Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
PLoS One ; 16(10): e0258106, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34618844

RESUMO

Bacterial lipases play important roles during infection. The Staphylococcus aureus genome contains several genes that encode well-characterized lipases and several genes predicted to encode lipases or esterases for which the function has not yet been established. In this study, we sought to define the function of an uncharacterized S. aureus protein, and we propose the annotation S. aureus lipase 3 (SAL3) (SAUSA300_0641). We confirmed that SAL3 is a lipase and that it is surface associated and secreted through an unknown mechanism. We determined that SAL3 specifically hydrolyzes short chain (4-carbon and fewer) fatty acids and specifically binds negatively charged lipids including phosphatidic acid, phosphatidylinositol phosphate, and phosphatidylglycerol, which is the most abundant lipid in the staphylococcal cell membrane. Mutating the catalytic triad S66-A, D167-A, S168-A, and H301-A in the recombinant protein abolished lipase activity without altering binding to host lipid substrates. Taken together we report the discovery of a novel lipase from S. aureus specific to short chain fatty acids with yet to be determined roles in host pathogen interactions.


Assuntos
Lipase/genética , Lipídeos/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/enzimologia , Genoma Bacteriano/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Hidrólise , Infecções Estafilocócicas/enzimologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade
2.
Sci Rep ; 11(1): 17538, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475478

RESUMO

Coagulase-negative staphylococci (CoNS) are the most frequent contaminating bacteria; therefore, we aimed to investigate an indicator of CoNS to predict the increase in blood culture contamination rate (ConR). We performed a retrospective study of selected patients, who underwent blood culture testing. Contamination was defined as the presence of either one of two or more sets of skin-resident bacteria, except for cases with a low likelihood of contamination based on clinical aspects. We calculated the monthly ConR [(total number of contaminated cases per month)/(total number of blood culture sets collected per month) × 100] and analysed the ConR prediction ability using the following four indicators: the number of CoNS-positive sets of blood cultures, cases with at least one CoNS-positive blood culture set, cases with only one CoNS-positive blood culture set, and cases of contamination by CoNS. Cases with CoNS-positive blood cultures correlated with ConR (r = 0.85). Although the area under the receiver operating characteristic curve for the number of cases with ConR ≥ 2.5 differed significantly from that of the number of cases contaminated by CoNS, the negative predictive value was high, reaching up to 95.5% (95% confidential interval 87.3-99.1). The number of CoNS-positive cases could help predict an increase in ConR ≥ 2.5.


Assuntos
Bacteriemia/diagnóstico , Hemocultura/classificação , Coagulase/metabolismo , Infecções Estafilocócicas/diagnóstico , Staphylococcus/isolamento & purificação , Bacteriemia/enzimologia , Bacteriemia/microbiologia , Bacteriemia/patologia , Hemocultura/métodos , Infecção Hospitalar/microbiologia , Humanos , Curva ROC , Estudos Retrospectivos , Infecções Estafilocócicas/enzimologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus/patogenicidade
3.
Int Immunopharmacol ; 100: 108170, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34562843

RESUMO

Alpha-hemolysin (Hla), the virulence factor secreted by Staphylococcus aureus (S. aureus), plays a critical role in infection and inflammation, which is a severe health burden worldwide. Therefore, it is necessary to develop a drug against Hla. Epigallocatechin gallate (EGCG), a polyphenol extracted from green tea, has excellent anti-inflammatory activity. In this study, we investigated the inhibitory effect of EGCG on Hla-induced NLRP3 inflammasome activation in vitro and in vivo and elucidated the potential molecular mechanism. We found that EGCG attenuated the hemolysis of Hla by inhibiting its secretion. Besides, EGCG significantly decreased overproduction of ROS and activation of MAPK signaling pathway induced by Hla, thereby markedly attenuating the expression of NLRP3 inflammasome-related proteins in THP-1 cells. Notably, EGCG could spontaneously bind to Hla with affinity constant of 1.71 × 10-4 M, thus blocking the formation of the Hla heptamer. Moreover, Hla-induced expression of NLRP3, ASC and caspase-1 protein and generation of IL-1ß and IL-18 in the damaged liver tissue of mice were also significantly suppressed by EGCG in a dose-dependent manner. Collectively, EGCG could be a promising candidate for alleviating Hla-induced the activation of NLRP3 inflammasome, depending on ROS mediated MAPK signaling pathway, and inhibition of Hla secretion and heptamer formation. These findings will enlighten the applications of EGCG to reduce the S. aureus infection by targeting Hla in food and related pharmaceutical fields.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Catequina/análogos & derivados , Inflamassomos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catequina/farmacologia , Modelos Animais de Doenças , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais , Infecções Estafilocócicas/enzimologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Células THP-1
4.
J Biol Chem ; 297(2): 100981, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34302812

