Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.233
Filtrar
1.
Mol Pharm ; 21(5): 2065-2080, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38600804

RESUMO

Physiologically based biopharmaceutics modeling (PBBM) is used to elevate drug product quality by providing a more accurate and holistic understanding of how drugs interact with the human body. These models are based on the integration of physiological, pharmacological, and pharmaceutical data to simulate and predict drug behavior in vivo. Effective utilization of PBBM requires a consistent approach to model development, verification, validation, and application. Currently, only one country has a draft guidance document for PBBM, whereas other major regulatory authorities have had limited experience with the review of PBBM. To address this gap, industry submitted confidential PBBM case studies to be reviewed by the regulatory agencies; software companies committed to training. PBBM cases were independently and collaboratively discussed by regulators, and academic colleagues participated in some of the discussions. Successful bioequivalence "safe space" industry case examples are also presented. Overall, six regulatory agencies were involved in the case study exercises, including ANVISA, FDA, Health Canada, MHRA, PMDA, and EMA (experts from Belgium, Germany, Norway, Portugal, Spain, and Sweden), and we believe this is the first time such a collaboration has taken place. The outcomes were presented at this workshop, together with a participant survey on the utility and experience with PBBM submissions, to discuss the best scientific practices for developing, validating, and applying PBBMs. The PBBM case studies enabled industry to receive constructive feedback from global regulators and highlighted clear direction for future PBBM submissions for regulatory consideration.


Assuntos
Biofarmácia , Indústria Farmacêutica , Humanos , Biofarmácia/métodos , Indústria Farmacêutica/métodos , Modelos Biológicos , Equivalência Terapêutica , Preparações Farmacêuticas/química , Estados Unidos
2.
Expert Opin Drug Discov ; 19(5): 523-535, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38481119

RESUMO

INTRODUCTION: Automated patch clamp (APC) is now well established as a mature technology for ion channel drug discovery in academia, biotech and pharma companies, and in contract research organizations (CRO), for a variety of applications including channelopathy research, compound screening, target validation and cardiac safety testing. AREAS COVERED: Ion channels are an important class of drugged and approved drug targets. The authors present a review of the current state of ion channel drug discovery along with new and exciting developments in ion channel research involving APC. This includes topics such as native and iPSC-derived cells in ion channel drug discovery, channelopathy research, organellar and biologics in ion channel drug discovery. EXPERT OPINION: It is our belief that APC will continue to play a critical role in ion channel drug discovery, not only in 'classical' hit screening, target validation and cardiac safety testing, but extending these applications to include high throughput organellar recordings and optogenetics. In this way, with advancements in APC capabilities and applications, together with high resolution cryo-EM structures, ion channel drug discovery will be re-invigorated, leading to a growing list of ion channel ligands in clinical development.


Assuntos
Descoberta de Drogas , Canais Iônicos , Técnicas de Patch-Clamp , Humanos , Descoberta de Drogas/métodos , Canais Iônicos/efeitos dos fármacos , Animais , Técnicas de Patch-Clamp/métodos , Indústria Farmacêutica/métodos , Ensaios de Triagem em Larga Escala/métodos , Desenvolvimento de Medicamentos/métodos , Células-Tronco Pluripotentes Induzidas , Ligantes
3.
AAPS PharmSciTech ; 25(2): 37, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355916

RESUMO

Hot-melt extrusion (HME) is a globally recognized, robust, effective technology that enhances the bioavailability of poorly soluble active pharmaceutical ingredients and offers an efficient continuous manufacturing process. The twin-screw extruder (TSE) offers an extremely resourceful customizable mixer that is used for continuous compounding and granulation by using different combinations of conveying elements, kneading elements (forward and reverse configuration), and distributive mixing elements. TSE is thus efficiently utilized for dry, wet, or melt granulation not only to manufacture dosage forms such as tablets, capsules, or granule-filled sachets, but also for designing novel formulations such as dry powder inhalers, drying units for granules, nanoextrusion, 3D printing, complexation, and amorphous solid dispersions. Over the past decades, combined academic and pharmaceutical industry collaborations have driven novel innovations for HME technology, which has resulted in a substantial increase in published articles and patents. This article summarizes the challenges and models for executing HME scale-up. Additionally, it covers the benefits of continuous manufacturing, process analytical technology (PAT) considerations, and regulatory requirements. In summary, this well-designed review builds upon our earlier publication, probing deeper into the potential of twin-screw extruders (TSE) for various new applications.


