Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.654
Filtrar
1.
J Infect Dev Ctries ; 18(4): 579-586, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38728636

RESUMO

INTRODUCTION: Streptococcus pneumoniae cause a significant global health challenge. We aimed to determine nasopharyngeal carriage, serotypes distribution, and antimicrobial profile of pneumococci among the children of Aden. METHODOLOGY: A total of 385 children, aged 2-17 years, were included. Asymptomatic samples were randomly collected from children in selected schools and vaccination centers. Symptomatic samples were obtained from selected pediatric clinics. The nasopharyngeal swabs were tested for pneumococci using culture and real time polymerase chain reaction (RT-PCR). Serotyping was done with a pneumotest-latex kit and antimicrobial susceptibility was tested by disc diffusion and Epsilometer test. RESULTS: The total pneumococcal carriage was 44.4% and 57.1% by culture and RT-PCR, respectively. There was a statistically significant association between carriage rate and living in single room (OR = 7.9; p = 0.00001), sharing a sleeping space (OR = 15.1; p = 0.00001), and low monthly income (OR = 2.02; p = 0.007). The common serotypes were 19, 1, 4, 5, 2, and 23. The proportion of non-pneumococcal conjugate vaccine (non-PCV13) serotypes was 24%. Pneumococci were resistant to penicillin (96.5%), cefepime (15.8%), ceftriaxone (16.4%), and amoxicillin-clavulanate (0%). Erythromycin, azithromycin, and doxycycline had resistance rates of 48%, 31%, and 53.3%, respectively. CONCLUSIONS: A high pneumococcal carriage rate was observed in Yemeni children, particularly in low-income households and shared living conditions. There was significant penicillin resistance at meningitis breakpoint. Furthermore, non-PCV13 serotypes were gradually replacing PCV13 serotypes. The findings underscore the urgent need for enhanced surveillance and stewardship to improve vaccination and antibiotic policies in Yemen.


Assuntos
Portador Sadio , Nasofaringe , Infecções Pneumocócicas , Vacinas Pneumocócicas , Sorogrupo , Streptococcus pneumoniae , Vacinas Conjugadas , Humanos , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/isolamento & purificação , Streptococcus pneumoniae/classificação , Criança , Pré-Escolar , Estudos Transversais , Iêmen/epidemiologia , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/prevenção & controle , Infecções Pneumocócicas/microbiologia , Feminino , Masculino , Vacinas Pneumocócicas/administração & dosagem , Adolescente , Portador Sadio/epidemiologia , Portador Sadio/microbiologia , Nasofaringe/microbiologia , Vacinas Conjugadas/administração & dosagem , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Sorotipagem
2.
Epidemiol Mikrobiol Imunol ; 73(1): 30-36, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38697838

RESUMO

Streptococcus pneumoniae (pneumococcus) is a Gram-positive coccus causing both non-invasive and invasive infectious diseases. Pneumococcal diseases are vaccine preventable. Invasive pneumococcal diseases (IPD) meeting the international case definition are reported nationally and internationally and are subject to surveillance programmes in many countries, including the Czech Republic. An important part of IPD surveillance is the monitoring of causative serotypes and their frequency over time and in relation to ongoing vaccination programmes. In the world and in the Czech Republic, whole genome sequencing (WGS) is increasingly used for pneumococci, which allows for serotyping from sequencing data, precise analysis of their genetic relationships, and the study of genes present in their genome. Whole-genome sequencing enables the generation of reliable and internationally comparable data that can be easily shared. Sequencing data are analysed using bioinformatics tools that require knowledge in the field of natural sciences with an emphasis on genetics and expertise in bioinformatics. This publication presents some options for pneumococcal analysis, i.e., serotyping, multilocus sequence typing (MLST), ribosomal MLST (rMLST), core genome MLST (cgMLST), whole genome MLST (wgMLST), single nucleotide polymorphism (SNP) analysis, assignment to Global Pneumococcal Sequence Cluster (GPSC), and identification of virulence genes and antibiotic resistance genes. The WGS strategies and applications for Europe and WGS implementation in practice are presented. WGS analysis of pneumococci allows for improved IPD surveillance, thanks to molecular serotyping, more detailed typing, generation of internationally comparable data, and improved evaluation of the effectiveness of vaccination programmes.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Sequenciamento Completo do Genoma , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/isolamento & purificação , Streptococcus pneumoniae/classificação , Humanos , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/prevenção & controle , República Tcheca , Genoma Bacteriano , Tipagem de Sequências Multilocus , Sorotipagem
3.
PLoS Pathog ; 20(5): e1012111, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718049

