Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 720
Filtrar
1.
J Environ Manage ; 357: 120844, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579469

RESUMO

The incineration of poultry litter (PL) effectively reduces the volume of waste in line with the United Nations Sustainable Development Goal of "affordable and clean energy". However, mono-incineration is associated with considerable challenges due to the varying moisture, structural and chemical composition and low energy yield. The aim of the present work was to investigate the influence of sweet sorghum bagasse (SS) and pyrolysis oil (PO) on improving the fuel properties of PL and mitigating ash related burdens during incineration. The different biomass feedstocks were produced by combining PL with SS at 0.0% (T0), 25% (T1), 50% (T2), 75% (T3) and compared with 100% SS (T4). In order to achieve high energy potential and low ash deposition, the parallel samples were additionally mixed with 10% PO to improve the energy value. The experimental results show that increasing the proportion of SS and adding PO to the mixtures increases the volatile matter and decreases the moisture and ash content. The addition of PO also increases the carbon and hydrogen content. The use of SS and PO thus increased the values of the ignitability index and apparently also the flammability by 30.0%-49.4% compared to pure PL. SS and PO shifted the HHV of the starting material from 16.90 to 18.78 MJ kg-1. In addition, SS + PO improved the flame volume and red color intensity of the PL blends based on the image analysis method. However, the presence of SS and PO did not sufficiently improve the ash-related index values, which requires further investigation.


Assuntos
Celulose , Aves Domésticas , Sorghum , Animais , Pirólise , Incineração/métodos
2.
J Environ Manage ; 357: 120825, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579472

RESUMO

Alkali-activation is an effective municipal solid waste incineration fly ash (MSWIFA) solidification/stabilization (S/S) technology. However, the characteristics of calcium-rich silica-poor aluminum phase in MSWIFA easily cause the structural instability and contamination of alkali activated MSWIFA S/S bodies. Therefore, the aluminosilicate solid wastes are used in this work to optimize the immobilization and structural properties. Results showed that incorporation of aluminosilicate solid wastes significantly improved the compressive strength and heavy metals pollution toxicity of MSWIFA S/S bodies. Compared to alkali activated MSWIFA, the compressive strength of S/S bodies with addition of coal fly ash, silica fume and granulated blast furnace slag improved by 31.0%, 47.6% and 50.8% when the curing time was 28 days, respectively. Leachability of Pb, Zn and Cd in these alkali activated MSWIFA S/S bodies was far below the threshold value specified in Standard GB16889. Aluminosilicate solid wastes provided abundant Si/Al structural units, and some new phases such as ettringite(AFt, 3CaO⋅Al2O3⋅3CaSO4⋅32H2O), calcium sulfoaluminate hydrate (3CaO⋅Al2O3⋅CaSO4⋅12H2O) and Friedel's salt (CaO⋅Al2O3⋅CaCl2⋅10H2O) can be detected in S/S matrix with aluminosilicate solid wastes, along comes increased the amount of the amorphous phases. Lower Ca/Si molar ratio tended to form the network structure gel similar to tobermorite with higher polymerization degree. Meanwhile, the silica tetrahedron of the gels changed from the oligomerization state like island to the hyperomerization state like chain, layer network or three-dimensional structure, and average molecular chain length increased. These findings provide theoretical basis for structural properties optimization and resource utilization of MSWIFA S/S matrices.


Assuntos
Silicatos de Alumínio , Metais Pesados , Eliminação de Resíduos , Cinza de Carvão/química , Resíduos Sólidos/análise , Incineração/métodos , Dióxido de Silício , Álcalis/química , Metais Pesados/análise , Carbono/química , Material Particulado , Eliminação de Resíduos/métodos
3.
Waste Manag ; 182: 11-20, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626501

