RESUMO
Nerve agents are organophosphates (OPs) that act as potent inhibitors of acetylcholinesterase (AChE), the enzyme responsible for the hydrolysis of acetylcholine. After inhibition, a dealkylation reaction of the phosphorylated serine, known as the aging of AChE, can occur. When aged, reactivators of OP-inhibited AChE are no longer effective. Therefore, the realkylation of aged AChE may offer a pathway to reverse AChE aging. In this study, molecular modeling was conducted to propose new ligands as realkylators of aged AChE. We applied a methodology involving docking and quantum mechanics/molecular mechanics (QM/MM) calculations to evaluate the resurrection kinetic constants and ligand interactions with OP-aged AChE, comparing them to data found in the literature. The results obtained confirm that this method is suitable for predicting kinetic and thermodynamic parameters of ligands, which can be useful in the design and selection of new and more effective ligands for AChE realkylation.
Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Indolquinonas , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Cinética , Indolquinonas/química , Simulação de Acoplamento Molecular , Ligantes , Termodinâmica , Modelos Moleculares , Humanos , Simulação de Dinâmica MolecularRESUMO
This article presents a comprehensive overview of multicomponent reactions (MCRs) that proceed via ortho-quinone methide intermediates (o-QM) generated in the reaction medium. Examples of applications involving these highly reactive intermediates in organic synthesis and biological processes (e. g., biosynthetic pathways, prodrug cleavage and electrophilic capture of biological nucleophiles) are also described. QMs are often generated by eliminative processes of phenol derivatives or by photochemical reactions, including reversible generation in photochromic substances. This class of compounds can undergo various reaction types, including nucleophilic attack at the methide carbon, with subsequent rearomatization, and react with electron-rich dienophiles in inverse-electron demand hetero-Diels-Alder reactions. Its versatile reactivity has been explored in the context of cascade reactions for the construction of several classes of substances, including complex natural products.
Assuntos
Indolquinonas , Técnicas de Química Sintética , Reação de Cicloadição , Indolquinonas/químicaRESUMO
BACKGROUND: According to the World Health Organization, antimicrobial resistance is one of the most important public health threats of the 21st century. Therefore, there is an urgent need for the development of antimicrobial agents with new mechanism of action, especially those capable of evading known resistance mechanisms. OBJECTIVE: We described the synthesis, in vitro antimicrobial evaluation, and in silico analysis of a series of 1H-indole-4,7-dione derivatives. METHODS: The new series of 1H-indole-4,7-diones was prepared with good yield by using a copper(II)- mediated reaction between bromoquinone and ß-enamino ketones bearing alkyl or phenyl groups attached to the nitrogen atom. The antimicrobial potential of indole derivatives was assessed. Molecular docking studies were also performed using AutoDock 4.2 for Windows. Characterization of all compounds was confirmed by one- and two-dimensional NMR techniques 1H and 13C NMR spectra [1H, 13C - APT, 1H x 1H - COSY, HSQC and HMBC], IR and mass spectrometry analysis. RESULTS: Several indolequinone compounds showed effective antimicrobial profile against Grampositive (MIC = 16 µg.mL-1) and Gram-negative bacteria (MIC = 8 µg.mL-1) similar to antimicrobials current on the market. The 3-acetyl-1-(2,5-dimethylphenyl)-1H-indole-4,7-dione derivative exhibited an important effect against different biofilm stages formed by a serious hospital life-threatening resistant strain of Methicillin-Resistant Staphylococcus aureus (MRSA). A hemocompatibility profile analysis based on in vitro hemolysis assays revealed the low toxicity effects of this new series. Indeed, in silico studies showed a good pharmacokinetics and toxicological profiles for all indolequinone derivatives, reinforcing their feasibility to display a promising oral bioavailability. An elucidation of the promising indolequinone derivatives binding mode was achieved, showing interactions with important sites to biological activity of S. aureus DNA gyrase. These results highlighted 3-acetyl-1-(2-hydroxyethyl)-1Hindole- 4,7-dione derivative as broad-spectrum antimicrobial prototype to be further explored for treating bacterial infections. CONCLUSION: The highly substituted indolequinones were obtained in moderate to good yields. The pharmacological study indicated that these compounds should be exploited in the search for a leading substance in a project aimed at obtaining new antimicrobials effective against Gram-negative bacteria.
