Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 582
Filtrar
1.
Life Sci ; 289: 120222, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34902436

RESUMO

In order to overcome limitations of conventional cancer therapy methods, immunotoxins with the capability of target-specific action have been designed and evaluated pre-clinically, and some of them are in clinical studies. Targeting cancer cells via antibodies specific for tumour-associated surface proteins is a new biomedical approach that could provide the selectivity that is lacking in conventional cancer therapy methods such as radiotherapy and chemotherapy. A successful example of an approved immunotoxin is represented by immunoRNases. ImmunoRNases are fusion proteins in which the toxin has been replaced by a ribonuclease. Conjugation of RNase molecule to monoclonal antibody or antibody fragment was shown to enhance specific cell-killing by several orders of magnitude, both in vitro and in animal models. There are several RNases obtained from different mammalian cells that are expected to be less immunogenic and systemically toxic. In fact, RNases are pro-toxins which become toxic only upon their internalization in target cells mediated by the antibody moiety. The structure and large size of the antibody molecules assembled with the immunoRNases have always been a challenge in the application of immunoRNases as an antitoxin. To overcome this obstacle, we have offered a new strategy for the application of immunoRNases as a promising approach for upgrading immunoRNAses with maximum affinity and high stability in the cell, which can ultimately act as an effective large-scale cancer treatment. In this review, we introduce the optimized antibody-like molecules with small size, approximately 10 kD, which are presumed to significantly enhance RNase activity and be a suitable agent with the potential for anti-cancer functionality. In addition, we also discuss new molecular entities such as monobody, anticalin, nonobody and affilin as refined versions in the development of immunoRNases. These small molecules express their functionality with the suitable small size as well as with low immunogenicity in the cell, as a part of immunoRNases.


Assuntos
Antineoplásicos Imunológicos , Antineoplásicos , Imunotoxinas , Neoplasias , Proteínas Recombinantes de Fusão , Ribonucleases , Animais , Antineoplásicos/imunologia , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/farmacocinética , Antineoplásicos Imunológicos/farmacologia , Humanos , Imunotoxinas/genética , Imunotoxinas/imunologia , Imunotoxinas/farmacocinética , Imunotoxinas/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/farmacologia , Ribonucleases/genética , Ribonucleases/imunologia , Ribonucleases/farmacocinética , Ribonucleases/farmacologia
2.
PLoS Negl Trop Dis ; 15(10): e0009841, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34634067

RESUMO

Development of a rapid, on-site detection tool for snakebite is highly sought after, owing to its clinically and forensically relevant medicolegal significance. Polyvalent antivenom therapy in the management of such envenomation cases is finite due to its poor venom neutralization capabilities as well as diagnostic ramifications manifested as untoward immunological reactions. For precise molecular diagnosis of elapid venoms of the big four snakes, we have developed a lateral flow kit using a monoclonal antibody (AB1; IgG1 - κ chain; Kd: 31 nM) generated against recombinant cytotoxin-7 (rCTX-7; 7.7 kDa) protein of the elapid venom. The monoclonal antibody specifically detected the venoms of Naja naja (p < 0.0001) and Bungarus caeruleus (p<0.0001), without showing any immunoreactivity against the viperidae snakes in big four venomous snakes. The kit developed attained the limit of quantitation of 170 pg/µL and 2.1 ng/µL in spiked buffer samples and 28.7 ng/µL and 110 ng/µL in spiked serum samples for detection of N. naja and B. caeruleus venoms, respectively. This kit holds enormous potential in identification of elapid venom of the big four snakes for effective prognosis of an envenomation; as per the existing medical guidelines.


Assuntos
Colorimetria/métodos , Citotoxinas/análise , Elapidae/imunologia , Imunoensaio/métodos , Imunotoxinas/análise , Venenos de Serpentes/análise , Animais , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/imunologia , Bungarus/genética , Bungarus/fisiologia , Citotoxinas/genética , Citotoxinas/imunologia , Venenos Elapídicos/análise , Venenos Elapídicos/genética , Venenos Elapídicos/imunologia , Elapidae/fisiologia , Imunotoxinas/genética , Imunotoxinas/imunologia , Naja naja/imunologia , Naja naja/fisiologia , Venenos de Serpentes/imunologia , Viperidae/imunologia , Viperidae/fisiologia
3.
Monoclon Antib Immunodiagn Immunother ; 40(3): 113-117, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34076502