Assuntos
Química Farmacêutica , Tecnologia Farmacêutica , Composição de Medicamentos/métodos , Tecnologia Farmacêutica/métodos , Química Farmacêutica/métodos , Tecnologia de Extrusão por Fusão a Quente , Indústria Farmacêutica/métodos , Temperatura Alta
4.
J Pharm Sci ; 113(6): 1682-1688, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38325736

RESUMO

This study addresses the identification of undesirable microorganisms (MOs) recovered during the environmental monitoring in manufacture of sterile medicinal products. We developed a methodology evaluation based on a decision tree; then, such approach was applied to hypothetical scenarios of uncommon MOs isolation in sterile drugs production settings. The scenarios were formulated on the basis of our field experience, in terms of both MOs selection and types of sampling site. The MOs were chosen in order to include emerging pathogens and MOs responsible for drug recall, and several sampling sites were considered for their detection (air, surfaces, and personnel). The classification of the unusual MOs revealed that most of them were undesirable, because they represented the loss of environmental control or a potential impact on the quality of the product. In some cases, the uncommon MOs were not considered as undesirable. Therefore, our results demonstrated the importance of a methodology, also in terms of recovery rate of unusual MOs and of the threshold probability for the unacceptability (e.g., 1% or 5%). The proposed methodology allowed an easy and documented evaluation for the undesirable MOs isolated from the environment of the analyzed settings for sterile drugs production.


Assuntos
Contaminação de Medicamentos , Contaminação de Medicamentos/prevenção & controle , Monitoramento Ambiental/métodos , Esterilização/métodos , Indústria Farmacêutica/métodos , Bactérias/isolamento & purificação , Bactérias/metabolismo , Árvores de Decisões , Microbiologia Ambiental
5.
MAbs ; 16(1): 2304624, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38299343

RESUMO

High-concentration protein formulation is of paramount importance in patient-centric drug product development, but it also presents challenges due to the potential for enhanced aggregation and increased viscosity. The analysis of critical quality attributes often necessitates the transfer of samples from their primary containers together with sample dilution. Therefore, there is a demand for noninvasive, in situ biophysical methods to assess protein drug products directly in primary sterile containers, such as prefilled syringes, without dilution. In this study, we introduce a novel application of water proton nuclear magnetic resonance (wNMR) to evaluate the aggregation propensity of a high-concentration drug product, Dupixent® (dupilumab), under stress conditions. wNMR results demonstrate a concentration-dependent, reversible association of dupilumab in the commercial formulation, as well as irreversible aggregation when exposed to accelerated thermal stress, but gradually reversible aggregation when exposed to freeze and thaw cycles. Importantly, these results show a strong correlation with data obtained from established biophysical analytical tools widely used in the pharmaceutical industry. The application of wNMR represents a promising approach for in situ noninvasive analysis of high-concentration protein formulations directly in their primary containers, providing valuable insights for drug development and quality assessment.


Assuntos
Indústria Farmacêutica , Espectroscopia de Ressonância Magnética , Indústria Farmacêutica/métodos , Viscosidade , Água/química
6.
Sci Rep ; 14(1): 2927, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316908