RESUMO

Gram-positive bacteria contain sortase enzymes on their cell surfaces that catalyze transpeptidation reactions critical for proper cellular function. In vitro, sortases are used in sortase-mediated ligation (SML) reactions for a variety of protein engineering applications. Historically, sortase A from Staphylococcus aureus (saSrtA) has been the enzyme of choice to catalyze SML reactions. However, the stringent specificity of saSrtA for the LPXTG sequence motif limits its uses. Here, we describe the impact on substrate selectivity of a structurally conserved loop with a high degree of sequence variability in all classes of sortases. We investigate the contribution of this ß7-ß8 loop by designing and testing chimeric sortase enzymes. Our chimeras utilize natural sequence variation of class A sortases from eight species engineered into the SrtA sequence from Streptococcus pneumoniae. While some of these chimeric enzymes mimic the activity and selectivity of the WT protein from which the loop sequence was derived (e.g., that of saSrtA), others results in chimeric Streptococcus pneumoniae SrtA enzymes that are able to accommodate a range of residues in the final position of the substrate motif (LPXTX). Using mutagenesis, structural comparisons, and sequence analyses, we identify three interactions facilitated by ß7-ß8 loop residues that appear to be broadly conserved or converged upon in class A sortase enzymes. These studies provide the foundation for a deeper understanding of sortase target selectivity and can expand the sortase toolbox for future SML applications.


Assuntos
Aminoaciltransferases/química , Proteínas de Bactérias/química , Domínio Catalítico , Cisteína Endopeptidases/química , Mutação , Engenharia de Proteínas/métodos , Infecções Estafilocócicas/enzimologia , Staphylococcus aureus/enzimologia , Sequência de Aminoácidos , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/química , Staphylococcus aureus/isolamento & purificação , Especificidade por Substrato
5.
Front Immunol ; 12: 629281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968022

RESUMO

Alveolar macrophages (AMs) are pivotal for maintaining lung immune homeostasis. We demonstrated that deletion of liver kinase b1 (Lkb1) in CD11c+ cells led to greatly reduced AM abundance in the lung due to the impaired self-renewal of AMs but not the impeded pre-AM differentiation. Mice with Lkb1-deficient AMs exhibited deteriorated diseases during airway Staphylococcus aureus (S. aureus) infection and allergic inflammation, with excessive accumulation of neutrophils and more severe lung pathology. Drug-mediated AM depletion experiments in wild type mice indicated a cause for AM reduction in aggravated diseases in Lkb1 conditional knockout mice. Transcriptomic sequencing also revealed that Lkb1 inhibited proinflammatory pathways, including IL-17 signaling and neutrophil migration, which might also contribute to the protective function of Lkb1 in AMs. We thus identified Lkb1 as a pivotal regulator that maintains the self-renewal and immune function of AMs.


Assuntos
Asma/enzimologia , Autorrenovação Celular , Pulmão/enzimologia , Macrófagos Alveolares/enzimologia , Pneumonia Bacteriana/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Infecções Estafilocócicas/enzimologia , Proteínas Quinases Ativadas por AMP , Animais , Asma/genética , Asma/imunologia , Antígenos CD11/genética , Antígenos CD11/metabolismo , Modelos Animais de Doenças , Homeostase , Interleucina-17/genética , Interleucina-17/metabolismo , Pulmão/imunologia , Pulmão/microbiologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Pneumonia Bacteriana/genética , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Transcriptoma
6.
Inflammation ; 44(3): 835-845, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33738649

RESUMO

The present study is designed to investigate the effect of hydroxysafflor yellow A (HYA) on Staphylococcus aureus (S. aureus)-induced mouse endometrial inflammation and to explore its molecular mechanism. We established a mouse endometritis model by intrauterine injection of S. aureus and intrauterine injection of HYA for treatment. Immunohistochemistry, immunofluorescence, and Western blot were used to detect protein expression in uterine tissue, and qPCR was used to measure mRNA expression. HYA could significantly weak uterine pathological changes caused by S. aureus and reduce MPO activity, CD45, CD3, and ED-1 protein expression in uterine tissues of S. aureus-infected mice. Similarly, HYA also significantly decreased S. aureus induced the increase in TNF-α, IL-1ß, and IL-6 in uterine tissue. In vivo, we found that knockdown of TLR2 was very important could significantly reduce S. aureus induced the elevated expression of TNF-α, IL-1ß, and IL-6 in mEECs. Importantly, in terine tissues of S. aureus-infected mice, HYA significantly decreased the ratio of p-p65/p65, p-IKBα/IKBα, p-p38/p38, p-Erk/Erk, and p-JNK/JNK expression. HYA displays anti-inflammatory effects on S. aureus mouse endometrial inflammation, and this effect might be related to HYA which could block TLR2-mediated NF-kB and MAPK pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Chalcona/análogos & derivados , Endometrite/prevenção & controle , Endométrio/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Quinonas/farmacologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/patogenicidade , Receptor 2 Toll-Like/metabolismo , Animais , Linhagem Celular , Chalcona/farmacologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Endometrite/enzimologia , Endometrite/imunologia , Endometrite/microbiologia , Endométrio/enzimologia , Endométrio/imunologia , Endométrio/microbiologia , Feminino , Interações Hospedeiro-Patógeno , Camundongos Endogâmicos BALB C , Fosforilação , Transdução de Sinais , Infecções Estafilocócicas/enzimologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia , Receptor 2 Toll-Like/genética
7.
J Biol Chem ; 296: 100252, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33376139