RESUMO

Recycling aluminium in a rotary furnace with salt-fluxes allows recovering valuable alloys from hard-to-recycle waste/side-streams such as packaging, dross and incinerator bottom ash. However, this recycling route generates large amounts of salt-slag/salt-cake hazardous wastes which can pose critical environmental risks if landfilled. To tackle this issue, the metallurgical industry has developed processes to valorise the salt-slag residues into recyclable salts and aluminium concentrates, while producing by-products such as ammonium sulphate and non-metallic compounds (NMCs), with applications in the construction or chemical industries. This study aims to assess through LCA the environmental impacts of recycling aluminium in rotary furnaces for both salt-slag management routes: valorisation or landfill. It was found that this recycling process brings forth considerable net environmental profits, which increase for all the considered impact categories if the salt-slag is valorised. The main benefits arise from the production of secondary cast aluminium alloys, which is not unexpected due to the high energy intensity of aluminium primary production. However, the LCA results also identify other hotspots which play a significant role, and which should be considered for the optimisation of the process based on its environmental performance, such as the production of by-products, the consumption of energy/fuels and the avoidance of landfilling waste. Additionally, the assessment shows that the indicators for mineral resource scarcity, human carcinogenic toxicity and terrestrial ecotoxicity are particularly benefited by the salt-slag valorisation. Finally, a sensitivity analysis illustrates the criticality of the metal yield assumptions when calculating the global warming potential of aluminium recycling routes.


Assuntos
Alumínio , Incineração , Reciclagem , Incineração/métodos , Reciclagem/métodos , Alumínio/química , Alumínio/análise , Meio Ambiente , Resíduos Industriais/análise , Metalurgia
4.
Waste Manag ; 182: 21-31, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631177

RESUMO

This research investigates the formation mechanism of soot and particulate matter during the pyrolysis and gasification of waste derived from Municipal Solid Waste (MSW) in a laboratory scale drop tube furnace. Compared with CO2 gasification atmosphere, more ultrafine particles (PM0.2, aerodynamic diameter less than 0.2 µm) were generated in N2 atmosphere at 1200℃, which were mainly composed of polycyclic aromatic hydrocarbons (PAHs), graphitic carbonaceous soot and volatile alkali salts. High reaction temperatures promote the formation of hydrocarbon gaseous products and their conversion to PAHs, which ultimately leads to the formation of soot particles. The soot particles generated by waste derived from MSW pyrolysis and gasification both have high specific surface area and well-developed pore structure. Compared with pyrolysis, the soot generated by gasification of waste derived from MSW had smaller size and higher proportion of inorganic components. The higher pyrolysis temperature led to the collapse of the mesoporous structure of submicron particles, resulting in a decrease in total pore volume and an increase in specific surface area. Innovatively, this research provides an explanation for the effect of reaction temperature/ CO2 on the formation pathways and physicochemical properties of soot and fine particulate matter.


Assuntos
Temperatura Alta , Material Particulado , Pirólise , Resíduos Sólidos , Fuligem , Material Particulado/análise , Material Particulado/química , Resíduos Sólidos/análise , Fuligem/análise , Fuligem/química , Eliminação de Resíduos/métodos , Incineração/métodos , Dióxido de Carbono/análise , Dióxido de Carbono/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Tamanho da Partícula
5.
Waste Manag ; 182: 55-62, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636126

RESUMO

Rice husk (RH), which is an abundant agricultural waste, consists of ca. 20 % silica (SiO2·nH2O). Upon RH combustion, a large amount of silica ash is generated. RH silica is originally amorphous; however, the ash is crystalized depending on the conditions of the combustion. Crystallization of RH occurs at a much lower temperature than that of pure SiO2 due to the eutectic effects of minerals, such as Na and K, that are initially present in RH. Controlling for anti-crystallization is required for expanding the possibility of using RH ash that is abundantly generated by combustion. Here, RH is combusted, followed by a highly thermocontrolled investigation, and the time and temperature dependency of RH ash crystallization are studied. Crystallization is avoidable when the ash is rapidly cooled; for instance, 20 °C/min cooling can avoid crystallization even if the combustion temperature reaches 950 °C. Various pathway patterns for achieving temperature and cooling ratio are plotted on a uniform diagram of temperature vs. time. Furthermore, a border zone, indicating the regions in which RH ash becomes amorphous and crystals, is successfully drawn into the diagram by using the data maintained at a constant temperature. A comparison with a few different types of RH showed that the border zone on the diagram can move depending on their ratios of inorganic elements, causing a eutectic effect.