RESUMO

Infants are highly susceptible to invasive respiratory and gastrointestinal infections. To elucidate the age-dependent mechanism(s) that drive bacterial spread from the mucosa, we developed an infant mouse model using the prevalent pediatric respiratory pathogen, Streptococcus pneumoniae (Spn). Despite similar upper respiratory tract (URT) colonization levels, the survival rate of Spn-infected infant mice was significantly decreased compared to adults and corresponded with Spn dissemination to the bloodstream. An increased rate of pneumococcal bacteremia in early life beyond the newborn period was attributed to increased bacterial translocation across the URT barrier. Bacterial dissemination in infant mice was independent of URT monocyte or neutrophil infiltration, phagocyte-derived ROS or RNS, inflammation mediated by toll-like receptor 2 or interleukin 1 receptor signaling, or the pore-forming toxin pneumolysin. Using molecular barcoding of Spn, we found that only a minority of bacterial clones in the nasopharynx disseminated to the blood in infant mice, indicating the absence of robust URT barrier breakdown. Rather, transcriptional profiling of the URT epithelium revealed a failure of infant mice to upregulate genes involved in the tight junction pathway. Expression of many such genes was also decreased in early life in humans. Infant mice also showed increased URT barrier permeability and delayed mucociliary clearance during the first two weeks of life, which corresponded with tighter attachment of bacteria to the respiratory epithelium. Together, these results demonstrate a window of vulnerability during postnatal development when altered mucosal barrier function facilitates bacterial dissemination.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Animais , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/imunologia , Camundongos , Humanos , Animais Recém-Nascidos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Mucosa Respiratória/microbiologia , Mucosa Respiratória/metabolismo , Feminino , Nasofaringe/microbiologia
4.
Emerg Microbes Infect ; 13(1): 2332670, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38646911

RESUMO

This study aimed to provide data for the clinical features of invasive pneumococcal disease (IPD) and the molecular characteristics of Streptococcus pneumoniae isolates from paediatric patients in China. We conducted a multi-centre prospective study for IPD in 19 hospitals across China from January 2019 to December 2021. Data of demographic characteristics, risk factors for IPD, death, and disability was collected and analysed. Serotypes, antibiotic susceptibility, and multi-locus sequence typing (MLST) of pneumococcal isolates were also detected. A total of 478 IPD cases and 355 pneumococcal isolates were enrolled. Among the patients, 260 were male, and the median age was 35 months (interquartile range, 12-46 months). Septicaemia (37.7%), meningitis (32.4%), and pneumonia (27.8%) were common disease types, and 46 (9.6%) patients died from IPD. Thirty-four serotypes were detected, 19F (24.2%), 14 (17.7%), 23F (14.9%), 6B (10.4%) and 19A (9.6%) were common serotypes. Pneumococcal isolates were highly resistant to macrolides (98.3%), tetracycline (94.1%), and trimethoprim/sulfamethoxazole (70.7%). Non-sensitive rates of penicillin were 6.2% and 83.3% in non-meningitis and meningitis isolates. 19F-ST271, 19A-ST320 and 14-ST876 showed high resistance to antibiotics. This multi-centre study reports the clinical features of IPD and demonstrates serotype distribution and antibiotic resistance of pneumococcal isolates in Chinese children. There exists the potential to reduce IPD by improved uptake of pneumococcal vaccination, and continued surveillance is warranted.


Assuntos
Antibacterianos , Tipagem de Sequências Multilocus , Infecções Pneumocócicas , Sorogrupo , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/isolamento & purificação , Masculino , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/mortalidade , Feminino , Pré-Escolar , China/epidemiologia , Lactente , Antibacterianos/farmacologia , Estudos Prospectivos , Testes de Sensibilidade Microbiana , Hospitais/estatística & dados numéricos , Criança , Fatores de Risco , População do Leste Asiático
5.
Hum Vaccin Immunother ; 20(1): 2336358, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38567485

RESUMO

Like the other invasive encapsulated bacteria, Streptococcus pneumoniae is also covered with a polysaccharide structure. Infants and elderly are most vulnerable to the invasive and noninvasive diseases caused by S. pneumoniae. Although antibodies against polysaccharide capsule are efficient in eliminating S. pneumoniae, the T cell independent nature of the immune response against polysaccharide vaccines renders them weakly antigenic. The introduction of protein conjugated capsular polysaccharide vaccines helped overcome the weak immunogenicity of pneumococcal polysaccharides and decreased the incidence of pneumococcal diseases, especially in pediatric population. Conjugate vaccines elicit T cell dependent response which involve the interaction of specialized CD4+ T cells, called follicular helper T cells (Tfh) with germinal center B cells in secondary lymphoid organs. Despite their improved immunogenicity, conjugate vaccines still need to be administered three to four times in infants during the first 15 month of their life because they mount poor Tfh response. Recent studies revealed fundamental differences in the generation of Tfh cells between neonates and adults. As the portfolio of pneumococcal conjugate vaccines continues to increase, better understanding of the mechanisms of antibody development in different age groups will help in the development of pneumococcal vaccines tailored for different ages.


