Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
J Cell Mol Med ; 28(7): e18192, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506079

RESUMO

In the last decade, extensive attention has been paid to the uremic toxin indoxyl sulphate (IS) as an inducer of cardiac fibroblast (cFib) activation and cardiac fibrosis in chronic kidney disease. At cellular level, IS engages aryl hydrocarbon receptor (AhR) and regulates many biological functions. We analysed how AhR inhibition by CH-223191 (CH) and overexpression of non-functional (dominant negative, DN) nuclear factor-erythroid-2-related factor 2 (NRF2), a transcription factor recruited by AhR, modulate the response of neonatal mouse (nm) cFib to IS. We also evaluated nm-cardiomyocytes after incubation with the conditioned medium (CM) of IS±CH-treated nm-cFib. IS induced activation, collagen synthesis, TLR4 and-downstream-MCP-1, and the genes encoding angiotensinogen, angiotensin-converting enzyme, angiotensin type 1 receptor (AT1r) and neprilysin (Nepr) in nm-cFib. CH antagonized IS-initiated nm-cFib activation, but did not affect or even magnified the other features. IS promoted NRF2 nuclear translocation and expression the NRF2 target Nqo1. Both pre-incubation with CH and transfection of DN-NRF2 resulted in loss of NRF2 nuclear localization. Moreover, DN-NRF2 overexpression led to greater TLR4 and MCP-1 levels following exposure to IS. The CM of IS-primed nm-cFib and to a larger extent the CM of IS+CH-treated nm-cFib upregulated AT1r, Nepr and TNFα and myostatin genes in nm-cardiomyocytes. Hence, IS triggers pro-inflammatory activation of nm-cFib partly via AhR, and AhR-NRF2 counteract it. Strategies other than AhR inhibition are needed to target IS detrimental actions on cardiac cells.


Assuntos
Indicã , Transdução de Sinais , Camundongos , Animais , Indicã/farmacologia , Indicã/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Receptor 4 Toll-Like/genética , Fibroblastos/metabolismo
2.
Cell Mol Biol Lett ; 29(1): 38, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491448

RESUMO

Aryl hydrocarbon receptor (AhR) was originally identified as an environmental sensor that responds to pollutants. Subsequent research has revealed that AhR recognizes multiple exogenous and endogenous molecules, including uremic toxins retained in the body due to the decline in renal function. Therefore, AhR is also considered to be a uremic toxin receptor. As a ligand-activated transcriptional factor, the activation of AhR is involved in cell differentiation and senescence, lipid metabolism and fibrogenesis. The accumulation of uremic toxins in the body is hazardous to all tissues and organs. The identification of the endogenous uremic toxin receptor opens the door to investigating the precise role and molecular mechanism of tissue and organ damage induced by uremic toxins. This review focuses on summarizing recent findings on the role of AhR activation induced by uremic toxins in chronic kidney disease, diabetic nephropathy and acute kidney injury. Furthermore, potential clinical approaches to mitigate the effects of uremic toxins are explored herein, such as enhancing uremic toxin clearance through dialysis, reducing uremic toxin production through dietary interventions or microbial manipulation, and manipulating metabolic pathways induced by uremic toxins through controlling AhR signaling. This information may also shed light on the mechanism of uremic toxin-induced injury to other organs, and provide insights into clinical approaches to manipulate the accumulated uremic toxins.


Assuntos
Nefropatias , Toxinas Biológicas , Humanos , Toxinas Urêmicas , Indicã/toxicidade , Indicã/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Toxinas Biológicas/toxicidade
3.
Biomed Res ; 45(2): 57-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556263

RESUMO

Although patients with chronic kidney disease (CKD) have a higher risk of colorectal cancer (CRC) aggravation, the connection between these two diseases is not well understood. Recent studies have shown that both CKD and CRC aggravation are closely related to an increased abundance of indole-producing Fusobacterium nucleatum in the gut. The indole absorbed from the gut is eventually metabolized to indoxyl sulfate in the liver. Since indoxyl sulfate is involved not only in accelerating CKD progression but also in the initiation and development of its associated complications, the present study aimed to clarify whether indoxyl sulfate induces the proliferation of CRC cells. This study found that indoxyl sulfate induced the proliferation of CRC-derived HCT-116 cells by activating the aryl hydrocarbon receptor (AhR) and the proto-oncogene Akt. The AhR antagonist CH223191 and Akt inhibitor MK2206 suppressed indoxyl sulfate-induced proliferation of HCT-116 cells. We also found that indoxyl sulfate upregulated epidermal growth factor receptor (EGFR) expression, which is associated with poor prognosis of CRC, whereas CH223191 and MK2206 repressed EGFR expression. Furthermore, indoxyl sulfate increased the sensitivity of CRC cells to EGF by upregulating EGFR expression. These findings suggest that indoxyl sulfate may be an important link between CKD and CRC aggravation.