RESUMO

Immunotoxins, as a class of antitumor agents, consist of tumor-selective ligands linked to highly toxic protein molecules. This type of modified antibody has been designed for the therapy of cancers and a few viral infections. In this study, we designed immunotoxin consisting of mouse programmed cell death protein-1 (PD1), which genetically fused to diphtheria toxin (DT) subunit A (DT386). DNA construct was cloned, expressed in a bacterial system, purified, and confirmed by western blotting. The immunotoxin potency in the treatment of tumorous C57BL/6 mice was evaluated. Immunotoxin was injected intratumoral to mice, and through eight injections, 67% of the tumor volume of the test group started shrinking dramatically. On the contrary, the tumor size of the control group, treated with phosphate-buffered saline, continued its growth. The successful targeting of solid tumor cells by PD1-DT immunotoxin demonstrates the potential therapeutic utility of these conjugates.


Assuntos
Toxina Diftérica/farmacologia , Imunotoxinas/farmacologia , Neoplasias/terapia , Receptor de Morte Celular Programada 1/genética , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Sobrevivência Celular , Toxina Diftérica/genética , Toxina Diftérica/imunologia , Humanos , Imunotoxinas/genética , Imunotoxinas/imunologia , Camundongos , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia
4.
Int Immunopharmacol ; 96: 107759, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34162138

RESUMO

Recombinant immunotoxins are fusion proteins composed of a peptide toxin and a specific targeting domain through genetic recombination. They are engineered to recognize disease-specific target receptors and kill the cell upon internalization. Full-sized monoclonal antibodies, smaller antibody fragments and ligands, such as a cytokine or a growth factor, have been commonly used as the targeting domain, while bacterial Pseudomonas aeruginosa exotoxin (PE) is the usual toxin fusion partner, due to its natural cytotoxicity and other unique advantages. PE-based recombinant immunotoxins have shown remarkable efficacy in the treatment of tumors and autoimmune diseases. At the same time, efforts are underway to address major challenges, including immunogenicity, nonspecific cytotoxicity and poor penetration, which limit their clinical applications. Recent strategies for structural optimization of PE-based immunotoxins, combined with mutagenesis approaches, have reduced the immunogenicity and non-specific cytotoxicity, thus increasing both their safety and efficacy. This review highlights novel insights and design concepts that were used to advance immunotoxins for the treatment of hematological and solid tumors and also presents future development prospect of PE-based recombinant immunotoxins that are expected to play an important role in cancer therapy.


Assuntos
Exotoxinas/uso terapêutico , Imunotoxinas/uso terapêutico , Neoplasias/tratamento farmacológico , Pseudomonas aeruginosa/química , Animais , Ensaios Clínicos como Assunto , Exotoxinas/química , Exotoxinas/farmacologia , Humanos , Imunotoxinas/química , Imunotoxinas/imunologia , Imunotoxinas/farmacologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico
5.
J Immunoassay Immunochem ; 42(1): 19-33, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-32845824

RESUMO

Human epidermal growth factor receptor 2 (HER2) is overexpressed in breast cancer (BC) patients. Hence, immunotherapy is a proper treatment option for HER2-positive BC patients. Accumulating evidence has indicated that immunotoxin therapy is a novel approach to improve the potency of targeted therapy. Immunotoxins are antibodies or antibody fragments coupled with a toxin. We designed an immunotoxin. The physicochemical properties were evaluated using ProtParam servers and secondary structure was examined by PROSO II and GORV. Using I-TASSER, a 3D model was built and refined by GalaxyRefine. The model was validated using PROCHECK and RAMPAGE. To predict immunotoxin allergenicity and mRNA stability, AlgPred server and RNAfold were used. Furthermore, the immunotoxin and HER2 were docked by ZDOCK. The scFv+RTX-A could be a non-allergenic and stable chimeric protein, and the secondary structure of its components did not alter, and this protein had a proper 3D structure that might have stable mRNA structure which could bind to HER2. Given the fact that the designed immunotoxin was a non-allergenic and stable chimeric protein and that it could bind with high affinity to HER2 receptors, we proposed that this chimeric protein could be a useful candidate for HER-2 positive BC patients.