Assuntos
Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Indolquinonas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Humanos , Indolquinonas/síntese química , Indolquinonas/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura MolecularRESUMO
Aminochrome induces neurotoxic alpha-synuclein oligomer formation relevant to the etiology of Parkinson's disease. Oxidative stress produces aminochrome from dopamine, but conjugation with glutathione catalyzed by glutathione transferase M2-2 significantly decreases aminochrome-induced toxicity and alpha-synuclein oligomer formation. Notably, in the presence of the aminochrome-glutathione conjugate, previously unknown species of alpha-synuclein oligomers are formed. These aminochrome-glutathione oligomers of alpha-synuclein differ from formerly characterized oligomers and (i) have high molecular weight, and are stable and SDS-resistant, as determined by the Western blot method, (ii) show positive NBT-quinone-protein staining, which indicates the formation of alpha-synuclein adducts containing aminochrome. Furthermore, aminochrome-glutathione alpha-synuclein oligomers (iii) have distinctive shape and size, as determined by transmission electron microscopy, and (iv) are not toxic in U373MG cells. In conclusion, glutathione conjugated with aminochrome induces a new type of alpha-synuclein oligomers of a different size and shape, which have no demonstrable toxicity.
Assuntos
Glutationa/metabolismo , Indolquinonas/metabolismo , Estresse Oxidativo/fisiologia , alfa-Sinucleína/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Glutationa/toxicidade , Glutationa Transferase/metabolismo , Glutationa Transferase/toxicidade , Humanos , Indolquinonas/toxicidade , alfa-Sinucleína/toxicidadeRESUMO
Aminochrome has been reported to induce lysosomal dysfunction by inhibiting the vacuolar H-type ATPase localized in lysosome membrane. DT-diaphorase has been proposed to prevent aminochrome neurotoxicity but it is unknown whether this enzyme prevents aminochrome-induced lysosomal dysfunction. In the present study, we tested the protective role of DT-diaphorase in lysosomal dysfunction by generating a cell line (SH-SY5YsiNQ7) with a stable expression of a siRNA against DT-diaphorase with only 10% expression of mRNA enzyme. The cells differentiated with retinoic acid and 12-o-tetradecanoylphorbol-13-acetate show a significant increase in the expression of tyrosine hydroxylase, vesicular monoamine transporter-2, and dopamine transporter. The incubation of SH-SY5YsiNQ7 cells with 10 µM aminochrome resulted in a significant decrease of lysosome pH determined by using acridine orange, while aminochrome has no effect on SH-SY5Y cells. These results support the proposed protective role of DT-diaphorase against aminochrome-induced lysosomal dysfunction.
Assuntos
Indolquinonas/toxicidade , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Neuroproteção/fisiologia , Animais , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio , Camundongos , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , NAD(P)H Desidrogenase (Quinona)/genéticaRESUMO
Aminochrome, an orthoquinone formed during the dopamine oxidation of neuromelanin, is neurotoxic because it induces mitochondria dysfunction, protein degradation dysfunction (both autophagy and proteasomal systems), α-synuclein aggregation to neurotoxic oligomers, neuroinflammation, and oxidative and endoplasmic reticulum stress. In this study, we investigated the relationship between aminochrome-induced autophagy/lysosome dysfunction and mitochondrial dysfunction in U373MGsiGST6 cells. Aminochrome (75 µM) induces mitochondrial dysfunction as determined by (i) a significant decrease in ATP levels (70%; P < 0.001) and (ii) a significant decrease in mitochondrial membrane potential (P < 0.001). Interestingly, the pretreatment of U373MGsiGST6 cells with 100 nM bafilomycin-A1, an inhibitor of lysosomal vacuolar-type H+-ATPase, restores ATP levels, mitochondrial membrane potential, and mitophagy, and decreases cell death. These results reveal (i) the importance of macroautophagy/the lysosomal degradation system for the normal functioning of mitochondria and for cell survival, and (ii) aminochrome-induced lysosomal dysfunction depends on the aminochrome-dependent inactivation of the vacuolar-type H+-ATPase, which pumps protons into the lysosomes. This study also supports the proposed protective role of glutathione transferase mu2-2 (GSTM2) in astrocytes against aminochrome toxicity, mediated by mitochondrial and lysosomal dysfunction.