RESUMO

Flavin adenine dinucleotide (FAD)-dependent bacterial oleate hydratases (OhyAs) catalyze the addition of water to isolated fatty acid carbon-carbon double bonds. Staphylococcus aureus uses OhyA to counteract the host innate immune response by inactivating antimicrobial unsaturated fatty acids. Mechanistic information explaining how OhyAs catalyze regiospecific and stereospecific hydration is required to understand their biological functions and the potential for engineering new products. In this study, we deduced the catalytic mechanism of OhyA from multiple structures of S. aureus OhyA in binary and ternary complexes with combinations of ligands along with biochemical analyses of relevant mutants. The substrate-free state shows Arg81 is the gatekeeper that controls fatty acid entrance to the active site. FAD binding engages the catalytic loop to simultaneously rotate Glu82 into its active conformation and Arg81 out of the hydrophobic substrate tunnel, allowing the fatty acid to rotate into the active site. FAD binding also dehydrates the active site, leaving a single water molecule connected to Glu82. This active site water is a hydronium ion based on the analysis of its hydrogen bond network in the OhyA•PEG400•FAD complex. We conclude that OhyA accelerates acid-catalyzed alkene hydration by positioning the fatty acid double bond to attack the active site hydronium ion, followed by the addition of water to the transient carbocation intermediate. Structural transitions within S. aureus OhyA channel oleate to the active site, curl oleate around the substrate water, and stabilize the hydroxylated product to inactivate antimicrobial fatty acids.


Assuntos
Proteínas de Bactérias/ultraestrutura , Hidroliases/ultraestrutura , Infecções Estafilocócicas/enzimologia , Staphylococcus aureus/ultraestrutura , Proteínas de Bactérias/química , Catálise , Domínio Catalítico/genética , Cristalografia por Raios X , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Humanos , Hidroliases/química , Hidroliases/metabolismo , Ácido Oleico/química , Ácido Oleico/metabolismo , Conformação Proteica , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/química , Staphylococcus aureus/genética , Especificidade por Substrato/genética
8.
Front Immunol ; 11: 1919, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042111

RESUMO

Background: Evidence suggests the renin-angiotensin system (RAS) plays key immunomodulatory roles. In particular, angiotensin-converting enzyme (ACE) has been shown to play a role in antimicrobial host defense. ACE inhibitors (ACEi) and angiotensin receptor blockers (ARB) are some of the most commonly prescribed medications, especially in patients undergoing invasive surgery. Thus, the current study assessed the immunomodulatory effect of RAS-modulation in a preclinical model of implant infection. Methods:In vitro antimicrobial effects of ACEi and ARBs were first assessed. C57BL/6J mice subsequently received either an ACEi (lisinopril; 16 mg/kg/day), an ARB (losartan; 30 mg/kg/day), or no treatment. Conditioned mice blood was then utilized to quantify respiratory burst function as well as Staphylococcus aureus Xen36 burden ex vivo in each treatment group. S. aureus infectious burden for each treatment group was then assessed in vivo using a validated mouse model of implant infection. Real-time quantitation of infectious burden via bioluminescent imaging over the course of 28 days post-procedure was assessed. Host response via monocyte and neutrophil infiltration within paraspinal and spleen tissue was quantified by immunohistochemistry for F4/80 and myeloperoxidase, respectively. Results: Blood from mice treated with an ACEi demonstrated a decreased ability to eradicate bacteria when mixed with Xen36 as significantly higher levels of colony forming units (CFU) and biofilm formation was appreciated ex vivo (p < 0.05). Mice treated with an ACEi showed a higher infection burden in vivo at all times (p < 0.05) and significantly higher CFUs of bacteria on both implant and paraspinal tissue at the time of sacrifice (p < 0.05 for each comparison). There was also significantly decreased infiltration and respiratory burst function of immune effector cells in the ACEi group (p < 0.05). Conclusion: ACEi, but not ARB, treatment resulted in increased S. aureus burden and impaired immune response in a preclinical model of implant infection. These results suggest that perioperative ACEi use may represent a previously unappreciated risk factor for surgical site infection. Given the relative interchangeability of ACEi and ARB from a cardiovascular standpoint, this risk factor may be modifiable.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/toxicidade , Fios Ortopédicos/microbiologia , Lisinopril/toxicidade , Peptidil Dipeptidase A/metabolismo , Infecções Relacionadas à Prótese/enzimologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Infecções Estafilocócicas/enzimologia , Staphylococcus aureus/imunologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/toxicidade , Animais , Carga Bacteriana , Biofilmes/crescimento & desenvolvimento , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Losartan/toxicidade , Camundongos Endogâmicos C57BL , Infecções Relacionadas à Prótese/imunologia , Infecções Relacionadas à Prótese/microbiologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/patogenicidade , Fatores de Tempo
9.
Artigo em Inglês | MEDLINE | ID: mdl-32509602