Assuntos
Neoplasias da Mama/imunologia , Desenho de Fármacos , Imunotoxinas/imunologia , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Feminino , Humanos , Imunotoxinas/química , Modelos Moleculares , Conformação Proteica , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia
6.
Toxins (Basel) ; 12(10)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076544

RESUMO

Toxins, while harmful and potentially lethal, have been engineered to develop potent therapeutics including cytotoxins and immunotoxins (ITs), which are modalities with highly selective targeting capabilities. Currently, three cytotoxins and IT are FDA-approved for treatment of multiple forms of hematological cancer, and additional ITs are tested in the clinical trials or at the preclinical level. For next generation of ITs, as well as antibody-mediated drug delivery systems, specific targeting by monoclonal antibodies is critical to enhance efficacies and reduce side effects, and this methodological field remains open to discover potent therapeutic monoclonal antibodies. Here, we describe our application of engineered toxin termed a cell-based IT screening system. This unique screening strategy offers the following advantages: (1) identification of monoclonal antibodies that recognize cell-surface molecules, (2) selection of the antibodies that are internalized into the cells, (3) selection of the antibodies that induce cytotoxicity since they are linked with toxins, and (4) determination of state-specific activities of the antibodies by differential screening under multiple experimental conditions. Since the functional monoclonal antibodies with internalization capacities have been identified successfully, we have pursued their subsequent modifications beyond antibody drug conjugates, resulting in development of immunoliposomes. Collectively, this screening system by using engineered toxin is a versatile platform, which enables straight-forward and rapid selection for discovery of novel functional antibodies.


Assuntos
Anticorpos Monoclonais/farmacologia , Membrana Celular/metabolismo , Ensaios de Triagem em Larga Escala , Imunoconjugados/farmacologia , Imunotoxinas/farmacologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacologia , Transporte Biológico , Membrana Celular/imunologia , Citotoxicidade Imunológica , Toxina Diftérica/imunologia , Toxina Diftérica/metabolismo , Toxina Diftérica/farmacologia , Exotoxinas/imunologia , Exotoxinas/metabolismo , Exotoxinas/farmacologia , Humanos , Imunoconjugados/genética , Imunoconjugados/imunologia , Imunoconjugados/metabolismo , Imunotoxinas/genética , Imunotoxinas/imunologia , Imunotoxinas/metabolismo , Interleucina-2/imunologia , Interleucina-2/metabolismo , Interleucina-2/farmacologia , Lipossomos , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia
7.
Biomolecules ; 10(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003418

RESUMO

Multiple myeloma (MM) is a B-cell malignancy that is incurable for a majority of patients. B-cell maturation antigen (BCMA) is a lineage-restricted differentiation protein highly expressed in multiple myeloma cells but not in other normal tissues except normal plasma B cells. Due to the restricted expression and being a cell surface membrane protein, BCMA is an ideal target for immunotherapy approaches in MM. Recombinant immunotoxins (RITs) are a novel class of protein therapeutics that are composed of the Fv or Fab portion of an antibody fused to a cytotoxic agent. RITs were produced by expressing plasmids encoding the components of the anti-BCMA RITs in E. coli followed by inclusion body preparation, solubilization, renaturation, and purification by column chromatography. The cytotoxic activity of RITs was tested in vitro by WST-8 assays using BCMA expressing cell lines and on cells isolated from MM patients. The in vivo efficacy of RITs was tested in a xenograft mouse model using BCMA expressing multiple myeloma cell lines. Anti-BCMA recombinant immunotoxins are very effective in killing myeloma cell lines and cells isolated from myeloma patients expressing BCMA. Two mouse models of myeloma showed that the anti-BCMA immunotoxins can produce a long-term complete response and warrant further preclinical development.


Assuntos
Antígeno de Maturação de Linfócitos B/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Imunotoxinas/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Animais , Antígeno de Maturação de Linfócitos B/imunologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/uso terapêutico , Imunotoxinas/imunologia , Camundongos , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Biomolecules ; 10(9)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957689

RESUMO

Cancer cells frequently upregulate surface receptors that promote growth and survival. These receptors constitute valid targets for intervention. One strategy involves the delivery of toxic payloads with the goal of killing those cancer cells with high receptor levels. Delivery can be accomplished by attaching a toxic payload to either a receptor-binding antibody or a receptor-binding ligand. Generally, the cell-binding domain of the toxin is replaced with a ligand or antibody that dictates a new binding specificity. The advantage of this "immunotoxin" approach lies in the potency of these chimeric molecules for killing cancer cells. However, receptor expression on normal tissue represents a significant obstacle to therapeutic intervention.


