. Additionally, both loss-of-function and gain-of-function of CIPK14 significantly altered the phosphorylation status of MPK3/6 under flg22 treatment, suggesting that CIPK14 is a general modulator of plant immunity at both transcriptional and post-transcriptional level. Taken together, our results uncover that CIPK14 acts as a negative regulator in plant immune response.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Resistência à Doença/genética , Resistência à Doença/imunologia , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Imunidade/genética , Doenças das Plantas/microbiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Pseudomonas syringae/fisiologia
10.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445148

RESUMO

The gram-positive pathogenic bacterium Clavibacter michiganensis subsp. michiganensis (Cmm) causes bacterial canker disease in tomato, affecting crop yield and fruit quality. To understand how tomato plants respond, the dynamic expression profile of host genes was analyzed upon Cmm infection. Symptoms of bacterial canker became evident from the third day. As the disease progressed, the bacterial population increased in planta, reaching the highest level at six days and remained constant till the twelfth day post inoculation. These two time points were selected for transcriptomics. A progressive down-regulation of key genes encoding for components of the photosynthetic apparatus was observed. Two temporally separated defense responses were observed, which were to an extent interdependent. During the primary response, genes of the phenylpropanoid pathway were diverted towards the synthesis of monolignols away from S-lignin. In dicots, lignin polymers mainly consist of G- and S-units, playing an important role in defense. The twist towards G-lignin enrichment is consistent with previous findings, highlighting a response to generate an early protective barrier and to achieve a tight interplay between lignin recomposition and the primary defense response mechanism. Upon progression of Cmm infection, the temporal deactivation of phenylpropanoids coincided with the upregulation of genes that belong in a secondary response mechanism, supporting an elegant reprogramming of the host transcriptome to establish a robust defense apparatus and suppress pathogen invasion. This high-throughput analysis reveals a dynamic reorganization of plant defense mechanisms upon bacterial infection to implement an array of barriers preventing pathogen invasion and spread.


Assuntos
Regulação para Baixo/genética , Fotossíntese/genética , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Clavibacter/genética , Infecções por Bactérias Gram-Positivas/genética , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/microbiologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Fotossíntese/imunologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Transcriptoma/genética , Regulação para Cima/genética
11.
Mol Cell ; 81(17): 3449-3467, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34403694

RESUMO

All eukaryotic organisms have evolved sophisticated immune systems to appropriately respond to biotic stresses. In plants and animals, a key part of this immune system is pattern recognition receptors (PRRs). Plant PRRs are cell-surface-localized receptor kinases (RKs) or receptor proteins (RPs) that sense microbe- or self-derived molecular patterns to regulate pattern-triggered immunity (PTI), a robust form of antimicrobial immunity. Remarkable progress has been made in understanding how PRRs perceive their ligands, form active protein complexes, initiate cell signaling, and ultimately coordinate the cellular reprogramming that leads to PTI. Here, we discuss the critical roles of PRR complex formation and phosphorylation in activating PTI signaling, as well as the emerging paradigm in which receptor-like cytoplasmic kinases (RLCKs) act as executors of signaling downstream of PRR activation.


Assuntos
Imunidade Vegetal/imunologia , Imunidade Vegetal/fisiologia , Receptores de Reconhecimento de Padrão/imunologia , Fosforilação , Doenças das Plantas , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Receptores de Reconhecimento de Padrão/fisiologia , Transdução de Sinais
12.
PLoS One ; 16(8): e0256217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411175

RESUMO

The pepper resistance gene Bs3 triggers a hypersensitive response (HR) upon transcriptional activation by the corresponding effector protein AvrBs3 from the bacterial pathogen Xanthomonas. Expression of Bs3 in yeast inhibited proliferation, demonstrating that Bs3 function is not restricted to the plant kingdom. The Bs3 sequence shows striking similarity to flavin monooxygenases (FMOs), an FAD- and NADPH-containing enzyme class that is known for the oxygenation of a wide range of substrates and their potential to produce H2O2. Since H2O2 is a hallmark metabolite in plant immunity, we analyzed the role of H2O2 during Bs3 HR. We purified recombinant Bs3 protein from E. coli and confirmed the FMO function of Bs3 with FAD binding and NADPH oxidase activity in vitro. Translational fusion of Bs3 to the redox reporter roGFP2 indicated that the Bs3-dependent HR induces an increase of the intracellular oxidation state in planta. To test if the NADPH oxidation and putative H2O2 production of Bs3 is sufficient to induce HR, we adapted previous studies which have uncovered mutations in the NADPH binding site of FMOs that result in higher NADPH oxidase activity. In vitro studies demonstrated that recombinant Bs3S211A protein has twofold higher NADPH oxidase activity than wildtype Bs3. Translational fusions to roGFP2 showed that Bs3S211A also increased the intracellular oxidation state in planta. Interestingly, while the mutant derivative Bs3S211A had an increase in NADPH oxidase capacity, it did not trigger HR in planta, ultimately revealing that H2O2 produced by Bs3 on its own is not sufficient to trigger HR.


