Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Subcell Biochem ; 101: 41-80, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36520303

RESUMO

The Hsp90 chaperone is known to interact with a diverse array of client proteins. However, in every case examined, Hsp90 is also accompanied by a single or several co-chaperone proteins. One class of co-chaperone contains a tetratricopeptide repeat (TPR) domain that targets the co-chaperone to the C-terminal region of Hsp90. Within this class are Hsp90-binding peptidylprolyl isomerases, most of which belong to the FK506-binding protein (FKBP) family. Despite the common association of FKBP co-chaperones with Hsp90, it is abundantly clear that the client protein influences, and is often influenced by, the particular FKBP bound to Hsp90. Examples include Xap2 in aryl hydrocarbon receptor complexes and FKBP52 in steroid receptor complexes. In this chapter, we discuss the known functional roles played by FKBP co-chaperones and, where possible, relate distinctive functions to structural differences between FKBP members.


Assuntos
Proteínas de Choque Térmico HSP90 , Proteínas de Ligação a Tacrolimo , Humanos , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Peptidilprolil Isomerase/metabolismo , Ligação Proteica , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo , Imunofilinas/genética , Imunofilinas/metabolismo
2.
Toxins (Basel) ; 11(6)2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216655

RESUMO

Destruxin A (DA), a major secondary metabolite of Metarhizium anisopliae, has anti-immunity to insects. However, the detailed mechanism and its interactions with target proteins are elusive. Previously, three immunophilins, peptidyl-prolyl cis-trans isomerase (BmPPI), FK506 binding-protein 45 (BmFKBP45) and BmFKBP59 homologue, were isolated from the silkworm, Bombyx mori Bm12 cell line following treatment with DA, which suggested that these proteins were possible DA-binding proteins. To validate the interaction between DA and the three immunophilins, we performed bio-layer interferometry (BLI) assay, and the results showed that DA has interaction with BmPPI, whose affinity constant value is 1.98 × 10-3 M and which has no affinity with FKBP45 and FKBP59 homologue in vitro. Furthermore, we investigated the affinity between DA and human PPI protein (HsPPIA) and the affinity constant (KD) value is 2.22 × 10-3 M. Additionally, we compared the effects of silkworm and human PPI proteins produced by DA and immunosuppressants, cyclosporine A (CsA), and tacrolimus (FK506), by employing I2H (insect two-hybrid) in the SF-9 cell line. The results indicated that in silkworm, the effects created by DA and CsA were stronger than FK506. Furthermore, the effects created by DA in silkworm were stronger than those in humans. This study will offer new thinking to elucidate the molecular mechanism of DA in the immunity system of insects.


Assuntos
Depsipeptídeos/toxicidade , Imunofilinas/metabolismo , Proteínas de Insetos/metabolismo , Micotoxinas/toxicidade , Animais , Bombyx , Imunofilinas/genética , Proteínas de Insetos/genética , Células Sf9 , Técnicas do Sistema de Duplo-Híbrido
3.
Molecules ; 23(4)2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29671793

RESUMO

The involvement of plant immunophilins in multiple essential processes such as development, various ways of adapting to biotic and abiotic stresses, and photosynthesis has already been established. Previously, research has demonstrated the involvement of three immunophilin genes (AtCYP19-1/ROC3, AtFKBP65/ROF2, and AtCYP57) in the control of plant response to invasion by various pathogens. Current research attempts to identify host target proteins for each of the selected immunophilins. As a result, candidate interactors have been determined and confirmed using a yeast 2-hybrid (Y2H) system for protein⁻protein interaction assays. The generation of mutant isoforms of ROC3 and AtCYP57 harboring substituted amino acids in the in silico-predicted active sites became essential to achieving significant binding to its target partners. This data shows that ROF2 targets calcium-dependent lipid-binding domain-containing protein (At1g70790; AT1) and putative protein phosphatase (At2g30020; АТ2), whereas ROC3 interacts with GTP-binding protein (At1g30580; ENGD-1) and RmlC-like cupin (At5g39120). The immunophilin AtCYP57 binds to putative pyruvate decarboxylase-1 (Pdc1) and clathrin adaptor complex-related protein (At5g05010). Identified interactors confirm our previous findings that immunophilins ROC3, ROF2, and AtCYP57 are directly involved with stress response control. Further, these findings extend our understanding of the molecular functional pathways of these immunophilins.