Assuntos
Anticorpos Monoclonais/imunologia , Imunotoxinas/imunologia , Neoplasias/imunologia , Receptores de Superfície Celular/imunologia , Toxinas Biológicas/imunologia , Animais , Anticorpos Monoclonais/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Humanos , Imunotoxinas/metabolismo , Imunotoxinas/uso terapêutico , Ligantes , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ligação Proteica , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Toxinas Biológicas/metabolismo
9.
Mol Pharm ; 17(9): 3281-3290, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32786957

RESUMO

c(RGDyK)-modified liposomes have been shown to be immunogenic and potentially trigger acute systemic anaphylaxis upon repeated intravenous injection in both BALB/c nude mice and ICR mice. However, questions concerning the potential influence of mouse strains, immunization routes, drug carrier properties, and changes in c(RGDyK) itself on the immunogenicity and resultant immunotoxicity (anaphylaxis) of cyclic RGD peptide-modified nanodrug delivery systems remain unanswered. Here, these potential impact factors were investigated, aiming to better understand the immunological properties of cyclic RGD peptide-based nanodrug delivery systems and seek for solutions for this immunogenicity-associated issue. It was revealed that anaphylaxis caused by intravenous c(RGDyK)-modified drug delivery systems might be avoided by altering the preimmunization route (i.e., subcutaneous injection), introducing positively charged lipids into the liposomes and by using micelles or red blood cell membrane (RBC)-based drug delivery systems as the carrier. Different murine models showed different incidences of anaphylaxis following intravenous c(RGDyK)-liposome stimulation: anaphylaxis was not observed in both SD rats and BALB/c mice and was less frequent in C57BL/6 mice than that in ICR mice. In addition, enlarging the peptide ring of c(RGDyK) by introducing amino sequence serine-glycine-serine reduced the incidence of anaphylaxis post the repeated intravenous c(RGDyKSGS)-liposome stimulation. However, immunogenicity of cyclic RGD-modified drug carriers could not be reversed, although some reduction in IgG antibody production was observed when ICR mice were intravenously stimulated with c(RGDyK)-modified micelles, RBC membrane-based drug delivery systems and c(RGDyKSGS)-liposomes instead of c(RGDyK)-liposomes. This study provides a valuable reference for future application of cyclic RGD peptide-modified drug delivery systems.


Assuntos
Formação de Anticorpos/imunologia , Imunotoxinas/imunologia , Nanopartículas/química , Peptídeos Cíclicos/imunologia , Preparações Farmacêuticas/administração & dosagem , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Eritrócitos/imunologia , Imunoglobulina G/imunologia , Lipossomos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Nus , Micelas , Ratos , Ratos Sprague-Dawley
10.
Front Immunol ; 11: 1261, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695104

RESUMO

Immunotoxins are cytolytic fusion proteins developed for cancer therapy, composed of an antibody fragment that binds to a cancer cell and a protein toxin fragment that kills the cell. Pseudomonas exotoxin A (PE) is a potent toxin that is used for the killing moiety in many immunotoxins. Moxetumomab Pasudotox (Lumoxiti) contains an anti-CD22 Fv and a 38 kDa portion of PE. Lumoxiti was discovered in the Laboratory of Molecular Biology at the U.S. National Cancer Institute and co-developed with Medimmune/AstraZeneca to treat hairy cell leukemia. In 2018 Lumoxiti was approved by the US Food and Drug Administration for the treatment of drug-resistant Hairy Cell Leukemia. Due to the bacterial origin of the killing moiety, immunotoxins containing PE are highly immunogenic in patients with normal immune systems, but less immunogenic in patients with hematologic malignancies, whose immune systems are often compromised. LMB-100 is a de-immunized variant of the toxin with a humanized antibody that targets mesothelin and a PE toxin that was rationally designed for diminished reactivity with antibodies and B cell receptors. It is now being evaluated in clinical trials for the treatment of mesothelioma and pancreatic cancer and is showing somewhat diminished immunogenicity compared to its un modified parental counterpart. Here we review the immunogenicity of the original and de-immunized PE immunotoxins in mice and patients, the development of anti-drug antibodies (ADAs), their impact on drug availability and their effect on clinical efficacy. Efforts to mitigate the immunogenicity of immunotoxins and its impact on immunogenicity will be described including rational design to identify, remove, or suppress B cell or T cell epitopes, and combination of immunotoxins with immune modulating drugs.