Assuntos
Compostos Azo , Neoplasias Colorretais , Pirazóis , Insuficiência Renal Crônica , Humanos , Indicã/farmacologia , Indicã/metabolismo , Proteínas Proto-Oncogênicas c-akt , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores ErbB/genética , Indóis , Proliferação de Células
4.
Molecules ; 28(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067420

RESUMO

Asperulosidic acid is a bioactive iridoid isolated from Hedyotis diffusa Willd. with anti-inflammatory and renal protective effects. However, its mechanism on renal interstitial fibrosis has not been elucidated yet. The present study aims to explore whether asperulosidic acid could retard renal fibrosis by reducing the circulating indoxyl sulfate (IS), which is a uremic toxin and accelerates chronic kidney disease progression by inducing renal fibrosis. In this paper, a unilateral ureteral obstruction (UUO) model of Balb/C mice was established. After the mice were orally administered with asperulosidic acid (14 and 28 mg/kg) for two weeks, blood, liver and kidney were collected for biochemical, histological, qPCR and Western blot analyses. Asperulosidic acid administration markedly reduced the serum IS level and significantly alleviated the histological changes in glomerular sclerosis and renal interstitial fibrosis. It is noteworthy that the mRNA and protein levels of the organic anion transporter 1 (OAT1), OAT3 and hepatocyte nuclear factor 1α (HNF1α) in the kidney were significantly increased, while the mRNA expressions of cytochrome P450 2e1 (Cyp2e1) and sulfotransferase 1a1 (Sult1a1) in the liver were not altered after asperulosidic acid administration. These results reveal that asperulosidic acid could accelerate the renal excretion of IS by up-regulating OATs via HNF1α in UUO mice, thereby alleviating renal fibrosis, but did not significantly affect its production in the liver, which might provide important information for the development of asperulosidic acid.


Assuntos
Nefropatias , Transportadores de Ânions Orgânicos , Insuficiência Renal Crônica , Obstrução Ureteral , Camundongos , Animais , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Indicã/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/etiologia , Nefropatias/metabolismo , Rim , Insuficiência Renal Crônica/metabolismo , Fibrose , RNA Mensageiro/metabolismo
5.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894870

RESUMO

Chronic kidney disease (CKD) is a global health concern affecting millions worldwide. One of the critical challenges in CKD is the accumulation of uremic toxins such as p-cresol sulfate (pCS) and indoxyl sulfate (IS), which contribute to systemic damage and CKD progression. Understanding the transport mechanisms of these prominent toxins is essential for developing effective treatments. Here, we investigated whether pCS and IS are routed to the plasma membrane or to the cytosol by two key transporters, SLC22A11 and OAT1. To distinguish between cytosolic transport and plasma membrane insertion, we used a hyperosmolarity assay in which the accumulation of substrates into HEK-293 cells in isotonic and hypertonic buffers was measured in parallel using LC-MS/MS. Judging from the efficiency of transport (TE), pCS is a relevant substrate of SLC22A11 at 7.8 ± 1.4 µL min-1 mg protein-1 but not as good as estrone-3-sulfate; OAT1 translocates pCS less efficiently. The TE of SLC22A11 for IS was similar to pCS. For OAT1, however, IS is an excellent substrate. With OAT1 and p-aminohippuric acid, our study revealed an influence of transporter abundance on the outcomes of the hyperosmolarity assay; very high transport activity confounded results. SLC22A11 was found to insert both pCS and IS into the plasma membrane, whereas OAT1 conveys these toxins to the cytosol. These disparate transport mechanisms bear profound ramifications for toxicity. Membrane insertion might promote membrane damage and microvesicle release. Our results underscore the imperative for detailed structural inquiries into the translocation of small molecules.