Assuntos
Infecções Pneumocócicas , Vacinas Pneumocócicas , Lactente , Adulto , Recém-Nascido , Criança , Humanos , Idoso , Streptococcus pneumoniae , Infecções Pneumocócicas/microbiologia , Vacinas Conjugadas , Anticorpos , Polissacarídeos , Anticorpos Antibacterianos
6.
Commun Biol ; 7(1): 425, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589539

RESUMO

Treatment of pneumococcal infections is limited by antibiotic resistance and exacerbation of disease by bacterial lysis releasing pneumolysin toxin and other inflammatory factors. We identified a previously uncharacterized peptide in the Klebsiella pneumoniae secretome, which enters Streptococcus pneumoniae via its AmiA-AliA/AliB permease. Subsequent downregulation of genes for amino acid biosynthesis and peptide uptake was associated with reduction of pneumococcal growth in defined medium and human cerebrospinal fluid, irregular cell shape, decreased chain length and decreased genetic transformation. The bacteriostatic effect was specific to S. pneumoniae and Streptococcus pseudopneumoniae with no effect on Streptococcus mitis, Haemophilus influenzae, Staphylococcus aureus or K. pneumoniae. Peptide sequence and length were crucial to growth suppression. The peptide reduced pneumococcal adherence to primary human airway epithelial cell cultures and colonization of rat nasopharynx, without toxicity. We identified a peptide with potential as a therapeutic for pneumococcal diseases suppressing growth of multiple clinical isolates, including antibiotic resistant strains, while avoiding bacterial lysis and dysbiosis.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Ratos , Animais , Humanos , Klebsiella pneumoniae , Proteínas de Membrana Transportadoras/metabolismo , Nasofaringe/microbiologia , Infecções Pneumocócicas/microbiologia , Peptídeos/farmacologia , Peptídeos/metabolismo
7.
Infect Immun ; 92(5): e0044723, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38629841

RESUMO

Streptococcus pneumoniae, a common colonizer of the upper respiratory tract, invades nasopharyngeal epithelial cells without causing disease in healthy participants of controlled human infection studies. We hypothesized that surface expression of pneumococcal lipoproteins, recognized by the innate immune receptor TLR2, mediates epithelial microinvasion. Mutation of lgt in serotype 4 (TIGR4) and serotype 6B (BHN418) pneumococcal strains abolishes the ability of the mutants to activate TLR2 signaling. Loss of lgt also led to the concomitant decrease in interferon signaling triggered by the bacterium. However, only BHN418 lgt::cm but not TIGR4 lgt::cm was significantly attenuated in epithelial adherence and microinvasion compared to their respective wild-type strains. To test the hypothesis that differential lipoprotein repertoires in TIGR4 and BHN418 lead to the intraspecies variation in epithelial microinvasion, we employed a motif-based genome analysis and identified an additional 525 a.a. lipoprotein (pneumococcal accessory lipoprotein A; palA) encoded by BHN418 that is absent in TIGR4. The gene encoding palA sits within a putative genetic island present in ~10% of global pneumococcal isolates. While palA was enriched in the carriage and otitis media pneumococcal strains, neither mutation nor overexpression of the gene encoding this lipoprotein significantly changed microinvasion patterns. In conclusion, mutation of lgt attenuates epithelial inflammatory responses during pneumococcal-epithelial interactions, with intraspecies variation in the effect on microinvasion. Differential lipoprotein repertoires encoded by the different strains do not explain these differences in microinvasion. Rather, we postulate that post-translational modifications of lipoproteins may account for the differences in microinvasion.IMPORTANCEStreptococcus pneumoniae (pneumococcus) is an important mucosal pathogen, estimated to cause over 500,000 deaths annually. Nasopharyngeal colonization is considered a necessary prerequisite for disease, yet many people are transiently and asymptomatically colonized by pneumococci without becoming unwell. It is therefore important to better understand how the colonization process is controlled at the epithelial surface. Controlled human infection studies revealed the presence of pneumococci within the epithelium of healthy volunteers (microinvasion). In this study, we focused on the regulation of epithelial microinvasion by pneumococcal lipoproteins. We found that pneumococcal lipoproteins induce epithelial inflammation but that differing lipoprotein repertoires do not significantly impact the magnitude of microinvasion. Targeting mucosal innate immunity and epithelial microinvasion alongside the induction of an adaptive immune response may be effective in preventing pneumococcal colonization and disease.