Assuntos
Arabidopsis/metabolismo , Imunofilinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunofilinas/genética , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Mol Genet Genomics ; 293(2): 381-390, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29128880

RESUMO

Plasmodiophora brassicae is a soil-borne pathogen that belongs to Rhizaria, an almost unexplored eukaryotic organism group. This pathogen requires a living host for growth and multiplication, which makes molecular analysis further complicated. To broaden our understanding of a plasmodiophorid such as P. brassicae, we here chose to study immunophilins, a group of proteins known to have various cellular functions, including involvement in plant defense and pathogen virulence. Searches in the P. brassicae genome resulted in 20 putative immunophilins comprising of 11 cyclophilins (CYPs), 7 FK506-binding proteins (FKBPs) and 2 parvulin-like proteins. RNAseq data showed that immunophilins were differentially regulated in enriched life stages such as germinating spores, maturing spores, and plasmodia, and infected Brassica hosts (B. rapa, B. napus and B. oleracea). PbCYP3 was highly induced in all studied life stages and during infection of all three Brassica hosts, and hence was selected for further analysis. PbCYP3 was heterologously expressed in Magnaporthe oryzae gene-inactivated ΔCyp1 strain. The new strain ΔCyp1+ overexpressing PbCYP3 showed increased virulence on rice compared to the ΔCyp1 strain. These results suggest that the predicted immunophilins and particularly PbCYP3 are activated during plant infection. M. oryzae is a well-studied fungal pathogen and could be a valuable tool for future functional studies of P. brassicae genes, particularly elucidating their role during various infection phases.


Assuntos
Ciclofilinas/genética , Imunofilinas/genética , Plasmodioforídeos/genética , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Brassica/classificação , Brassica/parasitologia , Ciclofilinas/classificação , Ciclofilinas/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Imunofilinas/metabolismo , Filogenia , Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Plasmodioforídeos/metabolismo , Plasmodioforídeos/fisiologia , Proteínas de Protozoários/metabolismo , Homologia de Sequência de Aminoácidos , Esporos de Protozoários/genética
5.
Mol Biol Cell ; 28(22): 3070-3081, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28904211

RESUMO

Autophagy is an evolutionary conserved process by which eukaryotic cells undergo self-digestion of cytoplasmic components. Here we report that a novel Drosophila immunophilin, which we have named Zonda, is critically required for starvation-induced autophagy. We show that Zonda operates at early stages of the process, specifically for Vps34-mediated phosphatidylinositol 3-phosphate (PI3P) deposition. Zonda displays an even distribution under basal conditions and, soon after starvation, nucleates in endoplasmic reticulum-associated foci that colocalize with omegasome markers. Zonda nucleation depends on Atg1, Atg13, and Atg17 but does not require Vps34, Vps15, Atg6, or Atg14. Zonda interacts physically with Atg1 through its kinase domain, as well as with Atg6 and Vps34. We propose that Zonda is an early component of the autophagy cascade necessary for Vps34-dependent PI3P deposition and omegasome formation.


Assuntos
Autofagia/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Imunofilinas/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Imunofilinas/genética , Fagossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de Sinais
6.
Sci Rep ; 7(1): 9763, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852180

RESUMO

Aberrant restoration of AR activity is linked with prostate tumor growth, therapeutic failures and development of castrate-resistant prostate cancer. Understanding the processes leading to AR-reactivation should provide the foundation for novel avenues of drug discovery. A differential gene expression study was conducted using biopsies from CaP and BPH patients to identify the components putatively responsible for reinstating AR activity in CaP. From the set of genes upregulated in CaP, FKBP52, an AR co-chaperone, was selected for further analysis. Expression of FKBP52 was positively correlated with that of c-Myc. The functional cross-talk between c-Myc and FKBP52 was established using c-Myc specific-siRNA to LNCaP cells that resulted in reduction of FKBP52. A non-canonical E-box sequence housing a putative c-Myc binding site was detected on the FKBP4 promoter using in silico search. LNCaP cells transfected with the FKBP52 promoter cloned in pGL3 basic showed increased luciferase activity which declined considerably when the promoter-construct was co-transfected with c-Myc specific-siRNA. ChIP-PCR confirmed the binding of c-Myc with the conserved E-box located in the FKBP52 promoter. c-Myc downregulation concomitantly affected expression of FGF8. Since expression of FGF8 is controlled by AR, our study unveiled a novel functional axis between c-Myc, AR and FGF8 operating through FKBP52.