Assuntos
Cristalização , Oryza , Dióxido de Silício , Oryza/química , Dióxido de Silício/química , Incineração/métodos , Temperatura
6.
Waste Manag ; 182: 44-54, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636125

RESUMO

Pyrolysis can effectively convert waste tires into high-value products. However, the sulfur-containing compounds in pyrolysis oil and gas would significantly reduce the environmental and economic feasibility of this technology. Here, the desulfurization and upgrade of waste tire pyrolysis oil and gas were performed by adding different metal oxides (Fe2O3, CuO, and CaO). Results showed that Fe2O3 exhibited the highest removal efficiency of 87.7 % for the sulfur-containing gas at 600 °C with an outstanding removal efficiency of 99.5 % for H2S. CuO and CaO were slightly inferior to Fe2O3, with desulfurization efficiencies of 75.9 % and 45.2 % in the gas when added at 5 %. Fe2O3 also demonstrated a notable efficacy in eliminating benzothiophene, the most abundant sulfur compound in pyrolysis oil, with a removal efficiency of 78.1 %. Molecular dynamics simulations and experiments showed that the desulfurization mechanism of Fe2O3 involved the bonding of Fe-S, the breakage of C-S, dehydrogenation and oxygen migration process, which promoted the conversion of Fe2O3 to FeO, FeS and Fe2(SO4)3. Meanwhile, Fe2O3 enhanced the cyclization and dehydrogenation reaction, facilitating the upgrade of oil and gas (monocyclic aromatics to 57.4 % and H2 to 22.3 %). This study may be helpful for the clean and high-value conversion of waste tires.


Assuntos
Óxidos , Pirólise , Óxidos/química , Enxofre/química , Incineração/métodos , Compostos Férricos/química , Gases/química , Borracha/química , Compostos de Cálcio/química , Cobre
7.
Waste Manag ; 182: 63-73, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38640752

RESUMO

The incineration bottom ash (IBA) was impregnated with nickel to catalyze toluene (tar surrogate) steam reforming. A toluene conversion of >80 % was achieved at 800℃ without activity decay in a 100-h test for 15 %Ni/IBA. An activation stage was observed for Ni/IBA catalysts in the initial 50 âˆ¼ 400 min under different reaction conditions. A series of experiments and characterizations were performed to explore the possible mechanisms for the activation. It was found that the iron species in IBA gradually migrated to the catalyst surface and formed a Ni-FeOx complex owing to the metal-support interaction. The synergy of Ni-FeOx played an important role in improving the activity of Ni/IBA due to the enhanced lattice oxygen activity. Additionally, Ni/IBA catalysts showed a much lower coke deposition rate than Ni/Al2O3 (1.12 vs. 3.45 mg-C/gcat∙h) because of the variable states of FeOx and the abundant basic sites caused by the alkali and alkaline earth metals contained in IBA.


Assuntos
Compostos Férricos , Incineração , Níquel , Níquel/química , Catálise , Compostos Férricos/química , Incineração/métodos , Tolueno/química , Cinza de Carvão/química
8.
Waste Manag ; 182: 164-174, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38653044

RESUMO

The current study introduces an innovative methodology by utilizing treated wastewater (TWW) from an effluent treatment plant as a washing agent to enhance the characteristics of incineration bottom ash (IBA). This approach addresses sustainability concerns and promotes the circular economy by reusing wastewater generated in municipal solid waste incineration facilities. Previous research has underscored the challenges of open IBA reuse due to elevated leaching of chlorides, sulfates, and trace metal(loid)s. Thus, the experimental setup explores various combinations of washing, with or without screening, to optimize the properties of soil-like material (SLM < 4.75 mm) and overall material (OM < 31.5 mm) fractions of IBA for unrestricted applications. Batch leaching tests were conducted on treated samples, and leaching characteristics were evaluated in accordance with regulatory standards, primarily the Dutch standard for unrestricted IBA reuse. The findings reveal that washing in isolation proves insufficient to enhance IBA properties; however, washing followed by screening, specifically for removing fines (<0.15 mm), proves effective in reducing contamination. The study identifies that multiple steps of washing and screening (with recirculation) process render OM and SLM fractions suitable for unrestricted reuse with a cumulative liquid-to-solid ratio of 6 L/kg and a total washing time of 15 min. The multi-step treatment was found effective in reducing sulfate contamination by 65-74 % and chloride contamination by 83-89 % in IBA fractions. This approach offers a promising solution for overcoming the limitations associated with IBA leaching, thereby promoting sustainable waste reuse practices.