RESUMO

Background:Staphylococcus aureus (S. aureus), a leading cause of bacteremia and infective endocarditis, exploits the human coagulation system by using a wide range of specific virulence factors. However, the impact of these host-pathogen interactions on the outcome of patients with Staphylococcus aureus bacteremia (SAB) remains unclear. Methods: A total of 178 patients with S. aureus bacteremia were included and analyzed regarding bacterial factors (coa gene size, vWbp, clfA, clfB, fnbA, fnbB, fib) and clinical parameters. A stepwise multivariate Cox regression model and a Partitioning Around Medoids (PAM) cluster algorithm were used for statistical analysis. Results: Patients' risk factors for 28-day mortality were creatinine (OR 1.49, p < 0.001), age (OR 1.9, p < 0.002), fibrinogen (OR 0.44, p < 0.004), albumin (OR 0.63, p < 0.02), hemoglobin (OR 0.59, p < 0.03), and CRP (OR 1.72, p < 0.04). Five distinct bacterial clusters with different mortality rates were unveiled, whereof two showed a 2-fold increased mortality and an accumulation of specific coagulase gene sizes, 547-base pairs and 660-base pairs. Conclusions: Based on the data obtained in the present study an association of coagulase gene size and fib regarding 28-day mortality was observed in patients with S. aureus bloodstream infections. Further animal and prospective clinical studies are needed to confirm our preliminary findings.


Assuntos
Bacteriemia , Coagulase , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Coagulase/metabolismo , Humanos , Masculino , Estudos Prospectivos , Infecções Estafilocócicas/enzimologia , Infecções Estafilocócicas/mortalidade , Staphylococcus aureus/genética
10.
Biochem Pharmacol ; 178: 114024, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32413427

RESUMO

The emergence and spread of multidrug-resistant Staphylococcus aureus (S. aureus) necessitate the research on therapeutic tactics which are different from classical antibiotics in overcoming resistance andtreatinginfections. In S. aureus, von Willebrand factor-binding protein (vWbp) is one of the key virulence determinants because it mediates not only the activation of thrombin to convert fibrinogen to fibrin, thereby enabling S. aureus to escape from the host immune clearance, but also the adhesion of S. aureus to host cells. Thus, vWbp is regarded as a promising druggable target to treat S. aureus-associated infections. Here we identify that baicalein, a natural compound isolated from the Chinese herb Scutellaria baicalensis, can effectively block the coagulase activity of vWbp without inhibiting the growth of the bacteria. Through thermal shift and fluorescence quenching assays, we demonstrated that baicalein directly binds to vWbp. Molecular dynamics simulations and mutagenesis assays revealed that the Asp-75 and Lys-80 residues are necessary for baicalein binding to vWbp. Importantly, we demonstrated that baicalein treatment attenuates the virulence of S. aureus and protects mice from S. aureus-induced lethal pneumonia. In addition, baicalein can improve the therapeutic effect of penicillin G by 75% in vivo. These findings indicate that baicalein might be developed as a promising therapeutic agent against drug-resistant S. aureus infections.