Assuntos
Insuficiência Renal Crônica , Toxinas Biológicas , Humanos , Toxinas Urêmicas , Indicã/metabolismo , Cromatografia Líquida , Células HEK293 , Espectrometria de Massas em Tandem , Insuficiência Renal Crônica/metabolismo , Cresóis/metabolismo , Toxinas Biológicas/metabolismo , Membrana Celular/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes
6.
Cell Chem Biol ; 30(11): 1402-1413.e7, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37633277

RESUMO

Indoxyl sulfate is a microbially derived uremic toxin that accumulates in late-stage chronic kidney disease and contributes to both renal and cardiovascular toxicity. Indoxyl sulfate is generated by the metabolism of indole, a compound created solely by gut microbial tryptophanases. Here, we characterize the landscape of tryptophanase enzymes in the human gut microbiome and find remarkable structural and functional similarities across diverse taxa. We leverage this homology through a medicinal chemistry campaign to create a potent pan-inhibitor, (3S) ALG-05, and validate its action as a transition-state analog. (3S) ALG-05 successfully reduces indole production in microbial culture and displays minimal toxicity against microbial and mammalian cells. Mice treated with (3S) ALG-05 show reduced cecal indole and serum indoxyl sulfate levels with minimal changes in other tryptophan-metabolizing pathways. These studies present a non-bactericidal pan-inhibitor of gut microbial tryptophanases with potential promise for reducing indoxyl sulfate in chronic kidney disease.


Assuntos
Microbioma Gastrointestinal , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Indicã/farmacologia , Indicã/metabolismo , Triptofanase , Microbioma Gastrointestinal/fisiologia , Indóis/farmacologia , Indóis/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Mamíferos/metabolismo
7.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569342

RESUMO

Rates of pregnancy-related acute kidney injury (PR-AKI) have increased in the U.S over the past two decades, but how PR-AKI affects the blood-brain barrier (BBB) is understudied. AKI is associated with increased amounts of uremic toxins, like indoxyl sulfate (I.S), whose chronic administration leads to BBB and cognitive changes. This study's objective was to determine if (1) PR-AKI increases I.S and (2) if administration of I.S during pregnancy elicits renal injury and/or increases BBB permeability. From gestational day (GD) 11 to GD19, Sprague Dawley rats were given either 100 or 200 mg/kg body-weight dose of I.S. PR-AKI was induced on GD18 via 45 min bilateral renal ischemic reperfusion surgery. On GD18, metabolic cage metrics and metabolic waste was collected and on GD19 blood pressure, and BBB permeability (by Evan's Blue infusion) were measured. I.S and creatinine were measured in both urine and circulation, respectively. One-way ANOVA or student t-tests were performed using GraphPad Prism with a p < 0.05 significance. I.S and PR-AKI led to oliguria. I.S administration led to increased BBB permeability compared to normal pregnant and PR-AKI animals. These results suggest that I.S administration during pregnancy leads to increased BBB permeability and evidence of renal injury comparable to PR-AKI animals.


Assuntos
Injúria Renal Aguda , Barreira Hematoencefálica , Ratos , Gravidez , Animais , Feminino , Barreira Hematoencefálica/metabolismo , Ratos Sprague-Dawley , Indicã/metabolismo , Rim/metabolismo , Permeabilidade
8.
Toxicol Lett ; 383: 204-212, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37414304

RESUMO

Atherosclerosis (AS), a chronic vascular inflammatory disease, has become a main focus of attention worldwide for its chronic progressing disease course and serious complications in the later period. Nevertheless, explanations for the exact molecular mechanisms of AS initiation and development remain to be an unsolved problem. The classic pathogenesis theories, such as lipid percolation and deposition, endothelium injury, inflammation and immune damage, provide the foundation for discovering the new key molecules or signaling mechanisms. Recently, indoxyl sulfate (IS), one of non-free uremia toxins, has been noticeable for its multiple atherogenic effects. IS exists at high concentration in plasma for its great albumin binding rate. Patients with uremia have markedly elevated serum levels of IS due both to the deterioration of renal function and to the high binding affinity of IS to albumin. Nowadays, elevated incidence of circulatory disease among patients with renal dysfunction indicates correlation of uremic toxins with cardiovascular damage. In this review, the atherogenic effects of IS and the underlying mechanisms are summarized with emphasis on several key pathological events associated with AS developments, such as vascular endothelium dysfunction, arterial medial lesions, vascular oxidative stress, excessive inflammatory responses, calcification, thrombosis and foam cell formation. Although recent studies have proved the great correlation between IS and AS, deciphering cellular and pathophysiological signaling by confirming key factors involved in IS-mediated atherosclerosis development may enable identification of novel therapeutic targets.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Insuficiência Renal Crônica , Uremia , Humanos , Indicã/metabolismo , Doença Crônica , Albuminas , Insuficiência Renal Crônica/metabolismo
9.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37511089