Assuntos
Macrolídeos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitofagia/fisiologia , Autofagia/fisiologia , Linhagem Celular Tumoral , Dopamina/metabolismo , Humanos , Indolquinonas/farmacologia , Lisossomos/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , alfa-Sinucleína/metabolismoRESUMO
Alpha-synuclein (SNCA) oligomers have been reported to inhibit autophagy. Aminochrome-induced SNCA oligomers are neurotoxic, but the flavoenzyme DT-diaphorase prevents both their formation and their neurotoxicity. However, the possible protective role of DT-diaphorase against autophagy impairment by aminochrome-induced SNCA oligomers remains unclear. To test this idea, we used the cell line RCSN-3NQ7SNCA, with constitutive expression of a siRNA against DT-diaphorase and overexpression SNCA, and RCSN-3 as control cells. A significant increase in LC3-II expression was observed in RCSN-3 cells treated with 20 µM aminochrome and 10 µM rapamycin followed by a decrease in cell death compared to RCSN-3 cells incubated with 20 µM aminochrome alone. The incubation of RCSN-3NQ7SNCA cells with 20 µM aminochrome and 10 µM rapamycin does not change the expression of LC3-II in comparison with RCSN-3NQ7SNCA cells incubated with 20 µM aminochrome alone. The incubation of both cell lines preincubated with 100 nM bafilomycin and 20 µM aminochrome increases the level of LC3-II. Under the same conditions, cell death increases in both cell lines in comparison with cells incubated with 20 µM aminochrome. These results support the protective role of DT-diaphorase against SNCA oligomers-induced autophagy inhibition.
Assuntos
Autofagia/fisiologia , Indolquinonas/toxicidade , NAD(P)H Desidrogenase (Quinona)/metabolismo , Degeneração Neural/induzido quimicamente , Neuroproteção/fisiologia , alfa-Sinucleína/metabolismo , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Macrolídeos/toxicidade , Proteínas Associadas aos Microtúbulos/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , Degeneração Neural/enzimologia , Neuroproteção/efeitos dos fármacos , RNA Interferente Pequeno , Ratos , Sirolimo/toxicidade , alfa-Sinucleína/genéticaRESUMO
Aminochrome has been suggested as a more physiological preclinical model capable of inducing five of the six mechanisms of Parkinson's Disease (PD). Until now, there is no evidence that aminochrome induces glial activation related to neuroinflammation, an important mechanism involved in the loss of dopaminergic neurons. In this study, the potential role of aminochrome on glial activation was studied in primary mesencephalic neuron-glia cultures and microglial primary culture from Wistar rats. We demonstrated that aminochrome induced a reduction in the number of viable cells on cultures exposed to concentration between 10 and 100µM. Moreover, aminochrome induces neuronal death determined by Fluoro-jade B. Furthermore, we demonstrated that aminochrome induced reduction in the number of TH-immunoreactive neurons and reactive gliosis, featured by morphological changes in GFAP+ and Iba1+ cells, increase in the number of OX-42+ cells and increase in the number of NF-κB p50 immunoreactive cells. These results demonstrate aminochrome neuroinflammatory ability and support the hypothesis that it may be a better PD preclinical model to find new pharmacological treatment that stop the development of this disease.