Assuntos
Regulação da Expressão Gênica , Imunofilinas/genética , Hiperplasia Prostática/genética , Hiperplasia Prostática/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Transdução de Sinais , Regiões 5' não Traduzidas , Linhagem Celular Tumoral , Proliferação de Células , Biologia Computacional/métodos , Progressão da Doença , Fator 8 de Crescimento de Fibroblasto/genética , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Imunofilinas/metabolismo , Masculino , Modelos Biológicos , Regiões Promotoras Genéticas , Hiperplasia Prostática/patologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Transcriptoma
7.
Cell Stress Chaperones ; 22(6): 833-845, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28567569

RESUMO

The novel class of dual-family immunophilins (henceforth abbreviated as DFI) represents naturally occurring chimera of classical FK506-binding protein (FKBP) and cyclophilin (CYN), connected by a flexible linker that may include a three-unit tetratricopeptide (TPR) repeat. Here, I report a comprehensive analysis of all current DFI sequences and their host organisms. DFIs are of two kinds: CFBP (cyclosporin- and FK506-binding protein) and FCBP (FK506- and cyclosporin-binding protein), found in eukaryotes. The CFBP type occurs in select bacteria that are mostly extremophiles, such as psychrophilic, thermophilic, halophilic, and sulfur-reducing. Essentially all DFI organisms are unicellular. I suggest that DFIs are specialized bifunctional chaperones that use their flexible interdomain linker to associate with large polypeptides or multisubunit megacomplexes to promote simultaneous folding or renaturation of two clients in proximity, essential in stressful and denaturing environments. Analysis of sequence homology and predicted 3D structures of the FKBP and CYN domains as well as the TPR linkers upheld the modular nature of the DFIs and revealed the uniqueness of their TPR domain. The CFBP and FCBP genes appear to have evolved in parallel pathways with no obvious single common ancestor. The occurrence of both types of DFI in multiple unrelated phylogenetic clades supported their selection in metabolic and environmental niche roles rather than a traditional taxonomic relationship. Nonetheless, organisms with these rare immunophilins may define an operational taxonomic unit (OTU) bound by the commonality of chaperone function.


Assuntos
Ciclofilinas/genética , Imunofilinas/genética , Filogenia , Proteínas de Ligação a Tacrolimo/genética , Sequência de Aminoácidos/genética , Ciclofilinas/química , Ecologia , Humanos , Imunofilinas/química , Imunofilinas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Conformação Molecular , Ligação Proteica , Homologia de Sequência , Relação Estrutura-Atividade , Proteínas de Ligação a Tacrolimo/química , Repetições de Tetratricopeptídeos/genética
8.
J Cell Biol ; 216(2): 393-408, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28077446