RESUMO

Renal fibrosis is the final manifestation of chronic kidney disease (CKD); its prevention is vital for controlling CKD progression. Indoxyl sulfate (IS), a typical sulfate-conjugated uremic solute, is produced in the liver via the enzyme sulfotransferase (SULT) 1A1 and accumulates significantly during CKD. We investigated the toxicopathological role of IS in renal fibrosis using Sult1a1-KO mice and the underlying mechanisms. The unilateral ureteral obstruction (UUO) model was created; kidney IS concentrations, inflammation, and renal fibrosis were assessed on day 14. After UUO treatment, inflammation and renal fibrosis were exacerbated in WT mice, with an accumulation of IS in the kidney. However, they were significantly suppressed in Sult1a1-KO mice. CD206+ expression was upregulated, and ß-catenin expression was downregulated in Sult1a1-KO mice. To confirm the impact of erythropoietin (EPO) on renal fibrosis, we evaluated the time-dependent expression of EPO. In Sult1a1-KO mice, EPO mRNA expression was improved considerably; UUO-induced renal fibrosis was further attenuated by recombinant human erythropoietin (rhEPO). Thus, UUO-induced renal fibrosis was alleviated in Sult1a1-KO mice with a decreased accumulation of IS. Our findings confirmed the pathological role of IS in renal fibrosis and identified SULT1A1 as a new therapeutic target enzyme for preventing and attenuating renal fibrosis.


Assuntos
Indicã , Rim , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Eritropoetina/metabolismo , Fibrose , Indicã/metabolismo , Inflamação/metabolismo , Rim/patologia , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo , Obstrução Ureteral/metabolismo
10.
Front Endocrinol (Lausanne) ; 14: 1152444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288304

RESUMO

Objective: Acyl-CoA-binding protein (ACBP)/diazepam-binding inhibitor has lately been described as an endocrine factor affecting food intake and lipid metabolism. ACBP is dysregulated in catabolic/malnutrition states like sepsis or systemic inflammation. However, regulation of ACBP has not been investigated in conditions with impaired kidney function, so far. Design/methods: Serum ACBP concentrations were investigated by enzyme-linked immunosorbent assay i) in a cohort of 60 individuals with kidney failure (KF) on chronic haemodialysis and compared to 60 individuals with a preserved kidney function; and ii) in a human model of acute kidney dysfunction (AKD). In addition, mACBP mRNA expression was assessed in two CKD mouse models and in two distinct groups of non-CKD mice. Further, mRNA expression of mACBP was measured in vitro in isolated, differentiated mouse adipocytes - brown and white - after exposure to the uremic agent indoxyl sulfate. Results: Median [interquartile range] serum ACBP was almost 20-fold increased in KF (514.0 [339.3] µg/l) compared to subjects without KF (26.1 [39.1] µg/l) (p<0.001). eGFR was the most important, inverse predictor of circulating ACBP in multivariate analysis (standardized ß=-0.839; p<0.001). Furthermore, AKD increased ACBP concentrations almost 3-fold (p<0.001). Increased ACBP levels were not caused by augmented mACBP mRNA expression in different tissues of CKD mice in vivo or in indoxyl sulfate-treated adipocytes in vitro. Conclusions: Circulating ACBP inversely associates with renal function, most likely through renal retention of the cytokine. Future studies need to investigate ACBP physiology in malnutrition-related disease states, such as CKD, and to adjust for markers of renal function.


Assuntos
Inibidor da Ligação a Diazepam , Desnutrição , Camundongos , Humanos , Animais , Indicã/metabolismo , Proteínas de Transporte/genética , Rim/metabolismo , Diazepam/metabolismo , RNA Mensageiro/metabolismo , Desnutrição/metabolismo
11.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175508

RESUMO

The aryl hydrocarbon receptor (AhR) is a decisive regulatory ligand-dependent transcription factor. It binds highly diverse ligands, which can be categorized as either endogenous or exogenous. Ligand binding activates AhR, which can adjust inflammatory responses by modulating immune cells such as dendritic cells (DCs). However, how different AhR ligand classes impact the phenotype and function of human monocyte-derived DCs (hMoDCs) has not been extensively studied in a comparative manner. We, therefore, tested the effect of the representative compounds Benzo(a)pyrene (BP), 6-formylindolo[3,2-b]carbazole (FICZ), and Indoxyl 3-sulfate (I3S) on DC biology. Thereby, we reveal that BP significantly induces a tolerogenic response in lipopolysaccharide-matured DCs, which is not apparent to the same extent when using FICZ or I3S. While all three ligand classes activate AhR-dependent pathways, BP especially induces the expression of negative immune regulators, and subsequently strongly subverts the T cell stimulatory capacity of DCs. Using the CRISPR/Cas9 strategy we also prove that the regulatory effect of BP is strictly AhR-dependent. These findings imply that AhR ligands contribute differently to DC responses and incite further studies to uncover the mechanisms and molecules which are involved in the induction of different phenotypes and functions in DCs upon AhR activation.