Assuntos
Exotoxinas/imunologia , Imunotoxinas/imunologia , Pseudomonas/imunologia , ADP Ribose Transferases/imunologia , Animais , Formação de Anticorpos/imunologia , Toxinas Bacterianas/imunologia , Ensaios Clínicos como Assunto , Epitopos de Linfócito B/imunologia , Exotoxinas/química , Exotoxinas/farmacocinética , Humanos , Imunoensaio , Imunomodulação/efeitos dos fármacos , Imunotoxinas/química , Imunotoxinas/farmacocinética , Mesotelina , Neoplasias/tratamento farmacológico , Proteínas Recombinantes/imunologia , Relação Estrutura-Atividade , Resultado do Tratamento , Fatores de Virulência/imunologia , Exotoxina A de Pseudomonas aeruginosa
11.
Biomolecules ; 10(7)2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630017

RESUMO

Immunotoxins are a class of targeted cancer therapeutics in which a toxin such as Pseudomonas exotoxin A (PE) is linked to an antibody or cytokine to direct the toxin to a target on cancer cells. While a variety of PE-based immunotoxins have been developed and a few have demonstrated promising clinical and preclinical results, cancer cells frequently have or develop resistance to these immunotoxins. This review presents our current understanding of the mechanism of action of PE-based immunotoxins and discusses cellular mechanisms of resistance that interfere with various steps of the pathway. These steps include binding of the immunotoxin to the target antigen, internalization, intracellular processing and trafficking to reach the cytosol, inhibition of protein synthesis through ADP-ribosylation of elongation factor 2 (EF2), and induction of apoptosis. Combination therapies that increase immunotoxin action and overcome specific mechanisms of resistance are also reviewed.


Assuntos
ADP Ribose Transferases/imunologia , Toxinas Bacterianas/imunologia , Resistencia a Medicamentos Antineoplásicos , Exotoxinas/imunologia , Imunotoxinas/farmacologia , Neoplasias/tratamento farmacológico , Fatores de Virulência/imunologia , ADP Ribose Transferases/farmacologia , Toxinas Bacterianas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ensaios Clínicos como Assunto , Citosol/metabolismo , Exotoxinas/farmacologia , Humanos , Imunotoxinas/imunologia , Neoplasias/imunologia , Fator 2 de Elongação de Peptídeos/metabolismo , Transporte Proteico , Fatores de Virulência/farmacologia , Exotoxina A de Pseudomonas aeruginosa
12.
Biomolecules ; 10(6)2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575752

RESUMO

Hepatocellular carcinoma (HCC) accounts for most liver cancers and represents one of the deadliest cancers in the world. Despite the global demand for liver cancer treatments, there remain few options available. The U.S. Food and Drug Administration (FDA) recently approved Lumoxiti, a CD22-targeting immunotoxin, as a treatment for patients with hairy cell leukemia. This approval helps to demonstrate the potential role that immunotoxins can play in the cancer therapeutics pipeline. However, concerns have been raised about the use of immunotoxins, including their high immunogenicity and short half-life, in particular for treating solid tumors such as liver cancer. This review provides an overview of recent efforts to develop a glypican-3 (GPC3) targeting immunotoxin for treating HCC, including strategies to deimmunize immunotoxins by removing B- or T-cell epitopes on the bacterial toxin and to improve the serum half-life of immunotoxins by incorporating an albumin binding domain.


Assuntos
Toxinas Bacterianas/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Glipicanas/antagonistas & inibidores , Imunotoxinas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Animais , Toxinas Bacterianas/imunologia , Humanos , Imunotoxinas/imunologia
13.
BMC Biotechnol ; 20(1): 31, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32552895