RESUMO

In meiotic prophase I, homologous chromosome pairing is promoted through chromosome movement mediated by nuclear envelope proteins, microtubules, and dynein. After proper homologue pairing has been established, the synaptonemal complex (SC) assembles along the paired homologues, stabilizing their interaction and allowing for crossing over to occur. Previous studies have shown that perturbing chromosome movement leads to pairing defects and SC polycomplex formation. We show that FKB-6 plays a role in SC assembly and is required for timely pairing and proper double-strand break repair kinetics. FKB-6 localizes outside the nucleus, and in its absence, the microtubule network is altered. FKB-6 is required for proper movement of dynein, increasing resting time between movements. Attenuating chromosomal movement in fkb-6 mutants partially restores the defects in synapsis, in agreement with FKB-6 acting by decreasing chromosomal movement. Therefore, we suggest that FKB-6 plays a role in regulating dynein movement by preventing excess chromosome movement, which is essential for proper SC assembly and homologous chromosome pairing.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Pareamento Cromossômico , Posicionamento Cromossômico , Imunofilinas/metabolismo , Chaperonas Moleculares/metabolismo , Complexo Sinaptonêmico/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Dineínas do Citoplasma/genética , Dineínas do Citoplasma/metabolismo , Dineínas/genética , Dineínas/metabolismo , Genótipo , Imunofilinas/genética , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Chaperonas Moleculares/genética , Mutação , Fenótipo , Interferência de RNA , Transdução de Sinais , Complexo Sinaptonêmico/genética , Fatores de Tempo
9.
Mol Carcinog ; 56(2): 774-780, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27479355

RESUMO

Genome-wide association studies have reported more than 100 independent common loci associated with breast cancer risk. The contribution of low-frequency or rare variants to breast cancer susceptibility has not been well explored. Thus, we applied exome chip to genotype >200 000 low-frequency and rare variants in 1064 breast cancer cases and 1125 cancer-free controls and subsequently validated promising associations in another 1040 breast cancer cases and 1240 controls. We identified two low-frequency nonsynonymous variants at FKBPL (rs200847762, OR = 0.34, 95% CI = 0.20-0.57, P = 4.31 × 10-5 ) and ARPC1B (rs1045012, OR = 0.56, 95% CI = 0.43-0.74, P = 4.30 × 10-5 ) associated with breast cancer risk. In stratification analyses, we found that the protective effect of rs200847762 was stronger in ER-positive breast cancer (OR = 0.18, 95% CI = 0.06-0.42) than that in ER-negative one (OR = 0.59, 95% CI = 0.31-1.05). Our findings indicate that low-frequency variants may also contribute to breast cancer susceptibility and genetic variants in 6p21.33 and 7q22.1 are important in breast carcinogenesis. © 2016 Wiley Periodicals, Inc.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Neoplasias da Mama/genética , Imunofilinas/genética , Polimorfismo Genético , Adulto , Povo Asiático/genética , Mama/patologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/epidemiologia , Estudos de Casos e Controles , China/epidemiologia , Feminino , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Pessoa de Meia-Idade , Proteínas de Ligação a Tacrolimo
10.
Sci Rep ; 6: 20914, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26861912

RESUMO

Neovascular age-related macular degeneration (AMD) and polypoidal choroidal vasculopathy (PCV) are leading causes of blindness in aging populations. This study was conducted to investigate the associations of chromosome 6p21.3 region, including CFB-SKIV2L-TNXB-FKBPL-NOTCH4 genes, with both neovascular AMD and PCV. Six single nucleotide polymorphisms (SNPs) in this region and two known AMD-associated SNPs in CFH (rs800292) and HTRA1 (rs11200638) were genotyped in a Han Chinese cohort composed of 490 neovascular AMD patients, 419 PCV patients and 1316 controls. Among the SNPs, TNXB rs12153855 and FKBPL rs9391734 conferred an increased susceptibility to neovascular AMD (P = 2.8 × 10(-4) and 0.001, OR = 1.80 and 1.76, respectively), while SKIV2L exerted a protective effect on neovascular AMD (P = 2.2 × 10(-4), OR = 0.49). Rs12153855C and rs9391734A alleles could further increase the susceptibility to AMD in subjects with rs800292, rs11200638 and rs429608 risk alleles. However, only the association of SKIV2L rs429608 remained significant after adjusting for rs800292, rs11200638 and the other 5 SNPs. The protective haplotype AATGAG exhibited significant association with neovascular AMD (permutation P = 0.015, OR = 0.34). None of the SNPs in this region was associated with PCV. Association profiles of 6p21.3 region showed discrepancy between neovascular AMD and PCV, indicating possible molecular and pathological differences between these two retinal disorders.