Assuntos
Coagulase/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Flavanonas/uso terapêutico , Pneumonia Estafilocócica/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Fator de von Willebrand/antagonistas & inibidores , Animais , Coagulase/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Flavanonas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular/métodos , Pneumonia Estafilocócica/enzimologia , Ligação Proteica , Infecções Estafilocócicas/enzimologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/fisiologia , Fator de von Willebrand/metabolismo
11.
Biomed Res Int ; 2019: 2165316, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534954

RESUMO

The aim of this study was to determine the species distribution of Staphylococcus, Gram negative bacteria (GNB) and the occurrence of Methicillin Resistant Staphylococci (MRS) and Extended-Spectrum ß-lactamase- (ESBL-) producing GNB. Bacterial culture of 300 clinical mastitis milk samples from 30 different farms across different regions of Tunisia during four seasons was realized. The obtained results showed the presence of high frequency of the tested samples with a positive growth for bacteria (64%). In addition a high recovery rate of Staphylococci and/or GNB in these clinical mastitis milk samples (87%) was detected. In addition, a high percentage of GNB (68.2%) compared to Staphylococcus species (32%) was noted. Moreover, a significant variation of the number of these bacteria according to the farm location, the seasons, and cows age was detected. The highest percentage was observed in the North of Tunisia during the winter and the spring seasons in adult cows with a dominance of GNB growth. Coagulase negative Staphylococci (CNS) (n=11) and GNB (n=16) species were identified. Escherichia coli (E. coli) was the most frequently found bacterium followed by Klebsiella pneumoniae. The dominant Staphylococcus isolates was S. xylosus followed by S. aureus the major pathogen isolated. Methicillin resistance was confirmed by the presence of the mecA gene in 3 S. aureus and 14 CNS isolates; all of these isolates were lacking the mecC gene. Various species of GNB, resistant to cefotaxime, were detected (n=15). ESBLs were detected on selective medium in 10 E. coli and 4 K. pneumoniae. All ESBL producers strains carry the blaCTX-M. The presence of different resistant mastitis pathogens in dairy farms may complicate therapeutic options and contaminated animals could become zoonotic agent reservoir for human.


Assuntos
Proteínas de Bactérias/genética , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Mastite Bovina , Infecções Estafilocócicas , Staphylococcus , beta-Lactamases/genética , Animais , Bovinos , Feminino , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/enzimologia , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/genética , Mastite Bovina/enzimologia , Mastite Bovina/epidemiologia , Mastite Bovina/genética , Mastite Bovina/microbiologia , Infecções Estafilocócicas/enzimologia , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/genética , Staphylococcus/enzimologia , Staphylococcus/genética , Tunísia/epidemiologia
12.
J Immunol ; 203(9): 2497-2507, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31562211

RESUMO

Inflammasomes are multiprotein complexes that coordinate cellular inflammatory responses and mediate host defense. Following recognition of pathogens and danger signals, inflammasomes assemble and recruit and activate caspase-1, the cysteine protease that cleaves numerous downstream targets, including pro-IL-1ß and pro-IL-18 into their biologically active form. In this study, we sought to develop a biosensor that would allow us to monitor the initiation, progression, and resolution of inflammation in living animals. To this end, we inserted a known caspase-1 target sequence into a circularly permuted luciferase construct that becomes bioluminescent upon protease cleavage. This biosensor was activated in response to various inflammatory stimuli in human monocytic cell lines and murine bone marrow-derived macrophages. Next, we generated C57BL/6 transgenic mice constitutively expressing the caspase-1 biosensor. We were able to monitor the spatiotemporal dynamics of caspase-1 activation and onset of inflammation in individual animals in the context of a systemic bacterial infection, colitis, and acute graft-versus-host disease. These data established a model whereby the development and progression of inflammatory responses can be monitored in the context of these and other mouse models of disease.


Assuntos
Técnicas Biossensoriais/métodos , Caspase 1/análise , Inflamação/etiologia , Animais , Apoptose , Colite/enzimologia , Progressão da Doença , Doença Enxerto-Hospedeiro/enzimologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções Estafilocócicas/enzimologia , Células THP-1
13.
Eur Heart J ; 40(39): 3237-3244, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31145782

RESUMO

AIMS: Increasing attention has been given to the risk of infective endocarditis (IE) in patients with certain blood stream infections (BSIs). Previous studies have been conducted on selected patient cohorts, yet unselected data are sparse. We aimed to investigate the prevalence of IE in BSIs with bacteria typically associated with IE. METHODS AND RESULTS: By crosslinking nationwide registries from 2010 to 2017, we identified patients with BSIs typically associated with IE: Enterococcus faecalis (E. faecalis), Staphylococcus aureus (S. aureus), Streptococcus spp., and coagulase negative staphylococci (CoNS) and examined the concurrent IE prevalence. A trend test was used to examine temporal changes in the prevalence of IE. In total 69 021, distributed with 15 350, 16 726, 19 251, and 17 694 BSIs were identified in the periods of 2010-2011, 2012-2013, 2014-2015, and 2016-2017, respectively. Patients with E. faecalis had the highest prevalence of IE (16.7%) followed by S. aureus (10.1%), Streptococcus spp. (7.3%), and CoNS (1.6%). Throughout the study period, the prevalence of IE among patients with E. faecalis and Streptococcus spp. increased significantly (P = 0.0005 and P = 0.03, respectively). Male patients had a higher prevalence of IE for E. faecalis, Streptococcus spp., and CoNS compared with females. A significant increase in the prevalence of IE was seen for E. faecalis, Streptococcus spp., and CoNS with increasing age. CONCLUSION: For E. faecalis BSI, 1 in 6 had IE, for S. aureus BSI 1 in 10 had IE, and for Streptococcus spp. 1 in 14 had IE. Our results suggest that screening for IE seems reasonable in patients with E. faecalis BSI, S. aureus BSI, or Streptococcus spp. BSI.