Assuntos
Astrócitos/efeitos dos fármacos , Indolquinonas/toxicidade , Microglia/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Antígeno CD11b/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Microglia/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Ratos WistarRESUMO
Dopamine oxidation in the pathway leading to neuromelanin formation generates the ortho-quinone aminochrome, which is potentially neurotoxic but normally rapidly converted by DT-diaphorase to nontoxic leukoaminochrome. However, when administered exogenously into rat striatum, aminochrome is able to produce damage to dopaminergic neurons. Because of a recent report that substantia nigra pars compacta (SNpc) tyrosine hydroxylase (T-OH) levels were unaltered by aminochrome when there was cell shrinkage of dopaminergic neurons along with a reduction in striatal dopamine release, the following study was conducted to more accurately determine the role of DT-diaphorase in aminochrome neurotoxicity. In this study, a low dose of aminochrome (0.8 nmol) with or without the DT-diaphorase inhibitor dicoumarol (0.2 nmol) was injected into the left striatum of rats. Intrastriatal 6-hydroxydopamine (6-OHDA, 32 nmol) was used as a positive neurotoxin control in other rats. Two weeks later, there was significant loss in numbers of T-OH immunoreactive fibers in SNpc, also a loss in cell density in SNpc, and prominent apomorphine (0.5 mg/kg sc)-induced contralateral rotations in rats that had been treated with aminochrome, with aminochrome/dicoumarol, or with 6-OHDA. Findings demonstrate that neurotoxic aminochrome is able to exert neurotoxicity only when DT-diaphorase is suppressed-implying that DT-diaphorase is vital in normally suppressing toxicity of in vivo aminochrome, generated in the pathway towards neuromelanin formation.
Assuntos
Inibidores Enzimáticos/uso terapêutico , Indolquinonas/toxicidade , NAD(P)H Desidrogenase (Quinona)/metabolismo , Síndromes Neurotóxicas/etiologia , Neurotoxinas/toxicidade , Animais , Dicumarol/farmacologia , Modelos Animais de Doenças , Masculino , Oxirredução/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Técnicas Estereotáxicas , Tirosina 3-Mono-Oxigenase/metabolismoRESUMO
Astrocytes are exposed to aminochrome via the oxidation of dopamine that is taken up from the synaptic cleft after its release from dopaminergic neurons. Glutathione transferase M2-2 (GSTM2) has been shown to protect astrocytes from aminochrome-induced toxicity, but astrocytes also express DT-diaphorase, which has been shown to prevent aminochrome-induced neurotoxicity in dopaminergic neurons. Therefore, the question is whether DT-diaphorase also protects astrocytes from aminochrome-induced toxicity. DT-diaphorase is constitutively expressed in U373MG cells, and its inhibition by dicoumarol induced a significant increase of aminochrome-induced cell death. However, the inhibition of DT-diaphorase in U373MGsiGST6 cells, which have 74% of GSTM2 gene expression silenced, resulted in a more than 2-fold increase in cell death, suggesting that DT-diaphorase plays an important role in preventing aminochrome-induced toxicity in astrocytes.
Assuntos
Astrócitos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Indolquinonas/toxicidade , NAD(P)H Desidrogenase (Quinona)/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Transformada , Dicumarol/farmacologia , Inibidores Enzimáticos/farmacologia , Glutationa Transferase/metabolismo , Humanos , RNA Interferente Pequeno/metabolismoRESUMO
Biosynthetic investigation of quinonemethide triterpenoid 22ß-hydroxy-maytenin (2) from in vitro root cultures of Peritassa laevigata (Celastraceae) was conducted using (13)C-precursor. The mevalonate pathway in P. laevigata is responsible for the synthesis of the quinonemethide triterpenoid scaffold. Moreover, anatomical analysis of P. laevigata roots cultured in vitro and in situ showed the presence of 22ß-hydroxy-maytenin (2) and maytenin (1) in the tissues from transverse or longitudinal sections with an intense orange color. MALDI-MS imaging confirmed the distribution of (2) and (1) in the more distal portions of the root cap, the outer cell layers, and near the vascular cylinder of P. laevigata in vitro roots suggesting a role in plant defense against infection by microorganisms as well as in the root exudation processes.