Assuntos
Neovascularização de Coroide/genética , Cromossomos Humanos Par 6 , Estudos de Associação Genética , Variação Genética , Degeneração Macular/genética , Idoso , Idoso de 80 Anos ou mais , Alelos , Estudos de Casos e Controles , Neovascularização de Coroide/patologia , DNA Helicases/genética , Feminino , Frequência do Gene , Loci Gênicos , Genótipo , Humanos , Imunofilinas/genética , Desequilíbrio de Ligação , Degeneração Macular/patologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas/genética , Receptor Notch4 , Receptores Notch/genética , Proteínas de Ligação a Tacrolimo , Tenascina/genética
11.
Nucleic Acids Res ; 44(6): 2909-25, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26762975

RESUMO

The nuclear immunophilin FKBP25 interacts with chromatin-related proteins and transcription factors and is suggested to interact with nucleic acids. Currently the structural basis of nucleic acid binding by FKBP25 is unknown. Here we determined the nuclear magnetic resonance (NMR) solution structure of full-length human FKBP25 and studied its interaction with DNA. The FKBP25 structure revealed that the N-terminal helix-loop-helix (HLH) domain and C-terminal FK506-binding domain (FKBD) interact with each other and that both of the domains are involved in DNA binding. The HLH domain forms major-groove interactions and the basic FKBD loop cooperates to form interactions with an adjacent minor-groove of DNA. The FKBP25-DNA complex model, supported by NMR and mutational studies, provides structural and mechanistic insights into the nuclear immunophilin-mediated nucleic acid recognition.


Assuntos
DNA/química , Imunofilinas/química , Proteínas de Ligação a Tacrolimo/química , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , DNA/genética , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Imunofilinas/genética , Imunofilinas/metabolismo , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Fator de Transcrição YY1/química , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
12.
Parasitology ; 142(11): 1404-14, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26156578

RESUMO

Immunophilins comprise two protein families, cyclophilins (CYPs) and FK506-binding proteins (FKBPs), and are the major receptors for the immunosuppressive drugs cyclosporin A (CsA) and FK506 (tacrolimus), respectively. Most eukaryotic species have at least one immunophilin and some of them have been associated with pathogenesis of infectious or parasitic diseases or the action of antiparasitic drugs. The human malarial parasite Plasmodium falciparum has 13 immunophilin or immunophilin-like genes but the functions of their products are unknown. We set out to identify the parasite proteins that interact with the major CYPs, PfCYP19A and PfCYP19B, and the FKBP, PfFKBP35, using a combination of co-immunoprecipitation and yeast two-hybrid screening. We identified a cohort of putative interacting partners and further investigation of some of these revealed potentially novel roles in parasite biology. We demonstrated that (i) P. falciparum CYPs interacted with the heat shock protein 70, (ii) treatment of parasites with CYP ligands disrupted transport of the rhoptry-associated protein 1, and (iii) PfFKBP35 interacted with parasite histones in a way that might modulate gene expression. These findings begin to elucidate the functions of immunophilins in malaria. Furthermore, the known antimalarial effects of CsA, FK506 and non-immunosuppressive derivatives of these immunophilin ligands could be mediated through these partner proteins.


Assuntos
Ciclosporina/metabolismo , Imunofilinas/metabolismo , Plasmodium falciparum/imunologia , Proteínas de Ligação a Tacrolimo/metabolismo , Tacrolimo/metabolismo , Animais , Anticorpos Antiprotozoários/imunologia , Antimaláricos/farmacologia , Ciclofilinas/genética , Ciclofilinas/metabolismo , Feminino , Humanos , Imunofilinas/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Coelhos , Proteínas de Ligação a Tacrolimo/genética , Técnicas do Sistema de Duplo-Híbrido
13.
Am J Hum Genet ; 96(5): 832-40, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25937444