Assuntos
Células Epiteliais , Lipoproteínas , Infecções Pneumocócicas , Streptococcus pneumoniae , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidade , Humanos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Lipoproteínas/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/imunologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Nasofaringe/microbiologia , Mutação , Aderência Bacteriana
8.
Infect Immun ; 92(5): e0052223, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38629842

RESUMO

Streptococcus pneumoniae (pneumococcus) remains a serious cause of pulmonary and systemic infections globally, and host-directed therapies are lacking. The aim of this study was to test the therapeutic efficacy of asapiprant, an inhibitor of prostaglandin D2 signaling, against pneumococcal infection. Treatment of young mice with asapiprant after pulmonary infection with invasive pneumococci significantly reduced systemic spread, disease severity, and host death. Protection was specific against bacterial dissemination from the lung to the blood but had no effect on pulmonary bacterial burden. Asapiprant-treated mice had enhanced antimicrobial activity in circulating neutrophils, elevated levels of reactive oxygen species (ROS) in lung macrophages/monocytes, and improved pulmonary barrier integrity indicated by significantly reduced diffusion of fluorescein isothiocyanate (FITC)-dextran from lungs into the circulation. These findings suggest that asapiprant protects the host against pneumococcal dissemination by enhancing the antimicrobial activity of immune cells and maintaining epithelial/endothelial barrier integrity in the lungs.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Animais , Streptococcus pneumoniae/efeitos dos fármacos , Camundongos , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/microbiologia , Pulmão/microbiologia , Pulmão/patologia , Feminino , Espécies Reativas de Oxigênio/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/efeitos dos fármacos
9.
BMJ Case Rep ; 17(3)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38531552

RESUMO

Purpura fulminans (PF) is a life-threatening complication of septic shock that can occur due to disseminated infections with Streptococcus pneumoniae The spleen is an important organ in the immunisation process against encapsulated bacteria. Patients with asplenia, either functional or anatomical, are therefore at increased risk of developing serious infections and complications, such as PF, if infected with such bacteria.This case report presents a woman in her late 40s with unacknowledged functional asplenia who was admitted to the hospital with signs of an acute disseminated infection causing septic shock, signs of disseminated intravascular coagulation and infectious PF. A few days after admission, the blood cultures showed growth of S. pneumoniae With early sepsis treatment, the patient survived although with some complications. Clinical presentation, investigations, differential diagnosis, treatment and outcome are presented. Treatment and early recognition of PF are presented and discussed. Relevant recognition and preventative treatment strategies for patients with asplenia are also reviewed and discussed.This case demonstrates the importance of early recognition and treatment of PF in septic patients and the importance of preventive treatment strategies for patients with asplenia to avoid serious infections and complications.


Assuntos
Bacteriemia , Infecções Pneumocócicas , Púrpura Fulminante , Sepse , Choque Séptico , Esplenopatias , Feminino , Humanos , Púrpura Fulminante/diagnóstico , Choque Séptico/complicações , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae , Sepse/complicações , Bacteriemia/complicações , Esplenopatias/complicações
10.
mBio ; 15(4): e0006924, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38470268

RESUMO

Streptococcus pneumoniae (Spn), a Gram-positive bacterium, is responsible for causing a wide variety of invasive infections. The emergence of multi-drug antibiotic resistance has prompted the search for antimicrobial alternatives. Phage-derived peptidoglycan hydrolases, known as endolysins, are an attractive alternative. In this study, an endolysin active against Spn, designated SP-CHAP, was cloned, produced, purified, biochemically characterized, and evaluated for its antimicrobial properties. Cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) domains are widely represented in bacteriophage endolysins but have never previously been reported for pneumococcal endolysins. Here, we characterize the first pneumococcal endolysin with a CHAP catalytic domain. SP-CHAP was antimicrobial against all Spn serovars tested, including capsular and capsule-free pneumococci, and it was found to be more active than the most widely studied pneumococcal endolysin, Cpl-1, while not affecting various oral or nasal commensal organisms tested. SP-CHAP was also effective in eradicating Spn biofilms at concentrations as low as 1.56 µg/mL. In addition, a Spn mouse nasopharyngeal colonization model was employed, which showed that SP-CHAP caused a significant reduction in Spn colony-forming units, even more than Cpl-1. These results indicate that SP-CHAP may represent a promising alternative to combating Spn infections. IMPORTANCE: Considering the high rates of pneumococcal resistance reported for several antibiotics, alternatives are urgently needed. In the present study, we report a Streptococcus pneumoniae-targeting endolysin with even greater activity than Cpl-1, the most characterized pneumococcal endolysin to date. We have employed a combination of biochemical and microbiological assays to assess the stability and lytic potential of SP-CHAP and demonstrate its efficacy on pneumococcal biofilms in vitro and in an in vivo mouse model of colonization. Our findings highlight the therapeutic potential of SP-CHAP as an antibiotic alternative to treat Streptococcus pneumoniae infections.