Assuntos
Regulação da Expressão Gênica , Receptores de Hidrocarboneto Arílico , Humanos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Ligantes , Carbazóis/farmacologia , Carbazóis/metabolismo , Indicã/metabolismo , Células Dendríticas , Biologia
12.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175735

RESUMO

In this study, we investigated the impact of the uremic toxin indoxyl sulfate on macrophages and tubular epithelial cells and its role in modulating the response to lipopolysaccharide (LPS). Indoxyl sulfate accumulates in the blood of patients with chronic kidney disease (CKD) and is a predictor of overall and cardiovascular morbidity/mortality. To simulate the uremic condition, primary macrophages and tubular epithelial cells were incubated with indoxyl sulfate at low concentrations as well as concentrations found in uremic patients, both alone and upon LPS challenge. The results showed that indoxyl sulfate alone induced the release of reactive oxygen species and low-grade inflammation in macrophages. Moreover, combined with LPS (proinflammatory conditions), indoxyl sulfate significantly increased TNF-α, CCL2, and IL-10 release but did not significantly affect the polarization of macrophages. Pre-treatment with indoxyl sulfate following LPS challenge induced the expression of aryl hydrocarbon receptor (Ahr) and NADPH oxidase 4 (Nox4) which generate reactive oxygen species (ROS). Further, experiments with tubular epithelial cells revealed that indoxyl sulfate might induce senescence in parenchymal cells and therefore participate in the progression of inflammaging. In conclusion, this study provides evidence that indoxyl sulfate provokes low-grade inflammation, modulates macrophage function, and enhances the inflammatory response associated with LPS. Finally, indoxyl sulfate signaling contributes to the senescence of tubular epithelial cells during injury.


Assuntos
Indicã , Toxinas Urêmicas , Humanos , Indicã/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Células Epiteliais/metabolismo
13.
Toxins (Basel) ; 15(4)2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-37104179

RESUMO

Kidney fibrosis is the common final pathway of nearly all chronic and progressive nephropathies. One cause may be the accumulation of senescent cells that secrete factors (senescence associated secretory phenotype, SASP) promoting fibrosis and inflammation. It has been suggested that uremic toxins, such as indoxyl sulfate (IS), play a role in this. Here, we investigated whether IS accelerates senescence in conditionally immortalized proximal tubule epithelial cells overexpressing the organic anion transporter 1 (ciPTEC-OAT1), thereby promoting kidney fibrosis. Cell viability results suggested that the tolerance of ciPTEC-OAT1 against IS increased in a time-dependent manner at the same dose of IS. This was accompanied by SA-ß-gal staining, confirming the accumulation of senescent cells, as well as an upregulation of p21 and downregulation of laminB1 at different time points, accompanied by an upregulation in the SASP factors IL-1ß, IL-6 and IL-8. RNA-sequencing and transcriptome analysis revealed that IS accelerates senescence, and that cell cycle appears to be the most relevant factor during the process. IS accelerates senescence via TNF-α and NF-ĸB signalling early on, and the epithelial-mesenchymal transition process at later time points. In conclusion, our results suggest that IS accelerates cellular senescence in proximal tubule epithelial cells.


Assuntos
Indicã , Toxinas Urêmicas , Humanos , Indicã/toxicidade , Indicã/metabolismo , Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Fibrose
14.
J Mol Cell Cardiol ; 179: 18-29, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36967106

RESUMO

BACKGROUND: Calcific aortic stenosis (CAS) is more prevalent, occurs earlier, progresses faster and has worse outcomes in patients with chronic kidney disease (CKD). The uremic toxin indoxyl sulfate (IS) is powerful predictor of cardiovascular mortality in these patients and a strong promoter of ectopic calcification whose role in CAS remains poorly studied. The objective of this study was to evaluate whether IS influences the mineralization of primary human valvular interstitial cells (hVICs) from the aortic valve. METHODS: Primary hVICs were exposed to increasing concentrations of IS in osteogenic medium (OM). The hVICs' osteogenic transition was monitored by qRT-PCRs for BMP2 and RUNX2 mRNA. Cell mineralization was assayed using the o-cresolphthalein complexone method. Inflammation was assessed by monitoring NF-κB activation using Western blots as well as IL-1ß, IL-6 and TNF-α secretion by ELISAs. Small interfering RNA (siRNA) approaches enabled us to determine which signaling pathways were involved. RESULTS: Indoxyl-sulfate increased OM-induced hVICs osteogenic transition and calcification in a concentration-dependent manner. This effect was blocked by silencing the receptor for IS (the aryl hydrocarbon receptor, AhR). Exposure to IS promoted p65 phosphorylation, the blockade of which inhibited IS-induced mineralization. Exposure to IS promoted IL-6 secretion by hVICs, a phenomenon blocked by silencing AhR or p65. Incubation with an anti-IL-6 antibody neutralized IS's pro-calcific effects. CONCLUSION: IS promotes hVIC mineralization through AhR-dependent activation of the NF-κB pathway and the subsequent release of IL-6. Further research should seek to determine whether targeting inflammatory pathways can reduce the onset and progression of CKD-related CAS.