RESUMO

Genome-wide association studies have successfully identified a subset of common variants associated with lung cancer risk. However, these variants explain only a fraction of lung cancer heritability. It has been proposed that low-frequency or rare variants might have strong effects and contribute to the missing heritability. To assess the role of low-frequency or rare variants in lung cancer development, we analyzed exome chips representing 1,348 lung cancer subjects and 1,998 control subjects during the discovery stage and subsequently evaluated promising associations in an additional 4,699 affected subjects and 4,915 control subjects during the replication stages. Single-variant and gene-based analyses were carried out for coding variants with a minor allele frequency less than 0.05. We identified three low-frequency missense variants in BAT2 (rs9469031, c.1544C>T [p.Pro515Leu]; odds ratio [OR] = 0.55, p = 1.28 × 10(-10)), FKBPL (rs200847762, c.410C>T [p.Pro137Leu]; OR = 0.25, p = 9.79 × 10(-12)), and BPIFB1 (rs6141383, c.850G>A [p.Val284Met]; OR = 1.72, p = 1.79 × 10(-7)); these variants were associated with lung cancer risk. rs9469031 in BAT2 and rs6141383 in BPIFB1 were also associated with the age of onset of lung cancer (p = 0.001 and 0.006, respectively). BAT2 and FKBPL at 6p21.33 and BPIFB1 at 20q11.21 were differentially expressed in lung tumors and paired normal tissues. Gene-based analysis revealed that FKBPL, in which two independent variants were identified, might account for the association with lung cancer risk at 6p21.33. Our results highlight the important role low-frequency variants play in lung cancer susceptibility and indicate that candidate genes at 6p21.33 and 20q11.21 are potentially biologically relevant to lung carcinogenesis.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Neoplasias Pulmonares/genética , Povo Asiático , Autoantígenos/genética , Cromossomos Humanos Par 20/genética , Cromossomos Humanos Par 6/genética , Proteínas de Ligação a Ácido Graxo , Feminino , Frequência do Gene , Genótipo , Humanos , Imunofilinas/genética , Neoplasias Pulmonares/patologia , Masculino , Proteínas/genética , Fatores de Risco , Proteínas de Ligação a Tacrolimo
14.
Curr Mol Pharmacol ; 9(1): 66-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25986567

RESUMO

The steroid receptor-associated TPR cochaperones FKBP51, FKBP52, CyP40 and PP5 have non-redundant roles in steroid receptor function that impact steroid hormone-binding affinity, nucleocyoplasmic shuttling and transcriptional activation of target genes in a tissue-specific manner. Aberrant expression of these TPR immunophilins has the potential to cause steroid-based diseases, including breast and prostate cancer, diabetes and metabolic disorders, male and female infertility and major depressive and neurodegenerative disorders. This review summaries the function of these proteins as cochaperones in steroid receptor-Hsp90 complexes and elaborates on their role in alternative, Hsp90-dependent and -independent signalling pathways not involving steroid receptors. The review also extensively covers current knowledge of the link between the steroid receptor-associated immunophilins and human disease. An improved understanding of their mechanisms of action has revealed opportunities for molecular therapies to enhance or inhibit cellular processes under their control that contribute both to human health and disease.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Imunofilinas/metabolismo , Receptores de Esteroides/metabolismo , Transdução de Sinais , Animais , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/genética , Transtorno Depressivo/metabolismo , Descoberta de Drogas , Humanos , Imunofilinas/química , Imunofilinas/genética , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Modelos Moleculares , Terapia de Alvo Molecular , Neoplasias/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Conformação Proteica
15.
Oncotarget ; 6(14): 12209-23, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25906750

RESUMO

FK506-binding protein-like (FKBPL) has established roles as an anti-tumor protein, with a therapeutic peptide based on this protein, ALM201, shortly entering phase I/II clinical trials. Here, we evaluated FKBPL's prognostic ability in primary breast cancer tissue, represented on tissue microarrays (TMA) from 3277 women recruited into five independent retrospective studies, using immunohistochemistry (IHC). In a meta-analysis, FKBPL levels were a significant predictor of BCSS; low FKBPL levels indicated poorer breast cancer specific survival (BCSS) (hazard ratio (HR) = 1.30, 95% confidence interval (CI) 1.14-1.49, p < 0.001). The prognostic impact of FKBPL remained significant after adjusting for other known prognostic factors (HR = 1.25, 95% CI 1.07-1.45, p = 0.004). For the sub-groups of 2365 estrogen receptor (ER) positive patients and 1649 tamoxifen treated patients, FKBPL was significantly associated with BCSS (HR = 1.34, 95% CI 1.13-1.58, p < 0.001, and HR = 1.25, 95% CI 1.04-1.49, p = 0.02, respectively). A univariate analysis revealed that FKBPL was also a significant predictor of relapse free interval (RFI) within the ER positive patient group, but it was only borderline significant within the smaller tamoxifen treated patient group (HR = 1.32 95% CI 1.05-1.65, p = 0.02 and HR = 1.23 95% CI 0.99-1.54, p = 0.06, respectively). The data suggests a role for FKBPL as a prognostic factor for BCSS, with the potential to be routinely evaluated within the clinic.