Assuntos
Bacteriemia/epidemiologia , Bacteriemia/microbiologia , Endocardite Bacteriana/epidemiologia , Infecções Estafilocócicas/complicações , Infecções Estreptocócicas/complicações , Fatores Etários , Idoso , Hemocultura , Coagulase/metabolismo , Dinamarca/epidemiologia , Enterococcus faecalis , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Sistema de Registros , Fatores Sexuais , Infecções Estafilocócicas/enzimologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/enzimologia
14.
J Struct Biol ; 207(2): 158-168, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31088716

RESUMO

Staphylococcus aureus is an important cause of resistant healthcare-associated infections. It has been shown that the wall teichoic acid (WTA) may be an important drug target acting on antibiotic-resistant cells. The UDP-N-acetylglucosamine 2-epimerase, MnaA, is one of the first enzymes on the pathway for the biosynthesis of the WTA. Here, detailed molecular dynamics simulations of S. aureus MnaA were used to characterize the conformational changes that occur in the presence of UDP and UDP-GlcNac and also the energetic landscape associated with these changes. Using different simulation techniques, such as ABMD and GAMD, it was possible to assess the energetic profile for the protein with and without ligands in its active site. We found that there is a dynamic energy landscape that has its minimum changed by the presence of the ligands, with a closed structure of the enzyme being more frequently observed for the bound state while the unbound enzyme favors an opened conformation. Further structural analysis indicated that positively charged amino acids associated with UDP and UDP-GlcNac interactions play a major role in the enzyme opening movement. Finally, the energy landscape profiled in this work provides important conclusions for the design of inhibitor candidates targeting S. aureus MnaA.


Assuntos
Infecções Estafilocócicas/enzimologia , Staphylococcus aureus/enzimologia , Ácidos Teicoicos/química , Sequência de Aminoácidos , Aminoácidos/química , Carboidratos Epimerases/química , Carboidratos Epimerases/metabolismo , Carboidratos Epimerases/ultraestrutura , Domínio Catalítico/efeitos dos fármacos , Parede Celular/enzimologia , Farmacorresistência Bacteriana/genética , Metabolismo Energético/genética , Glucosamina/análogos & derivados , Glucosamina/química , Humanos , Ligantes , Simulação de Dinâmica Molecular , Conformação Proteica/efeitos dos fármacos , Domínios Proteicos/genética , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Difosfato de Uridina/química
15.
Chem Biol Drug Des ; 94(2): 1504-1517, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31009175

RESUMO

Due to its resistance to many antibiotics, methicillin-resistant Staphylococcus aureus (MRSA) have become a worldwide health problem creating the urgent necessity of developing new drugs against this pathogen. In this sense, one approach is to search for inhibitors of important enzymes in its metabolism. According to this, the shikimate pathway is an important metabolic route in bacteria and its enzymes are considered as great targets for the development of new antibiotic drugs. One of these enzymes is the shikimate dehydrogenase that catalyzes the reversal reduction from 3-dehydroshikimate to shikimate using NADPH as cofactor. In this work, four new compounds were found capable of inhibiting the shikimate dehydrogenase (SDH) from S. aureus (SaSDH) activity. A detailed kinetic characterization showed that the most potent inhibitor presented a Ki of 8 and 10 µM with respect to shikimate and NADP+ , respectively, and a mixed partial inhibition mechanism for both substrates. Molecular dynamics studies revealed that the four inhibitors perturb the structure of SaSDH affecting important domains. Toxicological and physicochemical parameters indicated that these compounds can be considered as potential drugs. Therefore, these compounds are good hits that will help in the process to obtain a new drug against MRSA.