Assuntos
Incineração , Águas Residuárias , Incineração/métodos , Águas Residuárias/química , Resíduos Sólidos/análise , Reciclagem/métodos , Cinza de Carvão/análise , Cinza de Carvão/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise
9.
Waste Manag ; 181: 57-67, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38583273

RESUMO

Rotary kiln (RK) incineration technology gains prominence in waste management, aiming to reduce pollution, recover energy, and minimize waste. Oxygen-carrier (OC)-aided incineration of waste in the RK demonstrates notable benefits by enhancing oxygen distribution uniformity and facilitating fuel conversion. However, the effects of OC on ash-related alkali and heavy metals during waste incineration in the RK remain unknown. In this study, manganese ore and ilmenite as OCs are introduced into RK during waste combustion, focusing on their effects on the bottom ashes and the behavior of alkali and heavy metals. Results show that manganese ore exhibits a decreasing reactivity due to oxygen depletion during the conversion from Mn2O3 to Mn3O4, while ilmenite maintains good reactivity due to sustained enrichment of Fe2O3 on the particles even after multiple cycles in RK. The porous structure on the surface of OCs particles verifies the cyclic reaction involving oxidation by air and reduction by fuel as OCs move between the active and passive layers of the bed. The porous OCs particles offer abundant adsorption sites for K from the gaseous phase, with surface-deposited K migrating into the particles and enhancing the OCs' capacity for K adsorption. Adding OCs promotes the formation of stable, less volatile compounds of heavy metals (As, Cr, Pb, and Zn) and enhances their retention in bottom ash while ensuring the leaching toxicity remains below Chinese national standard limits. This study enhances the understanding of OCs in incineration, guiding vital references for waste management practices and environmental sustainability.


Assuntos
Álcalis , Incineração , Metais Pesados , Oxigênio , Metais Pesados/análise , Metais Pesados/química , Incineração/métodos , Oxigênio/química , Álcalis/química , Cinza de Carvão/química , Gerenciamento de Resíduos/métodos , Poluentes Atmosféricos/análise
10.
J Environ Manage ; 357: 120749, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38552517

RESUMO

The traditional solidification/stabilization (S/S) technology, Ordinary Portland Cement (OPC), has been widely criticized due to its poor resistance to chloride and significant carbon emissions. Herein, a S/S strategy based on magnesium potassium phosphate cement (MKPC) was developed for the medical waste incineration fly ash (MFA) disposal, which harmonized the chlorine stabilization rate and potential carbon emissions. The in-situ XRD results indicated that the Cl- was efficiently immobilized in the MKPC system with coexisting Ca2+ by the formation of stable Ca5(PO4)3Cl through direct precipitation or intermediate transformation (the Cl- immobilization rate was up to 77.29%). Additionally, the MFA-based MKPC also demonstrated a compressive strength of up to 39.6 MPa, along with an immobilization rate exceeding 90% for heavy metals. Notably, despite the deterioration of the aforementioned S/S performances with increasing MFA incorporation, the potential carbon emissions associated with the entire S/S process were significantly reduced. According to the Life Cycle Assessment, the potential carbon emissions decreased to 8.35 × 102 kg CO2-eq when the MFA reached the blending equilibrium point (17.68 wt.%), while the Cl- immobilization rate still remained above 65%, achieving an acceptable equilibrium. This work proposes a low-carbon preparation strategy for MKPC that realizes chlorine stabilization, which is instructive for the design of S/S materials.


Assuntos
Compostos de Magnésio , Resíduos de Serviços de Saúde , Metais Pesados , Fosfatos , Compostos de Potássio , Eliminação de Resíduos , Cinza de Carvão , Magnésio , Cálcio , Potássio , Cloro , Carbono , Cloretos , Incineração/métodos , Metais Pesados/análise , Resíduos Sólidos , Material Particulado , Eliminação de Resíduos/métodos
11.
Environ Sci Pollut Res Int ; 31(16): 24302-24314, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441736