Assuntos
Antioxidantes/metabolismo , Magnoliaceae , Exsudatos de Plantas/metabolismo , Raízes de Plantas/metabolismo , Espermidina/análogos & derivados , Antioxidantes/química , Células Cultivadas , Técnicas In Vitro , Indolquinonas/química , Redes e Vias Metabólicas , Ácido Mevalônico/metabolismo , Exsudatos de Plantas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espermidina/química , Espermidina/metabolismo , Triterpenos/químicaRESUMO
L-Dopa continues to be the gold drug in Parkinson's disease (PD) treatment from 1967. The failure to translate successful results from preclinical to clinical studies can be explained by the use of preclinical models which do not reflect what happens in the disease since these induce a rapid and extensive degeneration; for example, MPTP induces a severe Parkinsonism in only 3 days in humans contrasting with the slow degeneration and progression of PD. This study presents a new anatomy and develops preclinical model based on aminochrome which induces a slow and progressive dysfunction of dopaminergic neurons. The unilateral injection of aminochrome into rat striatum resulted in (1) contralateral rotation when the animals are stimulated with apomorphine; (2) absence of significant loss of tyrosine hydroxylase-positive neuronal elements both in substantia nigra and striatum; (3) cell shrinkage; (4) significant reduction of dopamine release; (5) significant increase in GABA release; (6) significant decrease in the number of monoaminergic presynaptic vesicles; (7) significant increase of dopamine concentration inside of monoaminergic vesicles; (8) significant increase of damaged mitochondria; (9) significant decrease of ATP level in the striatum (10) significant decrease in basal and maximal mitochondrial respiration. These results suggest that aminochrome induces dysfunction of dopaminergic neurons where the contralateral behavior can be explained by aminochrome-induced ATP decrease required both for anterograde transport of synaptic vesicles and dopamine release. Aminochrome could be implemented as a new model neurotoxin to study Parkinson's disease.
Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Indolquinonas/farmacologia , Doença de Parkinson/patologia , Trifosfato de Adenosina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/análise , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Indolquinonas/síntese química , Indolquinonas/química , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/veterinária , Ratos , Ratos Sprague-Dawley , Substância Negra/metabolismo , Vesículas Sinápticas/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Ácido gama-Aminobutírico/análiseRESUMO
The pharmacological treatment of Parkinson's disease (PD) is limited to dopamine agonists and anti-cholinergic drugs that do not stop the progress of disease. LDopa was introduced to the treatment in 1967; this drug is still the best and most commonly used drug since it generates a real improvement in patient quality of life, but the disadvantage of L-dopa is that this positive effect is followed by severe side effects such as dyskinesia. The search for a new drug in the treatment of PD is limited to compounds which decrease the side effects of the drugs used in the treatment of the disease, such as L-dopa-induced dyskinesia. One possible explanation for pharmaceutical companies not developing new drugs to stop disease development is because the mechanism which induces the loss of dopaminergic neurons containing neuromelanin of the nigrostriatal system is still unknown. The discovery of genes (alpha-synuclein, parkin, pink-1, DJ- 1, LRRK2, GBA1, etc.) associated with familial forms of PD resulted in an enormous input into basic research in order to understand the role of these proteins in the disease. It is generally accepted that the loss of dopaminergic neurons containing neuromelanin involves mitochondrial dysfunction, protein degradation dysfunction, the aggregation of alpha-synuclein to neurotoxic oligomers, oxidative neuroinflammation and endoplasmic reticulum stress, but the question of what induces these mechanisms remains unanswered. Aminochrome, the product of dopamine oxidation and the precursor of neuromelanin, is directly involved in five of the six mechanisms and may be a better PD preclinical model.
Assuntos
Descoberta de Drogas/métodos , Indolquinonas/farmacologia , Doença de Parkinson/prevenção & controle , Animais , Dopamina/metabolismo , Humanos , Indolquinonas/química , Oxirredução , Doença de Parkinson/metabolismoRESUMO
In this study, we investigated the role of adducts formation between aminochrome and tubulin and its interference in microtubules assembly and stability in aminochrome-induced toxicity in SH-SY5Y cells. We also investigated whether changes in the microtubules structures are an early event that could affect tubulin expression. We demonstrated in vitro that aminochrome tubulin adducts inhibit tubulin polymerization and that aminochrome induces microtubules disassembly. Moreover, when the SH-SY5Y cells were incubated with aminochrome, we observed an increase in soluble tubulin, indicating depolymerization of microtubules. Aminochrome generates disruption of the microtubules network, leading to changes in the morphology of the cells inducing cell death, in a dose- and time-dependent manner. Interestingly, these changes preceded cell death and were partly inhibited by paclitaxel, a microtubule-stabilizing agent. Furthermore, we observed that aminochrome increased early tubulin expression before significant cell death occurred. Consequently, all these antecedents suggest that aminochrome toxicity is mediated by early disruption of microtubules network, where the adduct formation between aminochrome and tubulin could be responsible for the inhibition in the assembly microtubules and the loss of microtubules stability. Possibly, the early changes in tubulin expression could correspond to compensatory mechanisms against the toxic effects of aminochrome.