RESUMO

Gemigliptin-Rosuvastatin single-pill combination is a promising therapeutic tool in the effective control of hyperglycemia and hypercholesterolemia. Organic sensors with high quantum yields have profoundly significant applications in the pharmaceutical industry, such as routine quality control of marketed formulations. Herein, the fluorescence sensor, 2-Morpholino-4,6-dimethyl nicotinonitrile 3, (λex; 226 nm, λem; 406 nm), was synthesized with a fluorescence quantum yield of 56.86% and fully characterized in our laboratory. This sensor showed high efficiency for the determination of Gemigliptin (GEM) and Rosuvastatin (RSV) traces through their stoichiometric interactions and simultaneously fractionated by selective solvation. The interaction between the stated analytes and sensor 3 was a quenching effect. Various experimental parameters and the turn-off mechanism were addressed. The adopted approach fulfilled the ICH validation criteria and showed linear satisfactory ranges, 0.2-2 and 0.1-1 µg/mL for GEM and RSV, respectively with nano-limits of detection less than 30 ng/mL for both analytes. The synthesized sensor has been successfully applied for GEM and RSV co-assessment in their synthetic polypill with excellent % recoveries of 98.83 ± 0.86 and 100.19 ± 0.64, respectively. No statistically significant difference between the results of the proposed and reported spectrophotometric methods in terms of the F- and t-tests. Ecological and whiteness appraisals of the proposed study were conducted via three novel approaches: the Greenness Index via Spider Diagram, the Analytical Greenness Metric, and the Red-Green-Blue 12 model. The aforementioned metrics proved the superiority of the adopted approach over the previously published one regarding eco-friendliness and sustainability. Our devised fluorimetric turn-off sensing method showed high sensitivity, selectivity, feasibility, and rapidity with minimal cost and environmental burden over other sophisticated techniques, making it reliable in quality control labs.


Assuntos
Piperidonas , Pirimidinas , Controle de Qualidade , Rosuvastatina Cálcica , Espectrometria de Fluorescência , Tecnologia Farmacêutica , Laboratórios , Combinação de Medicamentos , Indústria Farmacêutica/instrumentação , Indústria Farmacêutica/métodos , Indústria Farmacêutica/normas , Composição de Medicamentos/instrumentação , Composição de Medicamentos/métodos , Composição de Medicamentos/normas , Tecnologia Farmacêutica/instrumentação , Tecnologia Farmacêutica/métodos , Tecnologia Farmacêutica/normas , Cor , Espectrometria de Fluorescência/instrumentação , Espectrometria de Fluorescência/métodos , Espectrometria de Fluorescência/normas , Formas de Dosagem
7.
Drug Discov Today ; 29(1): 103845, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013043

RESUMO

In both academia and the pharmaceutical industry, innovative hypotheses, methodologies and technologies that can shorten the drug research and development, leading to higher success rates, are vital. In this review, we demonstrate how innovative variations of the scaffold-hopping strategy have been used to create new druggable molecular spaces, drugs, clinical candidates, preclinical candidates, and bioactive agents. We also analyze molecular modulations that enabled improvements of the pharmacodynamic (PD), physiochemical, and pharmacokinetic (PK) properties (P3 properties) of the drugs resulting from these scaffold-hopping strategies.


Assuntos
Descoberta de Drogas , Indústria Farmacêutica , Descoberta de Drogas/métodos , Indústria Farmacêutica/métodos , Desenho de Fármacos
8.
Eur J Pharm Biopharm ; 194: 159-169, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110160

RESUMO

The identification of process Design Space (DS) is of high interest in highly regulated industrial sectors, such as pharmaceutical industry, where assurance of manufacturability and product quality is key for process development and decision-making. If the process can be controlled by a set of manipulated variables, the DS can be expanded in comparison to an open-loop scenario, where there are no controls in place. Determining the benefits of control strategies may be challenging, particularly when the available model is complex and computationally expensive - which is typically the case of pharmaceutical manufacturing. In this study, we exploit surrogate-based feasibility analysis to determine whether the process satisfies all process constraints by manipulating the process inputs and reduce the effect of uncertainty. The proposed approach is successfully tested on two simulated pharmaceutical case studies of increasing complexity, i.e., considering (i) a single pharmaceutical unit operation, and (ii) a pharmaceutical manufacturing line comprised of a sequence of connected unit operations. Results demonstrate that different control actions can be effectively exploited to operate the process in a wider range of inputs and mitigate uncertainty.