Assuntos
Estenose da Valva Aórtica , Calcinose , Humanos , Valva Aórtica/metabolismo , NF-kappa B/metabolismo , Estenose da Valva Aórtica/metabolismo , Interleucina-6/farmacologia , Indicã/farmacologia , Indicã/metabolismo , Osteogênese , Receptores de Hidrocarboneto Arílico/metabolismo , Calcinose/metabolismo , Células Cultivadas , Diferenciação Celular , RNA Interferente Pequeno/metabolismo , Sulfatos/metabolismo , Sulfatos/farmacologia
15.
Lab Invest ; 103(3): 100025, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36925201

RESUMO

Although platinum-combination chemotherapy shows a high response rate at the primary site, epithelial ovarian cancer (EOC) treatment remains challenging because of tumor recurrence and metastasis. Recent studies have revealed that chemotherapy paradoxically promotes cancer cell survival, proliferation, and metastasis, although the reason for this remains unclear. The underlying molecular mechanisms that contribute to chemotherapy-induced metastasis need to be elucidated to establish effective therapeutic strategies. Acute kidney injury is a known side effect of cisplatin treatment, and kidney dysfunction results in the accumulation of uremic toxins in the serum. The present study aimed to investigate whether indoxyl sulfate (IS), a representative uremic toxin, affects the pathophysiology of EOC. In this study, IS reduced the expression of Mas receptor (MasR) in cultured human EOC cells. Both knockdown of the aryl hydrocarbon receptor (AhR), which is an intracellular IS receptor, and inhibition of AhR function suppressed IS-mediated downregulation of MasR in SK-OV-3 cells. IS induced the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in an AhR-dependent manner. Inhibition of the STAT3 pathway or reactive oxygen species production suppressed the IS-mediated reduction of MasR. IS stimulated cell migration and invasion of SK-OV-3 cells in an AhR-dependent manner. Cisplatin-nephropathy model mice exhibited elevated levels of serum IS accompanied by elevated levels of blood urea nitrogen and serum creatinine. Furthermore, intraperitoneal administration of IS in mice promoted tumor growth and metastasis. Finally, we found that the MasR agonist Ang-(1-7) suppressed the IS-mediated effects on cell proliferation, migration, and invasion of SK-OV-3 cells. However, the knockdown of MasR expression by specific small interfering RNA in the absence of IS resulted in only minimal promotion of cell migration and invasion. These findings demonstrate that IS promotes malignancy in ovarian cancer via AhR-mediated downregulation of MasR function, whereas Ang-(1-7) attenuates this effect, thereby suggesting that Ang-(1-7) could provide a future treatment strategy for this cancer type.


Assuntos
Indicã , Neoplasias Ovarianas , Camundongos , Humanos , Animais , Feminino , Indicã/farmacologia , Indicã/metabolismo , Regulação para Baixo , Receptores de Hidrocarboneto Arílico/metabolismo , Cisplatino/farmacologia
16.
J Ethnopharmacol ; 308: 116244, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36764562