Assuntos
Proteínas de Bactérias/genética , Capsicum/genética , Oxigenases de Função Mista/genética , Doenças das Plantas/genética , Capsicum/crescimento & desenvolvimento , Morte Celular/genética , Dinitrocresóis/química , Escherichia coli/enzimologia , Regulação da Expressão Gênica de Plantas/genética , Peróxido de Hidrogênio/metabolismo , Oxigenases de Função Mista/química , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Nicotiana/genética , Xanthomonas/enzimologia , Xanthomonas/patogenicidade
13.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34417294

RESUMO

Plants employ sensor-helper pairs of NLR immune receptors to recognize pathogen effectors and activate immune responses. Yet, the subcellular localization of NLRs pre- and postactivation during pathogen infection remains poorly understood. Here, we show that NRC4, from the "NRC" solanaceous helper NLR family, undergoes dynamic changes in subcellular localization by shuttling to and from the plant-pathogen haustorium interface established during infection by the Irish potato famine pathogen Phytophthora infestans. Specifically, prior to activation, NRC4 accumulates at the extrahaustorial membrane (EHM), presumably to mediate response to perihaustorial effectors that are recognized by NRC4-dependent sensor NLRs. However, not all NLRs accumulate at the EHM, as the closely related helper NRC2 and the distantly related ZAR1 did not accumulate at the EHM. NRC4 required an intact N-terminal coiled-coil domain to accumulate at the EHM, whereas the functionally conserved MADA motif implicated in cell death activation and membrane insertion was dispensable for this process. Strikingly, a constitutively autoactive NRC4 mutant did not accumulate at the EHM and showed punctate distribution that mainly associated with the plasma membrane, suggesting that postactivation, NRC4 may undergo a conformation switch to form clusters that do not preferentially associate with the EHM. When NRC4 is activated by a sensor NLR during infection, however, NRC4 forms puncta mainly at the EHM and, to a lesser extent, at the plasma membrane. We conclude that following activation at the EHM, NRC4 may spread to other cellular membranes from its primary site of activation to trigger immune responses.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas NLR/metabolismo , Nicotiana/metabolismo , Phytophthora infestans/fisiologia , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Proteínas de Plantas/metabolismo , Membrana Celular/metabolismo , Resistência à Doença/imunologia , Proteínas NLR/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Receptores Imunológicos/metabolismo , Nicotiana/imunologia , Nicotiana/parasitologia
15.
PLoS Pathog ; 17(7): e1009757, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34320034

RESUMO

Antiviral RNA silencing/interference (RNAi) of negative-strand (-) RNA plant viruses (NSVs) has been studied less than for single-stranded, positive-sense (+)RNA plant viruses. From the latter, genomic and subgenomic mRNA molecules are targeted by RNAi. However, genomic RNA strands from plant NSVs are generally wrapped tightly within viral nucleocapsid (N) protein to form ribonucleoproteins (RNPs), the core unit for viral replication, transcription and movement. In this study, the targeting of the NSV tospoviral genomic RNA and mRNA molecules by antiviral RNA-induced silencing complexes (RISC) was investigated, in vitro and in planta. RISC fractions isolated from tospovirus-infected N. benthamiana plants specifically cleaved naked, purified tospoviral genomic RNAs in vitro, but not genomic RNAs complexed with viral N protein. In planta RISC complexes, activated by a tobacco rattle virus (TRV) carrying tospovirus NSs or Gn gene fragments, mainly targeted the corresponding viral mRNAs and hardly genomic (viral and viral-complementary strands) RNA assembled into RNPs. In contrast, for the (+)ssRNA cucumber mosaic virus (CMV), RISC complexes, activated by TRV carrying CMV 2a or 2b gene fragments, targeted CMV genomic RNA. Altogether, the results indicated that antiviral RNAi primarily targets tospoviral mRNAs whilst their genomic RNA is well protected in RNPs against RISC-mediated cleavage. Considering the important role of RNPs in the replication cycle of all NSVs, the findings made in this study are likely applicable to all viruses belonging to this group.