RESUMO

Solidification/stabilization (S/S) is a typical technique to immobilize toxic heavy metals in Municipal solid waste incineration fly ash (MSWI FA). This study utilized blast furnace slag, steel slag, desulfurization gypsum, and phosphoric acid sludge to develop a novel metallurgical slag based cementing material (MSCM). Its S/S effects of MSWI FA and long-term S/S effectiveness under dry-wet circulations (DWC) were evaluated and compared with ordinary Portland cement (OPC). The MSCM-FA block with 25 wt.% MSCM content achieved 28-day compressive strength of 9.38 MPa, indicating its high hydration reactivity. The leaching concentrations of Pb, Zn and Cd were just 51.4, 1895.8 and 36.1 µg/L, respectively, well below the limit standard of Municipal solid wastes in China (GB 16889-2008). After 30 times' DWC, leaching concentrations of Pb, Zn and Cd for MSCM-FA blocks increased up to 130.7, 9107.4 and 156.8 µg/L, respectively, but considerably lower than those for OPC-FA blocks (689, 11,870.6 and 185.2 µg/L, respectively). The XRD and chemical speciation analysis revealed the desorption of Pb, Zn and Cd attached to surface of C-S-H crystalline structure during the DWC. The XPS and SEM-EDS analysis confirmed the formation of Pb-O-Si and Zn-O-Si bonds via isomorphous replacement of C-A-S-H in binder-FA blocks. Ettringite crystalline structure in OPC-FA block was severely destructed during the DWC, resulting in the reduced contents of PbSO4 and CaZn2Si2O7·H2O and the higher leachability of Pb2+ and Zn2+.


Assuntos
Metais Pesados , Eliminação de Resíduos , Cinza de Carvão/química , Resíduos Sólidos/análise , Material Particulado/química , Cádmio/análise , Chumbo/análise , Metais Pesados/análise , Carbono/química , Incineração/métodos , Eliminação de Resíduos/métodos
12.
J Air Waste Manag Assoc ; 74(5): 291-303, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38376118

RESUMO

As a traditional method of waste treatment, municipal solid waste incineration (MSWI) has become one of the main methods of urban waste treatment. However, as a byproduct of MSWI, a large amount of MSWI bottom ash is not reused in current practice. This study innovatively posits MSWI bottom ash as an eco-friendly adsorbent rather than a pollutant, exploring its potential application as a permeable subgrade material. The results reveal that MSWI bottom ash exhibits promising properties to serve as a permeable subgrade material to achieve the permeability and improve the sustainability for subgrade. Due to the arrangement of its particles, it shows excellent performance in shear strength and permeability, which are comparable to or surpass those of sandy soils. The average pore width of 14.200 nm allows heavy metal substances to be encapsulated within the matrix, significantly reducing their leachability, thereby aligning with environmental friendliness standards. Its adsorption capacity is about 6.60 mg/g, and the adsorption capacity per volume is 3.66 times and 2.04 times that of fly ash and clay, respectively. The mechanism analysis shows that the adsorption process is monolayer heterogeneous adsorption. This paper presents a novel perspective on reusing MSWI bottom ash and provides evidence supporting its effective utilization as a permeable subgrade material, offering substantial environmental benefits through enhanced adsorption ability.Implications: Municipal solid waste incineration (MSWI) is a common method for municipal solid waste treatment, while the MSWI bottom ash is often not reused. This paper explored the explores the feasibility of using MSWI bottom ash as a permeable road base material. The results show that the particle arrangement enables excellent shear strength and permeability, comparable to sandy soil. It meets safety requirements for the leaching of heavy metals and acts as an adsorbent for pollutants leaching from permeable pavements. Furthermore, the mechanisms underlying these behaviors of MSWI were confirmed by microstructural and mineralogical analyses. These indicate that MSWI bottom ash has great potential as a permeable road base material. This paper provides a clear understanding of the physical, mechanical and environmental properties of MSWI bottom ash, which can promote its reuse in practice.


Assuntos
Cinza de Carvão , Incineração , Permeabilidade , Resíduos Sólidos , Incineração/métodos , Resíduos Sólidos/análise , Cinza de Carvão/química , Cinza de Carvão/análise , Adsorção , Eliminação de Resíduos/métodos
13.
Environ Sci Pollut Res Int ; 31(11): 16388-16400, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38315338