Assuntos
Neoplasias da Mama/genética , Imunofilinas/genética , Imunofilinas/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Estudos de Coortes , Feminino , Humanos , Medicina de Precisão , Prognóstico , Análise de Sobrevida , Proteínas de Ligação a Tacrolimo
16.
J Cell Biol ; 208(7): 961-74, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25800056

RESUMO

We previously identified Waf1 Cip1 stabilizing protein 39 (WISp39) as a binding partner for heat shock protein 90 (Hsp90). We now report that WISp39 has an essential function in the control of directed cell migration, which requires WISp39 interaction with Hsp90. WISp39 knockdown (KD) resulted in the loss of directional motility of mammalian cells and profound changes in cell morphology, including the loss of a single leading edge. WISp39 binds Coronin 1B, known to regulate the Arp2/3 complex and Cofilin at the leading edge. WISp39 preferentially interacts with phosphorylated Coronin 1B, allowing it to complex with Slingshot phosphatase (SSH) to dephosphorylate and activate Cofilin. WISp39 also regulates Arp2/3 complex localization at the leading edge. WISp39 KD-induced morphological changes could be rescued by overexpression of Coronin 1B together with a constitutively active Cofilin mutant. We conclude that WISp39 associates with Hsp90, Coronin 1B, and SSH to regulate Cofilin activation and Arp2/3 complex localization at the leading edge.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Imunofilinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fatores de Despolimerização de Actina/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Ativação Enzimática/genética , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Humanos , Imunofilinas/genética , Proteínas dos Microfilamentos/biossíntese , Fosfoproteínas Fosfatases , Fosforilação , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno , Proteínas de Ligação a Tacrolimo
17.
Arterioscler Thromb Vasc Biol ; 35(4): 845-54, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25767277

RESUMO

OBJECTIVE: The antitumor effects of FK506-binding protein like (FKBPL) and its extracellular role in angiogenesis are well characterized; however, its role in physiological/developmental angiogenesis and the effect of FKBPL ablation has not been evaluated. This is important as effects of some angiogenic proteins are dosage dependent. Here we evaluate the regulation of FKBPL secretion under angiogenic stimuli, as well as the effect of FKBPL ablation in angiogenesis using mouse and zebrafish models. APPROACH AND RESULTS: FKBPL is secreted maximally by human microvascular endothelial cells and fibroblasts, and this was specifically downregulated by proangiogenic hypoxic signals, but not by the angiogenic cytokines, VEGF or IL8. FKBPL's critical role in angiogenesis was supported by our inability to generate an Fkbpl knockout mouse, with embryonic lethality occurring before E8.5. However, whilst Fkbpl heterozygotic embryos showed some vasculature irregularities, the mice developed normally. In murine angiogenesis models, including the ex vivo aortic ring assay, in vivo sponge assay, and tumor growth assay, Fkbpl(+/-) mice exhibited increased sprouting, enhanced vessel recruitment, and faster tumor growth, respectively, supporting the antiangiogenic function of FKBPL. In zebrafish, knockdown of zFkbpl using morpholinos disrupted the vasculature, and the phenotype was rescued with hFKBPL. Interestingly, this vessel disruption was ineffective when zcd44 was knocked-down, supporting the dependency of zFkbpl on zCd44 in zebrafish. CONCLUSIONS: FKBPL is an important regulator of angiogenesis, having an essential role in murine and zebrafish blood vessel development. Mouse models of angiogenesis demonstrated a proangiogenic phenotype in Fkbpl heterozygotes.