Assuntos
Imunidade Vegetal/imunologia , RNA Viral/imunologia , Complexo de Inativação Induzido por RNA/imunologia , Tospovirus/imunologia , RNA Mensageiro/imunologia , Nicotiana/virologia
16.
Viruses ; 13(5)2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066372

RESUMO

In plant-virus interactions, the plant immune system and virulence strategies are under constant pressure for dominance, and the balance of these opposing selection pressures can result in disease or resistance. The naturally evolving plant antiviral immune defense consists of a multilayered perception system represented by pattern recognition receptors (PRR) and resistance (R) proteins similarly to the nonviral pathogen innate defenses. Another layer of antiviral immunity, signaling via a cell surface receptor-like kinase to inhibit host and viral mRNA translation, has been identified as a virulence target of the geminivirus nuclear shuttle protein. The Geminiviridae family comprises broad-host range viruses that cause devastating plant diseases in a large variety of relevant crops and vegetables and hence have evolved a repertoire of immune-suppressing functions. In this review, we discuss the primary layers of the receptor-mediated antiviral immune system, focusing on the mechanisms developed by geminiviruses to overcome plant immunity.


Assuntos
Geminiviridae/imunologia , Geminiviridae/patogenicidade , Interações Hospedeiro-Patógeno/imunologia , Doenças das Plantas/virologia , Imunidade Vegetal , Receptores de Reconhecimento de Padrão/imunologia , Produtos Agrícolas/virologia , Geminiviridae/genética , Genoma Viral , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Transdução de Sinais
17.
Mol Plant ; 14(10): 1733-1744, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34153500

RESUMO

The nucleotide-binding and leucine-rich repeat (NLR) proteins comprise a major class of intracellular immune receptors that are capable of detecting pathogen-derived molecules and activating immunity and cell death in plants. The activity of some NLRs, particularly the Toll-like/interleukin-1 receptor (TIR) type, is highly correlated with their nucleocytoplasmic distribution. However, whether and how the nucleocytoplasmic homeostasis of NLRs is coordinated through a bidirectional nuclear shuttling mechanism remains unclear. Here, we identified a nuclear transport receptor, KA120, which is capable of affecting the nucleocytoplasmic distribution of an NLR protein and is essential in preventing its autoactivation. We showed that the ka120 mutant displays an autoimmune phenotype and NLR-induced transcriptome features. Through a targeted genetic screen using an artificial NLR microRNA library, we identified the TIR-NLR gene SNC1 as a genetic interactor of KA120. Loss-of-function snc1 mutations as well as compromising SNC1 protein activities all substantially suppressed ka120-induced autoimmune activation, and the enhanced SNC1 activity upon loss of KA120 functionappeared to occur at the protein level. Overexpression of KA120 efficiently repressed SNC1 activity and led to a nearly complete suppression of the autoimmune phenotype caused by the gain-of-function snc1-1 mutation or SNC1 overexpression in transgenic plants. Further florescence imaging analysis indicated that SNC1 undergoes altered nucleocytoplasmic distribution with significantly reduced nuclear signal when KA120 is constitutively expressed, supporting a role of KA120 in coordinating SNC1 nuclear abundance and activity. Consistently, compromising the SNC1 nuclear level by disrupting the nuclear pore complex could also partially rescue ka120-induced autoimmunity. Collectively, our study demonstrates that KA120 is essential to avoid autoimmune activation in the absence of pathogens and is required to constrain the nuclear activity of SNC1, possibly through coordinating SNC1 nucleocytoplasmic homeostasis as a potential mechanism.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Autoimunidade , Carioferinas/fisiologia , Proteínas NLR/metabolismo , Imunidade Vegetal/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas NLR/antagonistas & inibidores , Imunidade Vegetal/imunologia
18.
PLoS Pathog ; 17(6): e1009641, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34166468