RESUMO

Gasification is widely regarded as one of the most practical, economical, and environmentally friendly waste disposal technologies for municipal solid waste (MSW). The pyrolysis stage (300-500 °C) is crucial for weight loss during MSW gasification, as a considerable amount of organic matter breaks down, producing high-value synthesis gas. This study investigated the product distribution and pollutant emission characteristics within this temperature range and its influencing factors during MSW gasification using a self-designed MSW gasification device. Results indicated that MSW underwent approximately 70% weight loss within this temperature range, yielding low amounts of inorganic and short-chain organic products, with mainly long-chain organic compounds of C16-C34. The atmosphere variation had minimal effect on the elemental composition and content of solid phase products. X-ray fluorescence spectrometry (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) analyses showed that Mn and Zn were the primary components of heavy metal leaching toxicity in solid phase products, with their contents increasing as temperature increased. Synthesis gas showed the highest content of heavy metal As element, reaching a peak at 400 °C. Higher gasification temperature and lower oxygen flow rate significantly reduced the dioxin content and I-TEQ values, with highly chlorinated isomers being the predominant dioxin isomers. Nonetheless, low-chlorinated dioxins accounted for more than 50% of the I-TEQ. This study improves our understanding of the gasification process of MSW.


Assuntos
Dioxinas , Metais Pesados , Eliminação de Resíduos , Humanos , Resíduos Sólidos/análise , Dioxinas/análise , Temperatura , Pirólise , Metais Pesados/análise , Redução de Peso , Eliminação de Resíduos/métodos , Incineração/métodos
14.
Environ Pollut ; 346: 123621, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38402942

RESUMO

Considering that waste incineration fly ash is the main carrier of dioxins and can migrate over long distances in the atmosphere, it is of great significance to study the photochemical transformation behavior of dioxins on the surface of fly ash. In this work, 2-chlorodibenzo-p-dioxin (2-CDD) was selected to conduct a systematic photochemical study. The influence of various factors on the photodegradation of 2-CDD were first explored, and the results showed that small particle size of fly ash, low concentration of 2-CDD and appropriate level of humidity were more conducive to photodegradation, with the highest degradation percentage reaching 76%-84%. The components of fly ash (Zn (Ⅱ), Al (Ⅲ), Cu (Ⅱ) and SiO2) also had a certain promoting effect on the degradation of 2-CDD, which increases the degradation efficiency by 10%-20%, because they could act as effective photocatalysts to produce free radicals for reaction. With a higher total light exposure intensity, natural light environments led to a more complete degradation of 2-CDD than laboratory Xe lamp irradiation (90% degradation Vs. 79% degradation). Based on chemical probe and radical quenching experiment, hydroxyl radical also contributed to 2-CDD photodegradation on fly ash. A total of 16 intermediate products were detected by mass spectrometry analysis, and four initial reaction pathways of 2-CDD were speculated in the process, including dechlorination, ether bond cleavage, hydroxyl substitution, and hydroxyl addition. According to the results of density functional theory calculation, the reaction channels of ether bond cleavage and •OH attack were determined. The toxicity assessment software tool (TEST) was used to assess the toxicity and bioconcentration coefficient of reaction products, and it was found that the overall toxicity of the photodegradation products was reduced. This study would provide new insights into the environmental fate of dioxins during long-range atmospheric migration process.


Assuntos
Dioxinas , Metais Pesados , Eliminação de Resíduos , Resíduos Sólidos/análise , Dioxinas/análise , Cinza de Carvão/análise , Fotólise , Dióxido de Silício , Incineração/métodos , Éteres , Eliminação de Resíduos/métodos , Carbono/química , Metais Pesados/análise
15.
Waste Manag ; 178: 115-125, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401425

RESUMO

This study introduces an environmentally friendly process for recovering zinc (Zn) and copper (Cu) from municipal solid waste incineration (MSWI) fly ash using ammonium chloride leaching and ammonia removal. The leaching rates for Zn and Cu were 54.39% and 86.23%, respectively, with total recovery rates reaching 52.21% and 85.28%, respectively. The recovered precipitate demonstrated significant Zn (33.62%) and Cu (14.19%) contents, making it ideal for metal smelting. The ammonium leaching process also showcased effective reduction and dechlorination effects on the fly ash. The treated fly ash had a reduced mass of only 30.63% of the original, and chlorine content decreased from 26.23% to 0.84%. The results of this study support the sustainable utilization of MSWI fly ash by facilitating valuable resource recovery and promoting its conversion into construction materials.