RESUMO

BACKGROUND: Immunotoxin is a hybrid protein consisting of a toxin moiety that is linked to a targeting moiety for the purpose of specific elimination of target cells. Toxins used in traditional immunotoxins are practically difficult to be produced in large amount, have poor tissue penetration and a complex internalization process. We hypothesized that the smaller HALT-1, a cytolysin derived from Hydra magnipapillata, can be used as the toxin moiety in construction of a recombinant immunotoxin. RESULTS: In this study, pro-inflammatory macrophage was selected as the target cell due to its major roles in numerous inflammatory and autoimmune disorders. We aimed to construct macrophage-targeted recombinant immunotoxins by combining HALT-1 with anti-CD64-scFv in two orientations, and to assess whether their cytotoxic activity and binding capability could be preserved upon molecular fusion. The recombinant immunotoxins, HALT-1-scFv and scFv-HALT-1, were successfully constructed and expressed in Escherichia coli (E. coli). Our data showed that HALT-1 still exhibited significant cytotoxicity against CD64+ and CD64- cell lines upon fusion with anti-CD64 scFv, although it had half cytotoxic activity as compared to HALT-1 alone. As positioning HALT-1 at N- or C-terminus did not affect its potency, the two constructs demonstrated comparable cytotoxic activities with IC50 lower in CD64+ cell line than in CD64- cell line. In contrast, the location of targeting moieties anti-CD64 scFv at C-terminal end was crucial in maintaining the scFv binding capability. CONCLUSIONS: HALT-1 could be fused with anti-CD64-scFv via a fsexible polypeptide linker. Upon the successful production of this recombinant HALT-1 scFv fusion protein, HALT-1 was proven effective for killing two human cell lines. Hence, this preliminary study strongly suggested that HALT-1 holds potential as the toxin moiety in therapeutic cell targeting.


Assuntos
Hydra/efeitos dos fármacos , Hydra/imunologia , Imunotoxinas/imunologia , Animais , Linhagem Celular , Cnidários , Escherichia coli/metabolismo , Humanos , Receptores de IgG , Anticorpos de Cadeia Única , Toxinas Biológicas
14.
Cancer Immunol Immunother ; 69(7): 1337-1352, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32219500

RESUMO

Cleavage of the MUC1 glycoprotein yields two subunits, an extracellular alpha-subunit bound to a smaller transmembrane beta-subunit. Monoclonal antibodies (mAbs) directed against the MUC1 alpha-beta junction comprising the SEA domain, a stable cell-surface moiety, were generated. Sequencing of all seven anti-SEA domain mAbs showed that they clustered into four groups and sequences of all groups are presented here. mAb DMB5F3 with picomolar affinity for the MUC1 SEA target was selected for further evaluation. Immunohistochemical staining of a series of malignancies with DMB5F3 including lung, prostate, breast, colon, and pancreatic carcinomas revealed qualitative and qualitative differences between MUC1 expression on normal versus malignant cells: DMB5F3 strongly stained malignant cells in a near-circumferential pattern, whereas MUC1 in normal pancreatic and breast tissue showed only weak apical positivity of ductal/acinar cells. Humanized chimeric DMB5F3 linked to ZZ-PE38 (ZZ IgG-binding protein fused to Pseudomonas exotoxin) induced vigorous cytotoxicity of MUC1+ malignant cells in vitro. The intensity of cell killing correlated with the level of MUC1 expression by the target cell, suggesting a MUC1 expression threshold for cell killing. MUC1+ Colo357 pancreatic cancer cells xenotransplanted into nude and SCID mice models were treated with the chDMB5F3:ZZ-PE38 immunocomplex. In both transplant models, chDMB5F3:ZZ-PE38 exhibited significant in vivo anti-tumor activity, suppressing up to 90% of tumor volume in the SCID model compared with concomitant controls. The efficacy of chDMB5F3:ZZ-PE38 immunotoxin in mediating tumor killing both in vitro and in vivo strongly suggests a clinical role for anti-MUC1 SEA antibody in the treatment of MUC1-expressing malignancies.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Imunotoxinas/imunologia , Mucina-1/química , Mucina-1/imunologia , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Apoptose , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Domínios Proteicos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Int J Pharm ; 574: 118939, 2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31836485

RESUMO

Human epidermal growth factor receptor 2 (HER2) is an attractive target for cancer therapy, although a large fraction of tumors that express HER2 may still resist first-line therapies. Immunotoxins with antibodies that are armed with extremely potent cytotoxic toxin molecules may provide an important solution to this problem. In this work, we constructed three new anti-HER2 immunotoxins by using single-domain antibody (sdAb) molecules as the targeting moiety and the improved toxin PE24X7 as the effector with the aim of simplifying the preparation and reducing the off-target toxicity of the immunotoxins. Due to the beneficial outcomes of sdAb molecules, the synthesized immunotoxins were efficiently expressed in soluble form, avoiding the refolding process required by the common immunotoxin design and having high solubility and stability. Cell toxicity experiments showed that they have high cytotoxicity against various HER2-positive tumor cells and good selectivity (more than 1000-fold) towards HER2-positive rather than HER2-negative cells. Importantly, in vivo treatment experiments showed that one of the new immunotoxins could efficiently halt tumor growth at doses lower than 0.75 mg/kg, and it had a maximum tolerated dose (MTD) higher than 8.0 mg/kg, showing a substantially improved MTD and a broadened therapeutic window than the previously reported anti-HER2 immunotoxins. Given that PE toxin-based immunotoxins have been approved for clinical cancer therapy, the unique characteristics of the immunotoxins presented here make them promising for use in the development of anti-HER2 cancer therapeutics.