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Astragalus membranaceus Fisch. ex Bunge has long been used to treat chronic kidney disease (CKD) in China. However, the mechanism of action requires further study. Indoxyl sulfate accumulation is the key cause of CKD progression. The aryl hydrocarbon receptor (AhR) plays an essential role in the renal tubular injury induced by indoxyl sulfate (IS). AIM: We explored the effects of Astragaloside IV (AS-IV), a minor component of the flowering perennial Astragalus membranaceus Fisch. ex Bunge, on AhR activity during IS-induced injury of renal tubular epithelial cells. METHODS: C57BL/6 mice fed a 0.2% adenine diet (adenine + IS) and intraperitoneally injected with IS were used to study the protective effects of AS-IV, and specifically the effect on the AhR. In addition, apoptosis (annexin/PI), oxidative stress and the AhR pathway were investigated in IS-stimulated HK-2 cells treated with AS-IV. The binding of AS-IV to the AhR was assessed in a molecular docking analysis. AhR knockdown using AhR siRNA allowed determination of the effects of AS-IV in IS-stimulated HK-2 cells. RESULTS: AS-IV inhibited tubulointerstitial injury in adenine + IS mice. While AS-IV did not reduce serum IS levels, it did inhibit AhR expression in the kidney. In IS-stimulated HK-2 cells, AS-IV also dramatically reduced apoptosis, decreased oxidative stress responses and inhibited the expression of the AhR pathway. The molecular docking analysis showed surface binding of AS-IV to the AhR. Following AhR knockdown in HK-2 cells, IS-induced apoptosis was reduced and could not be further reduced by AS-IV. CONCLUSION: By targeting the AhR, AS-IV may alleviate IS-induced renal tubular injury, thus offering a novel therapeutic approach to the treatment of chronic renal failure.


Assuntos
Indicã , Insuficiência Renal Crônica , Camundongos , Animais , Indicã/metabolismo , Indicã/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica/metabolismo , Células Epiteliais/metabolismo
17.
Metabolomics ; 19(3): 14, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36826619

RESUMO

INTRODUCTION: In the advanced stage of chronic kidney disease (CKD), electrolytes, fluids, and metabolic wastes including various uremic toxins, accumulate at high concentrations in the patients' blood. Hemodialysis (HD) is the conventional procedure used worldwide to remove metabolic wastes. The creatinine and urea levels have been routinely monitored to estimate kidney function and effectiveness of the HD process. This study, first from in Indian perspective, aimed at the identification and quantification of major uremic toxins in CKD patients on maintenance HD (PRE-HD), and compared with the healthy controls (HC) as well as after HD (POST-HD). OBJECTIVES: The study mainly focused on the identification of major uremic toxins in Indian perspective and the quantitative analysis of indoxyl sulfate and p-cresol sulfate (routinely targeted uremic toxins), and phenyl sulfate, catechol sulfate, and guaiacol sulfate (targeted for the first time), apart from creatinine and urea in PRE-HD, POST-HD, and HC groups. METHODS: Blood samples were collected from 90 HD patients (both PRE-HD and POST-HD), and 74 HCs. The plasma samples were subjected to direct ESI-HRMS and LC/HRMS for untargeted metabolomics and LC-MS/MS for quantitative analysis. RESULTS: Various known uremic toxins, and a few new and unknown peaks were detected in PRE-HD patients. The p-cresol sulfate and indoxyl sulfate were dominant in PRE-HD, the concentrations of phenyl sulfate, catechol sulfate, and guaiacol sulfate were about 50% of that of indoxyl sulfate. Statistical evaluation on the levels of targeted uremic toxins in PRE-HD, POST-HD, and HC groups showed a significant difference among the three groups. The dialytic clearance of indoxyl sulfate and p-cresol sulfate was found to be < 35%, while that of the other three sulfates was 50-58%. CONCLUSION: LC-MS/MS method was developed and validated to evaluate five major uremic toxins in CKD patients on HD. The levels of the targeted uremic toxins could be used to assess kidney function and the effectiveness of HD.


Assuntos
Insuficiência Renal Crônica , Toxinas Urêmicas , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Indicã/metabolismo , Creatinina , Metabolômica , Diálise Renal , Insuficiência Renal Crônica/metabolismo , Sulfatos , Ureia
18.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835051

RESUMO

Kidney transplantation (KTx) is the preferred form of renal replacement therapy in chronic kidney disease (CKD) patients, owing to increased quality of life and reduced mortality when compared to chronic dialysis. Risk of cardiovascular disease is reduced after KTx; however, it is still a leading cause of death in this patient population. Thus, we aimed to investigate whether functional properties of the vasculature differed two years post-KTx (postKTx) compared to baseline (time of KTx). Using the EndoPAT device in 27 CKD patients undergoing living-donor KTx, we found that vessel stiffness significantly improved while endothelial function worsened postKTx vs. baseline. Furthermore, baseline serum indoxyl sulphate (IS), but not p-cresyl sulphate, was independently negatively associated with reactive hyperemia index, a marker of endothelial function, and independently positively associated with P-selectin postKTx. Finally, to better understand the functional effects of IS in vessels, we incubated human resistance arteries with IS overnight and performed wire myography experiments ex vivo. IS-incubated arteries showed reduced bradykinin-mediated endothelium-dependent relaxation compared to controls via reduced nitric oxide (NO) contribution. Endothelium-independent relaxation in response to NO donor sodium nitroprusside was similar between IS and control groups. Together, our data suggest that IS promotes worsened endothelial dysfunction postKTx, which may contribute to the sustained CVD risk.