Assuntos
Compostos de Amônio , Metais Pesados , Eliminação de Resíduos , Cinza de Carvão , Zinco , Resíduos Sólidos/análise , Metais Pesados/análise , Amônia , Incineração/métodos , Carbono , Material Particulado
16.
J Environ Manage ; 353: 120163, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38295643

RESUMO

Cement production is a primary source of global carbon emissions. As a hazardous waste, municipal solid waste incineration fly ash (MSWI-FA) can be pretreated as a cementitious and effective carbon capture material. This study proposes an efficient carbonation dechlorination pretreatment and resource recovery strategy using flue gas micro-nano bubble (MNB) to wash MSWI-FA. The results showed that the flue gas MNB water washing reaction solution inhibited CaCO3 boundary layer blocking and adsorption on NaCl and KCl leaching. Under low water-to-solid ratio and CO2 concentration conditions, two-step washing reduced the MSWI-FA chlorine content to <1%, improving the dechlorination effect by 19.72% compared to conventional carbonation. The flue gas MNB water accelerated the precipitation of Ca2+ and Ca(ClO)2 in the form of calcite. The higher the CO2 concentration in the flue gas MNB, the better the fragmentation and purification of the MSWI-FA shell, leading to improved dechlorination and CO2 fixation. Under optimized conditions, the mean particle size of MSWI-FA decreased by 47.82%, and the CO2 fixation rate reached 73.80%, with a 58.35% increase in the washing carbonation rate. MSWI-FA pretreated by flue gas MNB washing was used as both the raw material and supplementary cementitious material for sulfoaluminate cementitious (SAC) material, exhibiting excellent compressive strength and heavy metal stabilization. The maximum compressive strength of the MSWI-FA-based SAC material cured for 28 d reached 130 MPa. Cr leaching was inhibited with increased hydration time, and the leaching concentration was far below the standard limit.


Assuntos
Metais Pesados , Eliminação de Resíduos , Resíduos Sólidos/análise , Cinza de Carvão , Eliminação de Resíduos/métodos , Dióxido de Carbono , Material Particulado , Incineração/métodos , Metais Pesados/análise , Carbonatos , Carbono , Água
17.
J Hazard Mater ; 465: 133384, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38176262

RESUMO

COVID-19 has aggravated the biomedical waste generation all over the world and the concern for its safe disposal is on the rise. The vast majority of healthcare systems employ incineration as their treatment method considering its agility to reduce the waste volume by up to 95-96% and high-temperature inactivation of infectious biological materials. However, incinerator emission is a significant contributor of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and dioxin-like polychlorinated biphenyls (dl-PCBs) according to various national inventories across the globe. Bio-Medical Waste Incinerators (BMWIs) are the dominant form of incinerator plants in developing nations and hence BMWI emissions were found to contribute lion's share of national dioxins inventories in most of these countries. The Stockholm Convention on POPs played a key role in imbibing significant urge on the dl-POPs monitoring studies of incinerators internationally and on controlling the average incinerator emission levels. Though many national/international agencies endorse a stringent incinerator stack emission standard of 0.1 ngTEQ/Nm3, there are some differences observed in nation-to-nation regulatory scenarios. This paper reviews and reports on the dioxins emission and health risk studies associated with bio-medical waste incineration over the last three decades (1990-2020) with a comprehensive spatial and temporal emission trend analysis. An overview of important national and international regulations, national inventories and emission factors for the biomedical waste incineration sector is also reviewed in detail. The study observes that continuous regulatory monitoring and logical relaxations can enhance the performance of the existing facilities ensuring low emissions and minimal risk.


Assuntos
Poluentes Atmosféricos , Dioxinas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Incineração/métodos , Dibenzodioxinas Policloradas/análise , Bifenilos Policlorados/análise , Dibenzofuranos Policlorados/análise
18.
J Environ Manage ; 352: 119967, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38237332

RESUMO

Globally waste incineration is becoming the predominant treatment method of solid waste. The largest fraction of solid residue of this process is incineration bottom ash (IBA) requiring further treatment before applications such as in the construction industry become feasible. In this study, vitrification of IBA was conducted in a demonstration-scale high-temperature slagging gasification plant fueled with MSW and biomass charcoal as a green auxiliary fuel. High IBA co-feeding rates of up to 491 kg/h (equivalent to 107% of MSW feeding rate) were achieved during the trials. A highly leaching-resistant slag immobilizing heavy metals in the glass-like amorphous structure and recyclable iron-rich metal granules were generated in the process. The heavy metal migration into the solid by-product fractions depended on the IBA feeding rates and process conditions such as cold cap temperature, charcoal-to-ash ratio, and gasifier temperature profile. Slaked lime and activated carbon powder were used in a dry flue gas treatment and stack gas emissions were kept well below Singapore's regulatory limits. Steam from the hot flue gas was generated in a boiler to drive a steam turbine. The application of biomass charcoal instead of fossil fuels or electricity lead to a lower carbon footprint compared to alternative vitrification technologies. The overall results reveal promising application of high temperature slagging gasification process for commercial-scale vitrification of IBA.