Assuntos
Oxirredutases do Álcool , Antibacterianos/química , Proteínas de Bactérias , Inibidores Enzimáticos/química , Staphylococcus aureus Resistente à Meticilina/enzimologia , Modelos Químicos , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/enzimologia
16.
J Toxicol Sci ; 44(4): 299-307, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30944282

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) leads to serious infections, but it is not known whether it changes the expression of kidney drug metabolizing enzymes during infection. The mice were infected with different doses of MRSA and the oxidative stress and inflammation levels in the kidney were examined. The mRNA expression and activity of cytochrome P450 enzyme was analysed. Mice infected with high levels of MRSA showed a decrease in renal antioxidant capability and an elevated level of oxidative metabolites, which was accompanied by the release of inflammatory cytokines. The levels of interleukin 1ß, tumour necrosis factor alpha, and macrophage inflammatory protein-1α were significantly increased along with the levels of nitric oxide and malondialdehyde. On day 7, mRNA expression of Cyp1a2, 2d22, and 3a11 were decreased by the high level of MRSA, but the low level of MRSA increased their expressions. Cyp2e1 mRNA expression was increased by MRSA in the kidney of mice. High dose of MRSA infection increased the oxidative stress and inflammatory response in mouse kidney, leading to the decrease in the expression of renal drug-metabolizing enzymes and no recovery within 7 days.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Expressão Gênica , Rim/enzimologia , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas/enzimologia , Infecções Estafilocócicas/genética , Animais , Citocinas/metabolismo , Inflamação , Mediadores da Inflamação/metabolismo , Rim/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos , Óxido Nítrico/metabolismo , Estresse Oxidativo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Proc Natl Acad Sci U S A ; 116(9): 3764-3773, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30755523

RESUMO

Commensal and pathogenic bacteria hydrolyze host lipid substrates with secreted lipases and phospholipases for nutrient acquisition, colonization, and infection. Bacterial lipase activity on mammalian lipids and phospholipids can promote release of free fatty acids from lipid stores, detoxify antimicrobial lipids, and facilitate membrane dissolution. The gram-positive bacterium Staphylococcus aureus secretes at least two lipases, Sal1 and glycerol ester hydrolase (Geh), with specificities for short- and long-chain fatty acids, respectively, each with roles in the hydrolysis of environmental lipids. In a recent study from our group, we made the unexpected observation that Geh released by S. aureus inhibits activation of innate immune cells. Herein, we investigated the possibility that S. aureus lipases interface with the host immune system to blunt innate immune recognition of the microbe. We found that the Geh lipase, but not other S. aureus lipases, prevents activation of innate cells in culture. Mutation of geh leads to enhancement of proinflammatory cytokine production during infection, increased innate immune activity, and improved clearance of the bacterium in infected tissue. These in vitro and in vivo effects on innate immunity were not due to direct functions of the lipase on mammalian cells, but rather a result of inactivation of S. aureus lipoproteins, a major pathogen-associated molecular pattern (PAMP) of extracellular gram-positive bacteria, via ester hydrolysis. Altogether, these studies provide insight into an adaptive trait that masks microbial recognition by innate immune cells through targeted inactivation of a broadly conserved PAMP.


Assuntos
Hidrolases de Éster Carboxílico/genética , Imunidade Inata/genética , Lipase/genética , Infecções Estafilocócicas/enzimologia , Staphylococcus aureus/enzimologia , Animais , Hidrolases de Éster Carboxílico/imunologia , Interações Hospedeiro-Patógeno/genética , Ligantes , Lipase/imunologia , Lipólise/genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Mutação , Pele/enzimologia , Pele/metabolismo , Pele/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade
18.
Biosci Rep ; 38(5)2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30201692

RESUMO

The characteristic fold of a protein is the decisive factor for its biological function. However, small structural changes to amino acids can also affect their function, for example in the case of post-translational modification (PTM). Many different types of PTMs are known, but for some, including chlorination, studies elucidating their importance are limited. A recent study revealed that the YjgF/YER057c/UK114 family (YjgF family) member RidA from Escherichia coli shows chaperone activity after chlorination. Thus, to identify the functional and structural differences of RidA upon chlorination, we studied an RidA homolog from Staphylococcus aureus: YabJ. The overall structure of S. aureus YabJ was similar to other members of the YjgF family, showing deep pockets on its surface, and the residues composing the pockets were well conserved. S. aureus YabJ was highly stable after chlorination, and the chlorinated state is reversible by treatment with DTT. However, it shows no chaperone activity after chlorination. Instead, YabJ from S. aureus shows chlorination-induced ribonuclease activity, and the activity is diminished after subsequent reduction. Even though the yabJ genes from Staphylococcus and Bacillus are clustered with regulators that are expected to code nucleic acid-interacting proteins, the nucleic acid-related activity of bacterial RidA has not been identified before. From our study, we revealed the structure and function of S. aureus YabJ as a novel chlorination-activated ribonuclease. The present study will contribute to an in-depth understanding of chlorination as a PTM.