Assuntos
Indústria Farmacêutica , Tecnologia Farmacêutica , Tecnologia Farmacêutica/métodos , Incerteza , Controle de Qualidade , Indústria Farmacêutica/métodos , Preparações Farmacêuticas
9.
J Pharm Sci ; 113(3): 505-512, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38103689

RESUMO

Forced degradation, also known as stress testing, is used throughout pharmaceutical development for many purposes including assessing the comparability of biopharmaceutical products according to ICH Guideline Q5E. These formal comparability studies, the results of which are submitted to health authorities, investigate potential impacts of manufacturing process changes on the quality, safety, and efficacy of the drug. Despite the wide use of forced degradation in comparability assessments, detailed guidance on the design and interpretation of such studies is scarce. The BioPhorum Development Group is an industry-wide consortium enabling networking and sharing of common practices for the development of biopharmaceuticals. The BioPhorum Development Group Forced Degradation Workstream recently conducted several group discussions and a benchmarking survey to understand current industry approaches for the use of forced degradation studies to assess comparability of protein-based biopharmaceuticals. The results provide insight into the design of forced degradation studies, analytical characterization and testing strategies, data evaluation criteria, as well as some considerations and differences for non-platform modalities (e.g., non-traditional mAbs). This article presents survey responses from several global companies of various sizes and provides an industry perspective and experience regarding the practicalities of using forced degradation to assess comparability.


Assuntos
Produtos Biológicos , Desenvolvimento de Medicamentos , Anticorpos Monoclonais , Indústria Farmacêutica/métodos
10.
Eur J Pharm Biopharm ; 195: 114174, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160986

RESUMO

Over the last years, the pharmaceutical industry has faced real challenges regarding quality assurance. In this context, the establishment of more holistic approaches to the pharmaceutical development has been encouraged. The emergence of the Quality by Design (QbD) paradigm as systematic, scientific and risk-based methodology introduced a new concept of pharmaceutical quality. In essence, QbD can be interpreted as a strategy to maximize time and cost savings. An in-depth understanding of the formulation and manufacturing process is demanded to optimize the safety, efficacy and quality of a drug product at all stages of development. This innovative approach streamlines the pharmaceutical Research and Development (R&D) process, provides greater manufacturing flexibility and reduces regulatory burden. To assist in QbD implementation, International Conference on Harmonisation (ICH), U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) organized and launched QbD principles in their guidance for industry, identifying key concepts and tools to design and develop a high-quality drug product. Despite the undeniable advantages of the QbD approach, and the widespread information on QbD regulatory expectations, its full implementation in the pharmaceutical field is still limited. The present review aims to establish a crosswise overview on the current application status of QbD within the framework of the ICH guidelines (ICH Q8(R2) - Q14 and ICH Q2(R2)). Moreover, it outlines the way information gathered from the QbD methodology is being harmonized in Marketing Authorization Applications (MAAs) for European market approval. This work also highlights the challenges that hinder the deployment of the QbD strategy as a standard practice.


Assuntos
Desenvolvimento de Medicamentos , Indústria Farmacêutica , Indústria Farmacêutica/métodos , Estados Unidos , United States Food and Drug Administration
14.
Int J Pharm ; 643: 123274, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37507098

RESUMO

Today's pharmaceutical industry is facing various challenges. Two of them are issues with supply chain security and the increasing demand for personalized medicine. Both can be addressed by increasing flexibility and a more decentralized approach to pharmaceutical manufacturing. In this study, we present a setup that provides flexibility in terms of supplied raw materials and the product, i.e., a direct-compression setup for personalized tablets operating at a single-tablet-scale. The performance of the implemented single-tablet-scale technology for dosing and mixing was investigated. In addition, an analysis of the critical quality attributes (CQAs) of immediate release ibuprofen and loratadine tablets was performed. The developed dosing device achieved acceptance rates of > 90 % for doses ≥ 20 mg for various pharmaceutical powders. Regarding the vibratory mixing process, a dependency of the performance on the applied frequencies and acceleration was observed, with 100 Hz and âˆ¼ 90 G performing best, yet still exhibiting varying mixing efficacies depending on the granular system. The tablets produced met U.S. Pharmacopeia requirements regarding mechanical stability and dissolution characteristics. Given these results, we consider the developed setup a proof of concept of a tool to provide personalized tablets to patients while minimizing the dependency on complex supply chains.