RESUMO

Biotrophic plant pathogens secrete effector proteins to manipulate the host physiology. Effectors suppress defenses and induce an environment favorable to disease development. Sequence-based prediction of effector function is impeded by their rapid evolution rate. In the maize pathogen Ustilago maydis, effector-coding genes frequently organize in clusters. Here we describe the functional characterization of the pleiades, a cluster of ten effector genes, by analyzing the micro- and macroscopic phenotype of the cluster deletion and expressing these proteins in planta. Deletion of the pleiades leads to strongly impaired virulence and accumulation of reactive oxygen species (ROS) in infected tissue. Eight of the Pleiades suppress the production of ROS upon perception of pathogen associated molecular patterns (PAMPs). Although functionally redundant, the Pleiades target different host components. The paralogs Taygeta1 and Merope1 suppress ROS production in either the cytoplasm or nucleus, respectively. Merope1 targets and promotes the auto-ubiquitination activity of RFI2, a conserved family of E3 ligases that regulates the production of PAMP-triggered ROS burst in plants.


Assuntos
Basidiomycota/fisiologia , Basidiomycota/patogenicidade , Proteínas Fúngicas/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Virulência/fisiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
19.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879573

RESUMO

Plants have an innate immune system to fight off potential invaders that is based on the perception of nonself or modified-self molecules. Microbe-associated molecular patterns (MAMPs) are evolutionarily conserved microbial molecules whose extracellular detection by specific cell surface receptors initiates an array of biochemical responses collectively known as MAMP-triggered immunity (MTI). Well-characterized MAMPs include chitin, peptidoglycan, and flg22, a 22-amino acid epitope found in the major building block of the bacterial flagellum, FliC. The importance of MAMP detection by the plant immune system is underscored by the large diversity of strategies used by pathogens to interfere with MTI and that failure to do so is often associated with loss of virulence. Yet, whether or how MTI functions beyond pathogenic interactions is not well understood. Here we demonstrate that a community of root commensal bacteria modulates a specific and evolutionarily conserved sector of the Arabidopsis immune system. We identify a set of robust, taxonomically diverse MTI suppressor strains that are efficient root colonizers and, notably, can enhance the colonization capacity of other tested commensal bacteria. We highlight the importance of extracellular strategies for MTI suppression by showing that the type 2, not the type 3, secretion system is required for the immunomodulatory activity of one robust MTI suppressor. Our findings reveal that root colonization by commensals is controlled by MTI, which, in turn, can be selectively modulated by specific members of a representative bacterial root microbiota.


Assuntos
Microbiota/fisiologia , Imunidade Vegetal/imunologia , Raízes de Plantas/microbiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bactérias/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Imunidade , Microbiota/imunologia , Doenças das Plantas/microbiologia , Raízes de Plantas/imunologia , Plantas/microbiologia , Microbiologia do Solo , Simbiose/imunologia , Virulência
20.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33853950

RESUMO

Plants encounter various microbes in nature and must respond appropriately to symbiotic or pathogenic ones. In rice, the receptor-like kinase OsCERK1 is involved in recognizing both symbiotic and immune signals. However, how these opposing signals are discerned via OsCERK1 remains unknown. Here, we found that receptor competition enables the discrimination of symbiosis and immunity signals in rice. On the one hand, the symbiotic receptor OsMYR1 and its short-length chitooligosaccharide ligand inhibit complex formation between OsCERK1 and OsCEBiP and suppress OsCERK1 phosphorylating the downstream substrate OsGEF1, which reduces the sensitivity of rice to microbe-associated molecular patterns. Indeed, OsMYR1 overexpression lines are more susceptible to the fungal pathogen Magnaporthe oryzae, whereas Osmyr1 mutants show higher resistance. On the other hand, OsCEBiP can bind OsCERK1 and thus block OsMYR1-OsCERK1 heteromer formation. Consistently, the Oscebip mutant displayed a higher rate of mycorrhizal colonization at early stages of infection. Our results indicate that OsMYR1 and OsCEBiP receptors compete for OsCERK1 to determine the outcome of symbiosis and immunity signals.


Assuntos
Oligossacarídeos/metabolismo , Oryza/metabolismo , Simbiose/imunologia , Adaptação Biológica/imunologia , Adaptação Biológica/fisiologia , Ascomicetos/metabolismo , Quitina/imunologia , Quitosana/imunologia , Regulação da Expressão Gênica de Plantas/genética , Micorrizas/metabolismo , Oligossacarídeos/genética , Oligossacarídeos/imunologia , Oryza/fisiologia , Fosforilação , Imunidade Vegetal/imunologia , Proteínas de Plantas/genética , Transdução de Sinais/genética , Simbiose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...