Assuntos
Aorta/metabolismo , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Carcinoma Pulmonar de Lewis/metabolismo , Imunofilinas/metabolismo , Neovascularização Patológica , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Carcinoma Pulmonar de Lewis/patologia , Hipóxia Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Imunofilinas/genética , Células MCF-7 , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neovascularização Fisiológica , Fenótipo , Transdução de Sinais , Proteínas de Ligação a Tacrolimo/genética , Fatores de Tempo , Carga Tumoral , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
18.
Reprod Domest Anim ; 50(2): 195-199, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25495881

RESUMO

In stallions, impaired acrosome reaction (IAR) may often cause subfertility. Single nucleotide polymorphisms (SNPs) within FK506-binding protein (FKBP6) seem to be associated with IAR in stallions. However, their effect on stallion fertility has not yet been quantified. Using whole-genome sequence data of seven stallions, we searched FKBP6 for mutations to perform an association study in Hanoverian stallions with estimated breeding values for the paternal component of the pregnancy rate per oestrus cycle (EBV-PAT) as target trait. Genotyping five exonic mutations within FKBP6 revealed a significant association of the SNP g.11040379C>A (p.167H>N) with EBV-PAT in 216 Hanoverian stallions. The difference among the two homozygous genotypes was 7.62% in EBV-PAT, corresponding to one standard deviation of EBV-PAT. In conclusion, in Hanoverian stallions, the FKBP6-associated SNP g.11040379C>A confers higher conception rates in A/A homozygous and lower conception rates in C/C homozygous Hanoverian stallions. Thus, an FKBP6-associated missense mutation is significantly associated with stallion fertility.


Assuntos
Fertilidade/genética , Cavalos/genética , Cavalos/fisiologia , Imunofilinas/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Feminino , Fertilidade/fisiologia , Regulação da Expressão Gênica/fisiologia , Genótipo , Haplótipos , Imunofilinas/genética , Masculino , Mutação , Polimorfismo de Nucleotídeo Único , Gravidez , Proteínas de Ligação a Tacrolimo/genética
19.
OMICS ; 18(10): 645-57, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25259854

RESUMO

Abstract Phoma stem canker (blackleg) is a disease of world-wide importance on oilseed rape (Brassica napus) and can cause serious losses for crops globally. The disease is caused by dothideomycetous fungus, Leptosphaeria maculans, which is highly virulent/aggressive. Cyclophilins (CYPs) and FK506-binding proteins (FKBPs) are ubiquitous proteins belonging to the peptidyl-prolyl cis/trans isomerase (PPIase) family. They are collectively referred to as immunophilins (IMMs). In the present study, IMM genes, CYP and FKBP in haploid strain v23.1.3 of L. maculans genome, were identified and classified. Twelve CYPs and five FKBPs were determined in total. Domain architecture analysis revealed the presence of a conserved cyclophilin-like domain (CLD) in the case of CYPs and FKBP_C in the case of FKBPs. Interestingly, IMMs in L. maculans also subgrouped into single domain (SD) and multidomain (MD) proteins. They were primarily found to be localized in cytoplasm, nuclei, and mitochondria. Homologous and orthologous gene pairs were also determined by comparison with the model organism Saccharomyces cerevisiae. Remarkably, IMMs of L. maculans contain shorter introns in comparison to exons. Moreover, CYPs, in contrast with FKBPs, contain few exons. However, two CYPs were determined as being intronless. The expression profile of IMMs in both mycelium and infected primary leaves of B. napus demonstrated their potential role during infection. Secondary structure analysis revealed the presence of atypical eight ß strands and two α helices fold architecture. Gene ontology analysis of IMMs predicted their significant role in protein folding and PPIase activity. Taken together, our findings for the first time present new prospects of this highly conserved gene family in phytopathogenic fungus.


Assuntos
Ascomicetos/genética , Brassica napus/microbiologia , Proteínas Fúngicas/genética , Imunofilinas/genética , Sequência de Aminoácidos , Sequência Conservada , Ontologia Genética , Genoma Fúngico , Imunofilinas/química , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/microbiologia , Estrutura Terciária de Proteína , Transcriptoma
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...