Assuntos
Indolquinonas/toxicidade , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Moduladores de Tubulina/toxicidade , Tubulina (Proteína)/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , HumanosRESUMO
U373MG cells are able to take up aminochrome that induces glutathione transferase M2-2 (GSTM2) expression in a concentration-dependent manner where 100 µM aminochrome increases GSTM2 expression by 2.1-fold (P < 0.001) at 3 h. The uptake of (3)H-aminochrome into U373MG cells was significantly reduced in the presence of 2 µM nomifensine (P < 0.001) 100 µM imipramine (P < 0.001) and 50 mM dopamine (P < 0.001). Interestingly, U373MG cells excrete GSTM2 into the conditioned medium and the excretion was significantly increased (2.7-fold; P < 0.001) when the cells were pretreated with 50 µM aminochrome for 3 h. The U373MG-conditioned medium containing GSTM2 protects SH-SY5Y cells incubated with 10 µM aminochrome. The significant protection provided by U373MG-conditioned medium in SH-SY5Y cells incubated with aminochrome was dependent on GSTM2 internalization into SH-SY5Y cells as evidenced by (i) uptake of (14)C-GSTM2 released from U373MG cells into SH-SY5Y cells, a process inhibited by anti-GSTM2 antiserum; (ii) lack of protection of U373MG-conditioned medium in the presence of anti-GSTM2 antiserum on SH-SY5Y cells treated with aminochrome; and (iii) lack of protection of conditioned medium from U373MGsiGST6 that expresses an siRNA directed against GSTM2 on SH-SY5Y cells treated with aminochrome. In conclusion, our results demonstrated that U373MG cells protect SH-SY5Y cells against aminochrome neurotoxicity by releasing GSTM2 into the conditioned medium and subsequent internalization of GSTM2 into SH-SY5Y cells. These results suggest a new mechanism of protection of dopaminergic neurons mediated by astrocytes by releasing GSTM2 into the intersynaptic space and subsequent internalization into dopaminergic neuron in order to protect these cells against aminochrome neurotoxicity.
Assuntos
Glioblastoma/metabolismo , Glutationa Transferase/farmacologia , Indolquinonas/toxicidade , Fármacos Neuroprotetores/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Glutationa Transferase/metabolismo , Humanos , NeuroblastomaRESUMO
BACKGROUND: Choline kinase alpha (ChoKα) is a critical enzyme in the synthesis of phosphatidylcholine, a major structural component of eukaryotic cell membranes. ChoKα is overexpressed in a large variety of tumor cells and has been proposed as a target for personalized medicine, both in cancer therapy and rheumatoid arthritis. MATERIALS AND METHODS: Triterpene quinone methides (TPQ) bioactive compounds isolated from plants of the Celastraceae family and a set of their semisynthetic derivatives were tested against the recombinant human ChoKα. Those found active as potent enzymatic inhibitors were tested in vitro for antiproliferative activity against HT29 colorectal adenocarcinoma cells, and one of the active compounds was tested for in vivo antitumoral activity in mice xenographs of HT29 cells. RESULTS: Among 59 natural and semisynthetic TPQs tested in an ex vivo system, 14 were highly active as inhibitors of the enzyme ChoKα with IC50 <10 µM. Nine of these were potent antiproliferative agents (IC50 <10 µM) against tumor cells. At least one compound was identified as a new antitumoral drug based on its in vivo activity against xenographs of human HT-29 colon adenocarcinoma cells. CONCLUSIONS: The identification of a new family of natural and semisynthetic compounds with potent inhibitory activity against ChoKα and both in vitro antiproliferative and in vivo antitumoral activity supports further research on these inhibitors as potential anticancer agents. Their likely role as antiproliferative drugs deserves further studies in models of rheumatoid arthritis.