Assuntos
Bacteriófagos , Infecções Pneumocócicas , Animais , Camundongos , Peptídeo Hidrolases , Streptococcus pneumoniae , Cisteína , Histidina , Amidoidrolases , Endopeptidases/genética , Endopeptidases/farmacologia , Endopeptidases/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/microbiologia , Bacteriófagos/genética , Biofilmes
11.
Int J Infect Dis ; 143: 107023, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555060

RESUMO

OBJECTIVES: To evaluate the clinical and economic outcomes in adults hospitalized with invasive pneumococcal disease (IPD) and noninvasive all-cause pneumonia (ACP) overall and by antimicrobial resistance (AMR) status. METHODS: Hospitalized adults from the BD Insights Research Database with an ICD10 code for IPD, noninvasive ACP or a positive Streptococcus pneumoniae culture/urine antigen test were included. Descriptive statistics and multivariable analyses were used to evaluate outcomes (in-hospital mortality, length of stay [LOS], cost per admission, and hospital margin [costs - payments]). RESULTS: The study included 88,182 adult patients at 90 US hospitals (October 2015-February 2020). Most (98.6%) had noninvasive ACP and 40.2% were <65 years old. Of 1450 culture-positive patients, 37.7% had an isolate resistant to ≥1 antibiotic class. Observed mortality, median LOS, cost per admission, and hospital margins were 8.3%, 6 days, $9791, and $11, respectively. Risk factors for mortality included ≥50 years of age, higher risk of pneumococcal disease (based on chronic or immunocompromising conditions), and intensive care unit admission. Patients with IPD had similar mortality rates and hospital margins compared with noninvasive ACP, but greater costs per admission and LOS. CONCLUSION: IPD and noninvasive ACP are associated with substantial clinical and economic burden across all adult age groups. Expanded pneumococcal vaccination programs may help reduce disease burden and decrease hospital costs.


Assuntos
Mortalidade Hospitalar , Hospitalização , Tempo de Internação , Infecções Pneumocócicas , Streptococcus pneumoniae , Humanos , Pessoa de Meia-Idade , Masculino , Feminino , Idoso , Estados Unidos/epidemiologia , Adulto , Infecções Pneumocócicas/economia , Infecções Pneumocócicas/mortalidade , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/epidemiologia , Hospitalização/economia , Tempo de Internação/economia , Efeitos Psicossociais da Doença , Antibacterianos/uso terapêutico , Antibacterianos/economia , Adulto Jovem , Fatores de Risco , Idoso de 80 Anos ou mais , Pneumonia Pneumocócica/economia , Pneumonia Pneumocócica/mortalidade , Pneumonia Pneumocócica/microbiologia , Adolescente
12.
Indian J Med Microbiol ; 48: 100575, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38537871

RESUMO

PURPOSE: Quantitative LAMP (qLAMP) assay is one of the recent and emerging diagnostic tests for infectious diseases. Only a few studies exist comparing this assay with quantitative real-time PCR (qPCR) for the diagnosis of invasive pneumococcal disease (IPD). AIM: To compare the diagnostic performance of qLAMP assay with qPCR targeting autolysin gene for the diagnosis of invasive pneumococcal disease. METHODS: Ninety six blood samples and 73 CSF samples from patients clinically suspected with community acquired pneumonia and acute meningitis were tested by qPCR and qLAMP assays using previously published primers and protocols. The qPCR was considered as the gold standard test and the diagnostic performance was assessed by calculating sensitivity, specificity, positive and negative predictive values, and kappa coefficient for the level of agreement between the tests. Chi-squared/Fisher exact test was used to compare categorical variables (positive/negative). RESULTS: Thirty two blood samples and 22 CSF samples were positive by qPCR while 24 and 20 samples were positive by qLAMP assay respectively. The sensitivity of qLAMP assay was only 86.4% and 75% when tested on CSF and blood samples respectively. However, the qLAMP assay was in substantial to almost perfect agreement when compared with qPCR. The results were statistically significant in both sample types (P < 0.001). CONCLUSIONS: The performance of qLAMP assay can vary based on the specimen type. It has very high specificity and had substantial to almost perfect agreement, and thus may be an alternative to qPCR for the diagnosis of IPD.