Assuntos
Proteínas de Bactérias/química , Ribonucleases/química , Infecções Estafilocócicas/enzimologia , Staphylococcus aureus/enzimologia , Sequência de Aminoácidos/genética , Proteínas de Bactérias/genética , Cristalografia por Raios X , Escherichia coli/genética , Halogenação/genética , Humanos , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Dobramento de Proteína , Processamento de Proteína Pós-Traducional/genética , Ribonucleases/genética , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade
19.
J Biol Chem ; 293(7): 2260-2271, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29306874

RESUMO

The heme-containing enzyme myeloperoxidase (MPO) is critical for optimal antimicrobial activity of human neutrophils. We recently discovered that the bacterium Staphylococcus aureus expresses a novel immune evasion protein, called SPIN, that binds tightly to MPO, inhibits MPO activity, and contributes to bacterial survival following phagocytosis. A co-crystal structure of SPIN bound to MPO suggested that SPIN blocks substrate access to the catalytic heme by inserting an N-terminal ß-hairpin into the MPO active-site channel. Here, we describe a series of experiments that more completely define the structure/function relationships of SPIN. Whereas the SPIN N terminus adopts a ß-hairpin confirmation upon binding to MPO, the solution NMR studies presented here are consistent with this region of SPIN being dynamically structured in the unbound state. Curiously, whereas the N-terminal ß-hairpin of SPIN accounts for ∼55% of the buried surface area in the SPIN-MPO complex, its deletion did not significantly change the affinity of SPIN for MPO but did eliminate the ability of SPIN to inhibit MPO. The flexible nature of the SPIN N terminus rendered it susceptible to proteolytic degradation by a series of chymotrypsin-like proteases found within neutrophil granules, thereby abrogating SPIN activity. Degradation of SPIN was prevented by the S. aureus immune evasion protein Eap, which acts as a selective inhibitor of neutrophil serine proteases. Together, these studies provide insight into MPO inhibition by SPIN and suggest possible functional synergy between two distinct classes of S. aureus immune evasion proteins.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Peroxidase/química , Peroxidase/metabolismo , Infecções Estafilocócicas/enzimologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Peroxidase/genética , Ligação Proteica , Staphylococcus aureus/química , Staphylococcus aureus/genética
20.
Blood ; 130(3): 328-339, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28515091

RESUMO

Angiotensin-converting enzyme (ACE) inhibitors are widely used to reduce blood pressure. Here, we examined if an ACE is important for the antibacterial effectiveness of neutrophils. ACE knockout mice or mice treated with an ACE inhibitor were more susceptible to bacterial infection by methicillin-resistant Staphylococcus aureus (MRSA). In contrast, mice overexpressing ACE in neutrophils (NeuACE mice) have increased resistance to MRSA and better in vitro killing of MRSA, Pseudomonas aeruginosa, and Klebsiella pneumoniae ACE overexpression increased neutrophil production of reactive oxygen species (ROS) following MRSA challenge, an effect independent of the angiotensin II AT1 receptor. Specifically, as compared with wild-type (WT) mice, there was a marked increase of superoxide generation (>twofold, P < .0005) in NeuACE neutrophils following infection, whereas ACE knockout neutrophils decreased superoxide production. Analysis of membrane p47-phox and p67-phox indicates that ACE increases reduced NAD phosphate oxidase activity but does not increase expression of these subunits. Increased ROS generation mediates the enhanced bacterial resistance of NeuACE mice because the enhanced resistance is lost with DPI (an inhibitor of ROS production by flavoenzymes) inhibition. NeuACE granulocytes also have increased neutrophil extracellular trap formation and interleukin-1ß release in response to MRSA. In a mouse model of chemotherapy-induced neutrophil depletion, transfusion of ACE-overexpressing neutrophils was superior to WT neutrophils in treating MRSA infection. These data indicate a previously unknown function of ACE in neutrophil antibacterial defenses and suggest caution in the treatment of certain individuals with ACE inhibitors. ACE overexpression in neutrophils may be useful in boosting the immune response to antibiotic-resistant bacterial infection.


Assuntos
Resistência à Doença/genética , Imunidade Inata , Neutrófilos/imunologia , Peptidil Dipeptidase A/imunologia , Infecções Estafilocócicas/imunologia , Superóxidos/imunologia , Animais , Membrana Celular , Armadilhas Extracelulares/imunologia , Feminino , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Klebsiella pneumoniae , Masculino , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/imunologia , Camundongos , Camundongos Knockout , NADPH Oxidases/genética , NADPH Oxidases/imunologia , Neutrófilos/citologia , Neutrófilos/transplante , Peptidil Dipeptidase A/deficiência , Peptidil Dipeptidase A/genética , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Pseudomonas aeruginosa , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/imunologia , Transdução de Sinais , Infecções Estafilocócicas/enzimologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...