Assuntos
Anticorpos Monoclonais/imunologia , Antineoplásicos/imunologia , Imunotoxinas/imunologia , Receptor ErbB-2/imunologia , Anticorpos de Domínio Único/imunologia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
16.
CNS Oncol ; 8(3): CNS38, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747788

RESUMO

Management of high-grade gliomas remains a complex challenge. Standard of care consists of microsurgical resection, chemotherapy and radiation, but despite these aggressive multimodality therapies the overall prognosis remains poor. A major focus of ongoing translational research studies is to develop novel therapeutic strategies that can maximize tumor cell eradication while minimizing collateral side effects. Particularly, biological intratumoral therapies have been the focus of new translational research efforts due to their inherent potential to be both dynamically adaptive and target specific. This two-part review will provide an overview of biological intratumoral therapies and summarize key advances and remaining challenges in intratumoral biological therapies for high-grade glioma. Part I focuses on discussion of the concepts of intratumoral delivery and immunotoxin therapies.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Imunotoxinas/uso terapêutico , Antineoplásicos/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Sistemas de Liberação de Medicamentos , Glioma/patologia , Humanos , Imunotoxinas/imunologia , Infusões Intralesionais , Injeções Intralesionais , Gradação de Tumores , Prognóstico , Ensaios Clínicos Controlados Aleatórios como Assunto
17.
Methods Mol Biol ; 2021: 201-215, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31309507

RESUMO

Proteus mirabilis is a major cause of complicated urinary tract infections (UTIs). P. mirabilis' urease activity hydrolyzes urea and raises urine pH levels, which can catalyze bladder and kidney stone formation. This urolithiasis leads to harder-to-treat infections, possible urinary blockage, and subsequent septicemia. Development of a mucosal vaccine against P. mirabilis urinary tract infections is critical to protect against this potentially deadly infection process. Here, we describe the methodology necessary to produce a vaccine candidate conjugated to cholera toxin, administer the vaccine via the intranasal route, and test efficacy in a murine transurethral P. mirabilis infection model.


Assuntos
Anticorpos Antibacterianos/metabolismo , Imunotoxinas/administração & dosagem , Infecções por Proteus/prevenção & controle , Proteus mirabilis/imunologia , Infecções Urinárias/prevenção & controle , Administração Intranasal , Animais , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Toxina da Cólera/administração & dosagem , Toxina da Cólera/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Imunotoxinas/imunologia , Camundongos , Camundongos Endogâmicos CBA , Vacinação
18.
Clin Colorectal Cancer ; 18(3): 192-199.e1, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31345777

RESUMO

BACKGROUND: Mesothelin (MSLN) is a cell surface glycoprotein expressed at a high level on many malignancies, including pancreatic adenocarcinoma, serous ovarian cancer, and epithelioid mesothelioma. MSLN-targeted recombinant immunotoxins (RITs) consist of an anti-MSLN Fv fused to the catalytic domain of Pseudomonas exotoxin A. Recent data has also shown that MSLN is expressed at clinically relevant levels on the surface of colorectal cancer (CRC). In this study, CRC cell lines were tested for MSLN expression and susceptibility to MSLN-targeted RITs. MATERIALS AND METHODS: CRC cell lines were tested for membranous MSLN expression via flow cytometry. Cell lines expressing MSLN were tested by WST-8 cell viability assay for sensitivity to various RITs and chemotherapeutic agents. CRC cell line SW-48 was tested in a mouse model for response to RIT as a single agent or in combination with actinomycin D and oxaliplatin. RESULTS: CRC cell lines were susceptible to anti-MSLN RITs at half maximal inhibitory concentration levels comparable with those previously described in pancreatic cancer cell lines. In a nude mouse model, MSLN-targeted RIT treatment of SW48 CRC tumors resulted in a significant decrease in tumor volume. Although combination therapy with standard of care chemotherapeutic oxaliplatin did not improve tumor regressions, combination therapy with actinomycin D resulted in > 90% tumor volume reduction with 50% complete regressions. CONCLUSIONS: These data support the development of anti-MSLN RITs as well as other MSLN-targeted therapies for CRC.