Assuntos
Antineoplásicos/farmacologia , Colina Quinase/antagonistas & inibidores , Adenocarcinoma/metabolismo , Animais , Antineoplásicos/química , Artrite Reumatoide/tratamento farmacológico , Produtos Biológicos , Linhagem Celular Tumoral , Proliferação de Células , Células HT29 , Humanos , Indolquinonas/química , Concentração Inibidora 50 , Dose Máxima Tolerável , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Transplante de Neoplasias , Neoplasias/tratamento farmacológico , Fosfatidilcolinas/química , Proteínas Recombinantes/química , Triterpenos/químicaRESUMO
To evaluate the protector effect of ascorbic acid (AA) against anxiogenic-like effect induced by methylmercury (MeHg) exposure, adult zebrafish were treated with AA (2 mg g(-1), intraperitoneal [i.p.]) before MeHg administration (1.0 µg g(-1), i.p.). Groups were tested for the light/dark preference as a behavioral model of anxiety, and the content of serotonin and its oxidized metabolite tryptamine-4,5-dione (T-4,5-D) in the brain was determined by high-performance liquid chromatography. MeHg has produced a marked anxiogenic profile in both tests, and this effect was accompanied by a decrease in the extracellular levels of serotonin, and an increase in the extracellular levels of T-4,5-D. Added to this, a marked increase in the formation of a marker of oxidative stress accompanied these parameters. Interestingly, the anxiogenic-like effect and biochemical alterations induced by MeHg were blocked by pretreatment with AA. These results for the first time demonstrated the potential protector action of AA in neurobehavioral and neurochemical alterations induced by methylmecury exposure demonstrating that zebrafish model could be used as an important tool for testing substances with neuroprotector actions.
Assuntos
Antioxidantes/farmacologia , Ansiedade/induzido quimicamente , Ácido Ascórbico/farmacologia , Encéfalo/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Compostos de Metilmercúrio/toxicidade , Peixe-Zebra/metabolismo , Animais , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Indolquinonas/metabolismo , Serotonina/metabolismo , Triptaminas/metabolismoRESUMO
The molecular mechanisms causing the loss of dopaminergic neurons containing neuromelanin in the substantia nigra and responsible for motor symptoms of Parkinson's disease are still unknown. The discovery of genes associated with Parkinson's disease (such as alpha synuclein (SNCA), E3 ubiquitin protein ligase (parkin), DJ-1 (PARK7), ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL-1), serine/threonine-protein kinase (PINK-1), leucine-rich repeat kinase 2 (LRRK2), cation-transporting ATPase 13A1 (ATP13A), etc.) contributed enormously to basic research towards understanding the role of these proteins in the sporadic form of the disease. However, it is generally accepted by the scientific community that mitochondria dysfunction, alpha synuclein aggregation, dysfunction of protein degradation, oxidative stress and neuroinflammation are involved in neurodegeneration. Dopamine oxidation seems to be a complex pathway in which dopamine o-quinone, aminochrome and 5,6-indolequinone are formed. However, both dopamine o-quinone and 5,6-indolequinone are so unstable that is difficult to study and separate their roles in the degenerative process occurring in Parkinson's disease. Dopamine oxidation to dopamine o-quinone, aminochrome and 5,6-indolequinone seems to play an important role in the neurodegenerative processes of Parkinson's disease as aminochrome induces: (i) mitochondria dysfunction, (ii) formation and stabilization of neurotoxic protofibrils of alpha synuclein, (iii) protein degradation dysfunction of both proteasomal and lysosomal systems and (iv) oxidative stress. The neurotoxic effects of aminochrome in dopaminergic neurons can be inhibited by: (i) preventing dopamine oxidation of the transporter that takes up dopamine into monoaminergic vesicles with low pH and dopamine oxidative deamination catalyzed by monoamino oxidase (ii) dopamine o-quinone, aminochrome and 5,6-indolequinone polymerization to neuromelanin and (iii) two-electron reduction of aminochrome catalyzed by DT-diaphorase. Furthermore, dopamine conversion to NM seems to have a dual role, protective and toxic, depending mostly on the cellular context. Dopamine oxidation to dopamine o-quinone, aminochrome and 5,6-indolequinone plays an important role in neurodegeneration in Parkinson's disease since they induce mitochondria and protein degradation dysfunction; formation of neurotoxic alpha synuclein protofibrils and oxidative stress. However, the cells have a protective system against dopamine oxidation composed by dopamine uptake mediated by Vesicular monoaminergic transporter-2 (VMAT-2), neuromelanin formation, two-electron reduction and GSH-conjugation mediated by Glutathione S-transferase M2-2 (GSTM2).