Assuntos
Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade , Streptococcus pneumoniae , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/isolamento & purificação , Infecções Pneumocócicas/diagnóstico , Infecções Pneumocócicas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Idoso , Criança , Adulto Jovem , Adolescente , N-Acetil-Muramil-L-Alanina Amidase/genética , Pré-Escolar
13.
Curr Opin Infect Dis ; 37(3): 170-175, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437245

RESUMO

PURPOSE OF REVIEW: Prevention of acute respiratory illnesses (ARI) in children is a global health priority, as these remain a leading cause of pediatric morbidity and mortality throughout the world. As new products and strategies to prevent respiratory infections caused by important pathogens such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza, respiratory syncytial virus and pneumococcus are advancing, increasing evidence suggests that these and other respiratory viruses and pneumococci may exhibit interactions that are associated with altered colonization and disease dynamics. We aim to review recent data evaluating interactions between respiratory viruses and pneumococci in the upper respiratory tract and their potential impact on pneumococcal colonization patterns and disease outcomes. RECENT FINDINGS: While interactions between influenza infection and subsequent increased susceptibility and transmissibility of colonizing pneumococci have been widely reported in the literature, emerging evidence suggests that human rhinovirus, SARS-CoV-2, and other viruses may also exhibit interactions with pneumococci and alter pneumococcal colonization patterns. Additionally, colonizing pneumococci may play a role in modifying outcomes associated with respiratory viral infections. Recent evidence suggests that vaccination with pneumococcal conjugate vaccines, and prevention of colonization with pneumococcal serotypes included in these vaccines, may be associated with reducing the risk of subsequent viral infection and the severity of the associated illnesses. SUMMARY: Understanding the direction and dynamics of viral-pneumococcal interactions may elucidate the potential effects of existing and emerging viral and bacterial vaccines and other preventive strategies on the health impact of these important respiratory pathogens.


Assuntos
Nasofaringe , Infecções Pneumocócicas , Infecções Respiratórias , Streptococcus pneumoniae , Humanos , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Criança , Infecções Pneumocócicas/prevenção & controle , Infecções Pneumocócicas/microbiologia , Nasofaringe/microbiologia , Nasofaringe/virologia , COVID-19/microbiologia , SARS-CoV-2 , Vacinas Pneumocócicas , Pré-Escolar , Coinfecção/microbiologia , Viroses
14.
Cell Host Microbe ; 32(3): 304-314.e8, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38417443

RESUMO

Several vaccines targeting bacterial pathogens show reduced efficacy upon concurrent viral infection, indicating that a new vaccinology approach is required. To identify antigens for the human pathogen Streptococcus pneumoniae that are effective following influenza infection, we performed CRISPRi-seq in a murine model of superinfection and identified the conserved lafB gene as crucial for virulence. We show that LafB is a membrane-associated, intracellular protein that catalyzes the formation of galactosyl-glucosyl-diacylglycerol, a glycolipid important for cell wall homeostasis. Respiratory vaccination with recombinant LafB, in contrast to subcutaneous vaccination, was highly protective against S. pneumoniae serotypes 2, 15A, and 24F in a murine model. In contrast to standard capsule-based vaccines, protection did not require LafB-specific antibodies but was dependent on airway CD4+ T helper 17 cells. Healthy human individuals can elicit LafB-specific immune responses, indicating LafB antigenicity in humans. Collectively, these findings present a universal pneumococcal vaccine antigen that remains effective following influenza infection.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções Pneumocócicas , Superinfecção , Humanos , Animais , Camundongos , Streptococcus pneumoniae , Infecções Pneumocócicas/prevenção & controle , Infecções Pneumocócicas/microbiologia , Sorogrupo , Células Th17 , Influenza Humana/prevenção & controle , Modelos Animais de Doenças , Vacinas Pneumocócicas , Antígenos de Bactérias/genética , Anticorpos Antibacterianos
15.
Theor Popul Biol ; 156: 77-92, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331222

RESUMO

Modern molecular technologies have revolutionized our understanding of bacterial epidemiology, but reported data across studies and different geographic endemic settings remain under-integrated in common theoretical frameworks. Pneumococcus serotype co-colonization, caused by the polymorphic bacteria Streptococcus pneumoniae, has been increasingly investigated and reported in recent years. While the global genomic diversity and serotype distribution of S. pneumoniae have been well-characterized, there is limited information on how co-colonization patterns vary globally, critical for understanding the evolution and transmission dynamics of the bacteria. Gathering a rich dataset of cross-sectional pneumococcal colonization studies in the literature, we quantified patterns of transmission intensity and co-colonization prevalence variation in children populations across 17 geographic locations. Linking these data to an SIS model with cocolonization under the assumption of quasi-neutrality among multiple interacting strains, our analysis reveals strong patterns of negative co-variation between transmission intensity (R0) and susceptibility to co-colonization (k). In line with expectations from the stress-gradient-hypothesis in ecology (SGH), pneumococcus serotypes appear to compete more in co-colonization in high-transmission settings and compete less in low-transmission settings, a trade-off which ultimately leads to a conserved ratio of single to co-colonization µ=1/(R0-1)k. From the mathematical model's behavior, such conservation suggests preservation of 'stability-diversity-complexity' regimes in coexistence of similar co-colonizing strains. We find no major differences in serotype compositions across studies, pointing to adaptation of the same set of serotypes across variable environments as an explanation for their differential interaction in different transmission settings. Our work highlights that the understanding of transmission patterns of Streptococcus pneumoniae from global scale epidemiological data can benefit from simple analytical approaches that account for quasi-neutrality among strains, co-colonization, as well as variable environmental adaptation.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Criança , Humanos , Streptococcus pneumoniae/genética , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/microbiologia , Estudos Transversais , Nasofaringe/microbiologia , Bactérias
16.
Front Public Health ; 12: 1298222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38317802