Assuntos
Indicã , Transplante de Rim , Insuficiência Renal Crônica , Doenças Vasculares , Humanos , Doenças Cardiovasculares , Endotélio Vascular/metabolismo , Indicã/metabolismo , Transplante de Rim/efeitos adversos , Nitroprussiato/farmacologia , Qualidade de Vida , Insuficiência Renal Crônica/terapia , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia
19.
Cell Signal ; 104: 110583, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36596353

RESUMO

Chronic kidney disease (CKD) is a global health condition characterized by a progressive deterioration of kidney function. It is associated with high serum levels of uremic toxins (UT), such as Indoxyl Sulfate (IS), which may participate in the genesis of several uremic complications. Anemia is one of the major complications in CKD patients that contribute to cardiovascular disease, increase morbi-mortality, and is associated with a deterioration of kidney failure in these patients. Our study aimed to characterize the impact of IS on CKD-related erythropoiesis. Using cellular and pre-clinical models, we studied cellular and molecular effects of IS on the growth and differentiation of erythroid cells. First, we examined the effect of clinically relevant concentrations of IS (up to 250 µM) in the UT7/EPO cell line. IS at 250 µM increased apoptosis of UT7/EPO cells at 48 h compared to the control condition. We confirmed this apoptotic effect of IS in erythropoiesis in human primary CD34+ cells during the later stages of erythropoiesis. Then, in IS-treated human primary CD34+ cells and in a (5/6 Nx) mice model, a blockage at the burst-forming unit-erythroid (BFU-E) stage of erythropoiesis was also observed. Finally, IS deregulates a number of erythropoietic related genes such as GATA-1, Erythropoietin-Receptor (EPO-R), and ß-globin. Our findings suggest that IS could affect cell viability and differentiation of erythroid progenitors by altering erythropoiesis and contributing to the development of anemia in CKD.


Assuntos
Anemia , Eritropoetina , Insuficiência Renal Crônica , Camundongos , Animais , Humanos , Eritropoese/fisiologia , Indicã/metabolismo , Indicã/farmacologia , Células Precursoras Eritroides/metabolismo , Anemia/metabolismo , Insuficiência Renal Crônica/metabolismo
20.
Glia ; 71(4): 1057-1080, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36573349

RESUMO

Chronic kidney disease (CKD)-associated mental disorders have been attributed to the excessive accumulation of hemodialysis-resistant indoxyl-3-sulfate (I3S) in the brain. I3S not only induces oxidative stress but is also a potent endogenous agonist of the aryl hydrocarbon receptor (AhR). Here, we investigated the role of AhR in CKD-induced brain disorders using a 5/6 nephrectomy-induced CKD mouse model, which showed increased I3S concentration in both blood and brain, anxiety and impaired novelty recognition, and AhR activation in the anterior cortex. GFAP+ reactive astrocytes were increased accompanied with the reduction of glutamate transporter 1 (GLT1) on perineuronal astrocytic processes (PAPs) in the anterior cingulate cortex (ACC) in CKD mice, and these alterations were attenuated in both neural lineage-specific and astrocyte-specific Ahr conditional knockout mice (nAhrCKO and aAhrCKO). By using chronic I3S treatment in primary astrocytes and glia-neuron (GN) mix cultures to mimic the CKD brain microenvironment, we also found significant reduction of GLT1 expression and activity in an AhR-dependent manner. Chronic I3S treatment induced AhR-dependent pro-oxidant Nox1 and AhR-independent anti-oxidant HO-1 expressions. Notably, AhR mediates chronic I3S-induced neuronal activity enhancement and synaptotoxicity in GN mix, not neuron-enriched cortical culture. In CKD mice, neuronal activity enhancement was observed in ACC and hippocampal CA1, and these responses were abrogated by both nAhrCKO and aAhrCKO. Finally, intranasal AhR antagonist CH-223191 administration significantly ameliorated the GLT1/PAPs reduction, increase in c-Fos+ neurons, and memory impairment in the CKD mice. Thus, astrocytic AhR plays a crucial role in the CKD-induced disturbance of neuron-astrocyte interaction and mental disorders.


Assuntos
Transtornos Mentais , Receptores de Hidrocarboneto Arílico , Insuficiência Renal Crônica , Animais , Camundongos , Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Hipocampo/metabolismo , Indicã/metabolismo , Transtornos Mentais/etiologia , Transtornos Mentais/metabolismo , Camundongos Knockout , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...