Assuntos
ADP Ribose Transferases/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Toxinas Bacterianas/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Exotoxinas/administração & dosagem , Proteínas Ligadas por GPI/antagonistas & inibidores , Imunotoxinas/administração & dosagem , Fatores de Virulência/administração & dosagem , ADP Ribose Transferases/genética , ADP Ribose Transferases/imunologia , Animais , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Antineoplásicos Imunológicos/imunologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Linhagem Celular Tumoral , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Exotoxinas/genética , Exotoxinas/imunologia , Feminino , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Imunotoxinas/genética , Imunotoxinas/imunologia , Mesotelina , Camundongos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Exotoxina A de Pseudomonas aeruginosa
19.
Int J Mol Sci ; 20(10)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096563

RESUMO

High immunogenicity and systemic toxicity are the main obstacles limiting the clinical use of the therapeutic agents based on Pseudomonas aeruginosa exotoxin A. In this work, we studied the immunogenicity, general toxicity and antitumor effect of the targeted toxin DARPin-LoPE composed of HER2-specific DARPin and a low immunogenic exotoxin A fragment lacking immunodominant human B lymphocyte epitopes. The targeted toxin has been shown to effectively inhibit the growth of HER2-positive human ovarian carcinoma xenografts, while exhibiting low non-specific toxicity and side effects, such as vascular leak syndrome and liver tissue degradation, as well as low immunogenicity, as was shown by specific antibody titer. This represents prospects for its use as an agent for targeted therapy of HER2-positive tumors.


Assuntos
Epitopos de Linfócito B/imunologia , Xenoenxertos , Imunotoxinas/imunologia , Imunotoxinas/farmacologia , Proteínas Musculares/imunologia , Proteínas Nucleares/imunologia , Neoplasias Ovarianas/tratamento farmacológico , Receptor ErbB-2/imunologia , ADP Ribose Transferases/imunologia , ADP Ribose Transferases/farmacologia , Sequência de Aminoácidos , Animais , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/farmacologia , Biomarcadores Tumorais , Carcinoma/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Epitopos de Linfócito B/genética , Exotoxinas/imunologia , Exotoxinas/farmacologia , Feminino , Humanos , Concentração Inibidora 50 , Fígado/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular , Proteínas Musculares/genética , Proteínas Nucleares/genética , Neoplasias Ovarianas/patologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/uso terapêutico , Baço/patologia , Fatores de Virulência/imunologia , Fatores de Virulência/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Exotoxina A de Pseudomonas aeruginosa
20.
J Immunother ; 42(4): 119-125, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30933045

RESUMO

Despite encouraging clinical results with immune checkpoint inhibitors and other types of immunotherapies, the rate of failure is still very high. The development of proper animal models which could be applied to the screening of effective preclinical antitumor drugs targeting human tumor antigens, such as mesothelin (MSLN), is a great need. MSLN is a 40 kDa cell-surface glycoprotein which is highly expressed in a variety of human cancers, and has great value as a target for antibody-based therapies. The present study reports the establishment of an immunocompetent transgenic mouse expressing human MSLN (hMSLN) only in thyroid gland by utilizing an expression vector containing a thyroid peroxidase (TPO) promoter. These mice do not reject genetically modified tumor cells expressing hMSLN on the cell membrane, and tolerate high doses of hMSLN-targeted immunotoxin. Employing this TPO-MSLN mouse model, we find that the combination treatment of LMB-100 and anti-CTLA-4 induces complete tumor regression in 91% of the mice burdened with 66C14-M tumor cells. The combination therapy provides a significant survival benefit compared with both LMB-100 and anti-CTLA-4 monotherapy. In addition, the cured mice reject tumor cells when rechallenged, indicating the development of long-term antitumor immunity. This novel TPO-MSLN mouse model can serve as an important animal tool to better predict tumor responses to any immunomodulatory therapies that target MSLN.


Assuntos
Proteínas Ligadas por GPI/genética , Expressão Gênica , Glândula Tireoide/metabolismo , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos , Biomarcadores Tumorais , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Imunoconjugados , Imunoterapia , Imunotoxinas/imunologia , Imunotoxinas/farmacologia , Mesotelina , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Especificidade de Órgãos/genética , Glândula Tireoide/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...