RESUMO

Introduction: Pneumococcal conjugate vaccines have reduced severe disease attributed to vaccine-type pneumococci in children. However, the effect is dependent on serotype distribution in the population and disease development may be influenced by co-occurrence of viral and bacterial pathogens in the nasopharynx. Methods: Following introduction of the 13-valent pneumococcal conjugate vaccine (PCV13) in Tanzania we performed repeated cross-sectional surveys, including 775 children below 2 years of age attending primary healthcare centers. All children were sampled from nasopharynx and pneumococci were detected by single-target PCR. Pneumococcal serotypes/groups and presence of viruses and other bacteria were determined by two multiplex PCR assays. Results: The prevalence of PCV13 vaccine-type pneumococci decreased by 50%, but residual vaccine-types were still detected in 21% of the children 2 years after PCV13 introduction. An increase in the non-vaccine-type 15 BC was observed. Pneumococci were often co-occurring with Haemophilus influenzae, and detection of rhino/enterovirus was associated with higher pneumococcal load. Discussion: We conclude that presence of residual vaccine-type and emerging non-vaccine-type pneumococci in Tanzanian children demand continued pneumococcal surveillance. High co-occurrence of viral and bacterial pathogens may contribute to the disease burden and indicate the need of multiple public health interventions to improve child health in Tanzania.


Assuntos
Infecções Pneumocócicas , Vírus , Criança , Humanos , Streptococcus pneumoniae , Sorogrupo , Tanzânia/epidemiologia , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/prevenção & controle , Estudos Transversais , Portador Sadio/epidemiologia , Vacinas Pneumocócicas , Nasofaringe
17.
mBio ; 15(2): e0282823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38193698

RESUMO

Streptococcus pneumoniae is a major human pathogen of global health concern and the rapid emergence of antibiotic resistance poses a serious public health problem worldwide. Fluoroquinolone resistance in S. pneumoniae is an intriguing case because the prevalence of fluoroquinolone resistance does not correlate with increasing usage and has remained rare. Our data indicate that deleterious fitness costs in the mammalian host constrain the emergence of fluoroquinolone resistance both by de novo mutation and recombination. S. pneumoniae was able to circumvent such deleterious fitness costs via the development of antibiotic tolerance through metabolic adaptation that reduced the production of reactive oxygen species, resulting in a fitness benefit during infection of mice treated with fluoroquinolones. These data suggest that the emergence of fluoroquinolone resistance is tightly constrained in S. pneumoniae by fitness tradeoffs and that mutational pathways involving metabolic networks to enable tolerance phenotypes are an important contributor to the evasion of antibiotic-mediated killing.IMPORTANCEThe increasing prevalence of antibiotic resistant bacteria is a major global health concern. While many species have the potential to develop antibiotic resistance, understanding the barriers to resistance emergence in the clinic remains poorly understood. A prime example of this is fluroquinolone resistance in Streptococcus pneumoniae, whereby, despite continued utilization, resistance to this class of antibiotic remains rare. In this study, we found that the predominant pathways for developing resistance to this antibiotic class severely compromised the infectious capacity of the pneumococcus, providing a key impediment for the emergence of resistance. Using in vivo models of experimental evolution, we found that S. pneumoniae responds to repeated fluoroquinolone exposure by modulating key metabolic pathways involved in the generation of redox molecules, which leads to antibiotic treatment failure in the absence of appreciable shifts in resistance levels. These data underscore the complex pathways available to pathogens to evade antibiotic mediating killing via antibiotic tolerance.