Assuntos
Indústria Farmacêutica , Tecnologia Farmacêutica , Humanos , Tecnologia Farmacêutica/métodos , Indústria Farmacêutica/métodos , Pressão , Comprimidos , Pós , Composição de Medicamentos/métodos
15.
Drug Discov Today ; 28(7): 103611, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37164307

RESUMO

Pharmaceutical companies face challenges in business continuity resulting from declining research and development productivity. This study examines the relationship between two strategic pillars: region and therapeutic area, while considering company size. The results indicate that a therapeutic area focus is an effective strategy for small/medium-sized companies, whereas a regional focus is effective for larger companies. These findings highlight the limitations of the traditional global pharmaceutical model from 2004 to 2018 and aim to contribute to the future corporate strategic planning of these companies.


Assuntos
Comércio , Indústria Farmacêutica , Indústria Farmacêutica/métodos , Empresa de Pequeno Porte , Preparações Farmacêuticas
16.
J Pharm Sci ; 112(7): 1997-2003, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37137440

RESUMO

With the anticipated health challenges brought by demographic and technological changes, ensuring capacity in underlying workforce in place is essential for addressing patients' needs. Therefore, a timely identification of important drivers facilitating capacity building is important for strategic decisions and workforce planning. In 2020, internationally renowned pharmaceutical scientists (N = 92), largely from the academia and pharmaceutical industry, with mostly pharmacy and pharmaceutical sciences educational background were approached (through a questionnaire) for their considerations on influencing drivers to facilitate meeting current capacity in pharmaceutical sciences research. From a global view, based on the results of the questionnaire, the top drivers were better alignment with patient needs as well as strengthening education - both through continuous learning and deeper specialisation. The study also showed that capacity building is more than simply increasing the influx of graduates. Pharmaceutical sciences are being influenced by other disciplines, and we can expect more diversity in scientific background and training. Capacity building of pharmaceutical scientists should allow flexibility for rapid change driven by the clinic and need for specialised science and it should be underpinned by lifelong learning.


Assuntos
Fortalecimento Institucional , Farmácia , Humanos , Indústria Farmacêutica/métodos , Preparações Farmacêuticas
17.
Microb Cell Fact ; 22(1): 64, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016390

RESUMO

BACKGROUND: Icaritin is an aglycone of flavonoid glycosides from Herba Epimedii. It has good performance in the treatment of hepatocellular carcinoma in clinical trials. However, the natural icaritin content of Herba Epimedii is very low. At present, the icaritin is mainly prepared from flavonoid glycosides by α-L-rhamnosidases and ß-glucosidases in two-step catalysis process. However, one-pot icaritin production required reported enzymes to be immobilized or bifunctional enzymes to hydrolyze substrate with long reaction time, which caused complicated operations and high costs. To improve the production efficiency and reduce costs, we explored α-L-rhamnosidase SPRHA2 and ß-glucosidase PBGL to directly hydrolyze icariin to icaritin in one-pot, and developed the whole-cell catalytic method for efficient icaritin production. RESULTS: The SPRHA2 and PBGL were expressed in Escherichia coli, respectively. One-pot production of icaritin was achieved by co-catalysis of SPRHA2 and PBGL. Moreover, whole-cell catalysis was developed for icariin hydrolysis. The mixture of SPRHA2 cells and PBGL cells transformed 200 g/L icariin into 103.69 g/L icaritin (yield 95.23%) in 4 h in whole-cell catalysis under the optimized reaction conditions. In order to further increase the production efficiency and simplify operations, we also constructed recombinant E. coli strains that co-expressed SPRHA2 and PBGL. Crude icariin extracts were also efficiently hydrolyzed by the whole-cell catalytic system. CONCLUSIONS: Compared to previous reports on icaritin production, in this study, whole-cell catalysis showed higher production efficiency of icaritin. This study provides promising approach for industrial production of icaritin in the future.