Assuntos
Metais Pesados , Eliminação de Resíduos , Cinza de Carvão/química , Vapor , Pegada de Carbono , Carvão Vegetal , Vitrificação , Incineração/métodos , Metais Pesados/química , Resíduos Sólidos
19.
J Environ Manage ; 351: 119730, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086123

RESUMO

In this study, the behavior of heavy metal transformation during the co-thermal treatment of hazardous waste incineration fly ash (HWIFA) and Fe-containing hazardous waste (including hazardous waste incineration bottom slag (HWIBS) and electroplating sludge (ES)) was investigated. The findings demonstrated that such a treatment effectively reduced the static leaching toxicity of Cr and Pb. Moreover, when the treatment temperature exceeded 1000 °C, the co-thermal treated sample exhibited low concentrations of dynamically leached Cr, Pb, and Zn, indicating that these heavy metals were successful detoxified. Thermodynamic analyses and phase transformation results suggested that the formation of spinel and the gradual disappearance of chromium dioxide in the presence of Fe-containing hazardous wastes contributed to the solidification of chromium. Additionally, the efficient detoxification of Pb and Zn was attributed to their volatilization and entry into the liquid phase during the co-thermal treatment process. Therefore, this study sets an excellent example of the co-thermal treatment of hazardous wastes and the control of heavy metal pollution during the treatment process.


Assuntos
Metais Pesados , Eliminação de Resíduos , Cinza de Carvão , Eliminação de Resíduos/métodos , Esgotos/análise , Resíduos Perigosos/análise , Galvanoplastia , Chumbo , Incineração/métodos , Metais Pesados/análise , Resíduos Sólidos/análise , Carbono , Material Particulado/análise
20.
Waste Manag ; 174: 203-217, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38061188

RESUMO

Medical waste (MW) is exploding due to the COVID-19 pandemic, posing a significant environmental threat, and leading to the urgent requirement for affordable and environmentally friendly MW disposal technologies. Prior research on individual MW disposal plants is region-specific, applying these results to other regions may introduce bias. In this study, major MW disposal technologies in China, i.e., incineration technologies (pyrolysis incineration and rotary kiln incineration), and sterilization technologies (steam sterilization, microwave sterilization, and chemical disinfection) with residue landfill or incineration were analyzed from an industry-level perspective via life cycle assessment (LCA), life cycle costing (LCC) and net present value (NPV) methods. Life cycle inventories and economic cost data for 4-5 typical companies were selected from 128 distinct enterprises and academic sources for each technology. LCA results show that microwave sterilization with residue incineration has the lowest environmental impact, emitting only 480 kg CO2 eq. LCC and NPV analyses indicate that steam sterilization with landfilling is the most economical, yielding revenues of 1,210 CNY/t and breaking even in the first year. Conversely, pyrolysis and rotary kiln incineration break even between the 4th and 5th years. Greenhouse gas emissions from the MW disposal in ten cities with the largest MW production in 2020 increased by 7% over 2019 to 43,800 tons and other pollutants increased by 6% to 12%. Economically, Shanghai exhibits the highest cost-effectiveness, while Nanjing delivers the lowest. It can be observed that the adoption of optimal environmental technologies has resulted in a diminution of greenhouse gas emissions by 279,000 tons and energy conservation of 1.76 billion MJ.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos de Serviços de Saúde , Resíduos de Serviços de Saúde , Eliminação de Resíduos , Gerenciamento de Resíduos , Humanos , Eliminação de Resíduos de Serviços de Saúde/métodos , Cidades , Vapor , Análise Custo-Benefício , Pandemias , China , Incineração/métodos , Instalações de Eliminação de Resíduos , Eliminação de Resíduos/métodos , Gerenciamento de Resíduos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...