Assuntos
Fluoroquinolonas , Infecções Pneumocócicas , Humanos , Animais , Camundongos , Fluoroquinolonas/farmacologia , Streptococcus pneumoniae/metabolismo , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/microbiologia , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Mamíferos
18.
Microbiol Spectr ; 12(1): e0357923, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38059623

RESUMO

IMPORTANCE: Streptococcus pneumoniae (the pneumococcus) is a bacterial pathogen with the greatest burden of disease in Asia and Africa. The pneumococcal capsular polysaccharide has biological relevance as a major virulence factor as well as public health importance as it is the target for currently licensed vaccines. These vaccines have limited valency, covering up to 23 of the >100 known capsular types (serotypes) with higher valency vaccines in development. Here, we have characterized a new pneumococcal serotype, which we have named 33G. We detected serotype 33G in nasopharyngeal swabs (n = 20) from children and adults hospitalized with pneumonia, as well as healthy children in Mongolia. We show that the genetic, serological, and biochemical properties of 33G differ from existing serotypes, satisfying the criteria to be designated as a new serotype. Future studies should focus on the geographical distribution of 33G and any changes in prevalence following vaccine introduction.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Criança , Humanos , Streptococcus pneumoniae/genética , Infecções Pneumocócicas/microbiologia , Sorogrupo , Vacinas Pneumocócicas , Ásia
19.
J Leukoc Biol ; 115(3): 463-475, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-37837383

RESUMO

Pneumonia caused by Streptococcus pneumoniae is a leading cause of death worldwide. A growing body of evidence indicates that the successful treatment of bacterial infections results from synergy between antibiotic-mediated direct antibacterial activity and the host's immune defenses. However, the mechanisms underlying the protective immune responses induced by amoxicillin, a ß-lactam antibiotic used as the first-line treatment of S. pneumoniae infections, have not been characterized. A better understanding of amoxicillin's effects on host-pathogen interactions might facilitate the development of other treatment options. Given the crucial role of neutrophils in the control of S. pneumoniae infections, we decided to investigate amoxicillin's impact on neutrophil development in a mouse model of pneumococcal superinfection. A single therapeutic dose of amoxicillin almost completely eradicated the bacteria and prevented local and systemic inflammatory responses. Interestingly, in this context, amoxicillin treatment did not impair the emergency granulopoiesis triggered in the bone marrow by S. pneumoniae. Importantly, treatment of pneumonia with amoxicillin was associated with a greater mature neutrophil count in the bone marrow; these neutrophils had specific transcriptomic and proteomic profiles. Furthermore, amoxicillin-conditioned, mature neutrophils in the bone marrow had a less activated phenotype and might be rapidly mobilized in peripheral tissues in response to systemic inflammation. Thus, by revealing a novel effect of amoxicillin on the development and functions of bone marrow neutrophils during S. pneumoniae pneumonia, our findings provide new insights into the impact of amoxicillin treatment on host immune responses.


Assuntos
Infecções Pneumocócicas , Pneumonia Pneumocócica , Camundongos , Animais , Pneumonia Pneumocócica/tratamento farmacológico , Neutrófilos , Amoxicilina/farmacologia , Amoxicilina/uso terapêutico , Medula Óssea , Pulmão , Proteômica , Streptococcus pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/microbiologia
20.
J Microbiol Biotechnol ; 34(1): 47-55, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38044707

RESUMO

Streptococcus pneumoniae (pneumococcus) is an opportunistic pathogen that can cause severe infectious diseases such as pneumonia, meningitis, and otitis media. Despite the availability of antibiotics and pneumococcal vaccines against some invasive serotypes, pneumococcal infection remains a tremendous clinical challenge due to the increasing frequency of infection by antimicrobial resistant, nonencapsulated, and/or non-vaccine serotype strains. Short-chain fatty acids (SCFAs), which are produced at various mucosal sites in the body, have potent antimicrobial activity, including inhibition of pathogen growth and/or bacterial biofilm formation. In this study, we investigated the antimicrobial activity of SCFAs (acetate, propionate, and butyrate) against various serotypes pneumococci. Propionate generally inhibited the growth of S. pneumoniae serotypes included in the pneumococcal conjugate vaccine (PCV) 13, except for serotypes 3 and 7F, though butyrate and acetate showed no or low inhibition, depending on the serotypes. Of note, butyrate showed strong inhibition against serotype 3, the most prevalent invasive strain since the introduction of the PCV. No SCFAs showed inhibitory effects against serotype 7F. Remarkably, the nonencapsulated pneumococcal strain had more sensitivity to SCFAs than encapsulated parental strains. Taken together, these results suggest that propionate showing the most potent inhibition of pneumococcal growth may be used as an alternative treatment for pneumococcal infection, and that butyrate could be used against serotype 3, which is becoming a serious threat.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Humanos , Lactente , Sorogrupo , Propionatos/farmacologia , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/prevenção & controle , Antibacterianos/farmacologia , Vacinas Pneumocócicas/farmacologia , Ácidos Graxos Voláteis , Butiratos/farmacologia , Vacinas Conjugadas , Acetatos/farmacologia , Sorotipagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...