Assuntos
Indústria Farmacêutica , Medicamentos de Ervas Chinesas , Flavonoides , Microbiologia Industrial , Catálise , Medicamentos de Ervas Chinesas/síntese química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/metabolismo , Escherichia coli/genética , beta-Glucosidase/genética , beta-Glucosidase/metabolismo , Sphingomonadaceae/enzimologia , Sphingomonadaceae/genética , Paenibacillus/enzimologia , Paenibacillus/genética , Microbiologia Industrial/métodos , Indústria Farmacêutica/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Flavonoides/biossíntese , Hidrólise
18.
J Pharmacokinet Pharmacodyn ; 50(3): 147-172, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36870005

RESUMO

Exposure-response (E-R) analyses are an integral component in the development of oncology products. Characterizing the relationship between drug exposure metrics and response allows the sponsor to use modeling and simulation to address both internal and external drug development questions (e.g., optimal dose, frequency of administration, dose adjustments for special populations). This white paper is the output of an industry-government collaboration among scientists with broad experience in E-R modeling as part of regulatory submissions. The goal of this white paper is to provide guidance on what the preferred methods for E-R analysis in oncology clinical drug development are and what metrics of exposure should be considered.


Assuntos
Desenvolvimento de Medicamentos , Oncologia , Simulação por Computador , Indústria Farmacêutica/métodos
19.
J Pharm Sci ; 112(8): 2010-2028, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36780986

RESUMO

Active Pharmaceutical Ingredients (APIs) do not always exhibit processable physical properties, which makes their processing in an industrial setup very demanding. These issues often lead to poor robustness and higher cost of the drug product. The issue can be mitigated by co-processing the APIs using suitable solvent media-based techniques to streamline pharmaceutical manufacturing operations. Some of the co-processing methods are the amalgamation of API purification and granulation steps. These techniques also exhibit adequate robustness for successful adoption by the pharmaceutical industry to manufacture high quality drug products. Spherical crystallization and co-precipitation are solvent media-based co-processing approaches that enhances the micromeritic and dissolution characteristics of problematic APIs. These methods not only improve API characteristics but also enable direct compression into tablets. These methods are economical and time-saving as they have the potential for effectively circumventing the granulation step, which can be a major source of variability in the product. This review highlights the recent advancements pertaining to these techniques to aid researchers in adopting the right co-processing method. Similarly, the possibility of scaling up the production of co-processed APIs by these techniques is discussed. The continuous manufacturability by co-processing is outlined with a short note on Process Analytical Technology (PAT) applicability in monitoring and improving the process.


Assuntos
Indústria Farmacêutica , Tecnologia Farmacêutica , Cristalização/métodos , Tecnologia Farmacêutica/métodos , Indústria Farmacêutica/métodos , Comprimidos/química , Solventes/química , Preparações Farmacêuticas
20.
Int J Pharm ; 635: 122785, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36849040

RESUMO

The current healthcare dynamic has shifted from one-size-fits-all to patient-centred care, with our increased understanding of pharmacokinetics and pharmacogenomics demanding a switch to more individualised therapies. As the pharmaceutical industry remains yet to succumb to the push of a technological paradigm shift, pharmacists lack the means to provide completely personalised medicine (PM) to their patients in a safe, affordable, and widely accessible manner. As additive manufacturing technology has already established its strength in producing pharmaceutical formulations, it is necessary to next consider methods by which this technology can create PM accessible from pharmacies. In this article, we reviewed the limitations of current pharmaceutical manufacturing methods for PMs, three-dimensional (3D) printing techniques that are most beneficial for PMs, implications of bringing this technology into pharmacy practice, and implications for policy surrounding 3D printing techniques in the manufacturing of PMs.


Assuntos
Medicina de Precisão , Tecnologia Farmacêutica , Humanos , Tecnologia Farmacêutica/métodos , Indústria Farmacêutica/métodos , Impressão Tridimensional , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...