Assuntos
Dopamina/toxicidade , Dopamina/uso terapêutico , Doença de Parkinson/etiologia , Doença de Parkinson/prevenção & controle , Animais , Dopamina/biossíntese , Dopamina/metabolismo , Glutationa/metabolismo , Humanos , Indolquinonas/metabolismo , Melaninas/metabolismo , Melaninas/fisiologia , Monoaminoxidase/metabolismo , Quinonas/metabolismoRESUMO
U373MG cells constitutively express glutathione S-transferase mu 2 (GSTM2) and exhibit (3)H-dopamine uptake, which is inhibited by 2 µM of nomifensine and 15 µM of estradiol. We generated a stable cell line (U373MGsiGST6) expressing an siRNA against GSTM2 that resulted in low GSTM2 expression (26% of wild-type U373MG cells). A significant increase in cell death was observed when U373MGsiGST6 cells were incubated with 50 µM purified aminochrome (18-fold increase) compared with wild-type cells. The incubation of U373MGsiGST6 cells with 75 µM aminochrome resulted in the formation of autophagic vacuoles containing undigested cellular components, as determined using transmission electron microscopy. A significant increase in autophagosomes was determined by measuring endogenous LC3-II, a significant decrease in cell death was observed in the presence of bafilomycin A 1, and a significant increase in cell death was observed in the presence of trehalose. A significant increase in LAMP2 immunostaining was observed, a significant decrease in bright red fluorescence of lysosomes with acridine orange was observed, and bafilomycin A 1 pretreatment reduced the loss of lysosome acidity. A significant increase in cell death was observed in the presence of lysosomal protease inhibitors. Aggregation of TUBA/α-tubulin (tubulin, α) and SQSTM1 protein accumulation were also observed. Moreover, a significant increase in the number of lipids droplets was observed compared with U373MG cells with normal expression of GSTM2. These results support the notion that GSTM2 is a protective enzyme against aminochrome toxicity in astrocytes and that aminochrome cell death in U373MGsiGST6 cells involves autophagic-lysosomal dysfunction.
Assuntos
Astrócitos/metabolismo , Autofagia/fisiologia , Glutationa Transferase/metabolismo , Indolquinonas/toxicidade , Lisossomos/metabolismo , Linhagem Celular , Glioblastoma/metabolismo , Humanos , Mitocôndrias/metabolismo , Substâncias Protetoras/metabolismoRESUMO
Establishment of adventitious root cultures of Peritassa campestris (Celastraceae) was achieved from seed cotyledons cultured in semisolid Woody Plant Medium (WPM) supplemented with 2% sucrose, 0.01% PVP, and 4.0 mg L⻹ IBA. Culture period on accumulation of biomass and quinone-methide triterpene maytenin in adventitious root were investigated. The accumulation of maytenin in these roots was compared with its accumulation in the roots of seedlings grown in a greenhouse (one year old). A rapid detection and identification of maytenin by direct injection into an atmospheric-pressure chemical ionization ion trap tandem mass spectrometer (APCI-IT-MS/MS) were performed without prior chromatographic separation. In vitro, the greatest accumulation of biomass occurred within 60 days of culture. The highest level of maytenin--972.11 µ g·g⻹ dry weight--was detected at seven days of cultivation; this value was 5.55-fold higher than that found in the roots of seedlings grown in a greenhouse.