Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Alzheimers Dis ; 82(3): 1259-1275, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34151813

RESUMO

BACKGROUND: Periodontal disease(s) and metabolic illnesses negatively impact the quality of life and, eventually mental health. OBJECTIVE: This study investigated the effect of Porphyromonas gingivalis (W83) oral infection on the development of Alzheimer's disease (AD) pathophysiology in a wild-type obese, diabetic (db/db) mouse model. METHODS: The db/db mice were either orally infected with P. gingivalis and Fusobacterium nucleatum or sham infected for 16 weeks. The presence of amyloid-ß (Aß) and neurofibrillary tangles (NFTs) were assessed using a silver impregnation technique and subsequently by immunohistochemistry for tau and neuroinflammation. The mRNA abundance of a panel of 184 genes was performed using quantitative real-time PCR, and the differentially expressed genes were analyzed by Ingenuity Pathway Analysis. RESULTS: While no Aß plaques and NFTs were evident by silver impregnation, immunohistochemistry (glial cell markers) of the P. gingivalis-infected mice tissue sections exhibited neuroinflammation in the form of reactive microglia and astrocytes. Anti-tau immunopositivity, in addition to cells, was prominent in thickened axons of hippocampal CA neurons. The mRNA abundance of crucial genes in the insulin signaling pathway (INSR, IGF1, IRS, IDE, PIK3R, SGK1, GYS, GSK3B, AKT1) were upregulated, potentially exacerbating insulin resistance in the brain by P. gingivalis oral infection. Increased mRNA abundance of several kinases, membrane receptors, transcription factors, and pro-inflammatory mediators indicated hyperactivation of intracellular cascades with potential for tau phosphorylation and Aß release in the same infection group. CONCLUSION: P. gingivalis W83 infection of db/db mice provides a disease co-morbidity model with the potential to reproduce AD pathophysiology with induced periodontal disease.


Assuntos
Doença de Alzheimer/fisiopatologia , Infecções por Bacteroidaceae/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Obesidade/fisiopatologia , Porphyromonas gingivalis , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Animais , Infecções por Bacteroidaceae/genética , Infecções por Bacteroidaceae/psicologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/psicologia , Camundongos , Camundongos Transgênicos , Obesidade/genética , Obesidade/psicologia
2.
Sci Rep ; 11(1): 10770, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031466

RESUMO

In periodontitis, gingival fibroblasts (GFs) interact with and respond to oral pathogens, significantly contributing to perpetuation of chronic inflammation and tissue destruction. The aim of this study was to determine the usefulness of the recently released hTERT-immortalized GF (TIGF) cell line for studies of host-pathogen interactions. We show that TIGFs are unable to upregulate expression and production of interleukin (IL)-6, IL-8 and prostaglandin E2 upon infection with Porphyromonas gingivalis despite being susceptible to adhesion and invasion by this oral pathogen. In contrast, induction of inflammatory mediators in TNFα- or IL-1ß-stimulated TIGFs is comparable to that observed in primary GFs. The inability of TIGFs to respond directly to P. gingivalis is caused by a specific defect in Toll-like receptor-2 (TLR2) expression, which is likely driven by TLR2 promoter hypermethylation. Consistently, TIGFs fail to upregulate inflammatory genes in response to the TLR2 agonists Pam2CSK4 and Pam3CSK4. These results identify important limitations of using TIGFs to study GF interaction with oral pathogens, though these cells may be useful for studies of TLR2-independent processes. Our observations also emphasize the importance of direct comparisons between immortalized and primary cells prior to using cell lines as models in studies of any biological processes.


Assuntos
Infecções por Bacteroidaceae/imunologia , Gengiva/citologia , Interleucina-1beta/genética , Porphyromonas gingivalis/patogenicidade , Telomerase/genética , Fator de Necrose Tumoral alfa/genética , Aderência Bacteriana/efeitos dos fármacos , Infecções por Bacteroidaceae/genética , Células Cultivadas , Metilação de DNA , Dinoprostona/genética , Dinoprostona/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Fibroblastos/metabolismo , Gengiva/efeitos dos fármacos , Gengiva/imunologia , Gengiva/metabolismo , Humanos , Interleucina-1beta/metabolismo , Lipopeptídeos/farmacologia , Oligopeptídeos/farmacologia , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor Toll-Like 9/agonistas , Fator de Necrose Tumoral alfa/metabolismo
3.
J Mol Biol ; 433(7): 166836, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33539891

RESUMO

The anaerobic Gram-negative bacterium Porphyromonas gingivalis is considered the keystone of periodontitis diseases, a set of inflammatory conditions that affects the tissues surrounding the teeth. In the recent years, the major virulence factors exploited by P. gingivalis have been identified and characterized, including a cocktail of toxins, mainly proteases called gingipains, which promote gingival tissue invasion. These effectors use the Sec pathway to cross the inner membrane and are then recruited and transported across the outer membrane by the type IX secretion system (T9SS). In P. gingivalis, most secreted effectors are attached to anionic lipopolysaccharides (A-LPS), and hence form a virulence coat at the cell surface. P. gingivalis produces additional virulence factors to evade host immune responses, such as capsular polysaccharide, fimbriae and outer membrane vesicles. In addition to periodontitis, it is proposed that this broad repertoire of virulence factors enable P. gingivalis to be involved in diverse human diseases such as rheumatoid arthritis, and neurodegenerative, Alzheimer, and cardiovascular disorders. Here, we review the major virulence determinants of P. gingivalis and discuss future directions to better understand their mechanisms of action.


Assuntos
Sistemas de Secreção Bacterianos/genética , Infecções por Bacteroidaceae/genética , Cisteína Endopeptidases Gingipaínas/genética , Porphyromonas gingivalis/genética , Adesinas Bacterianas/genética , Infecções por Bacteroidaceae/microbiologia , Membrana Celular/microbiologia , Humanos , Lipopolissacarídeos/genética , Periodontite/genética , Periodontite/microbiologia , Porphyromonas gingivalis/patogenicidade , Fatores de Virulência/genética
4.
FEBS J ; 288(5): 1479-1495, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32681704

RESUMO

Several studies have shown a clear association between periodontal disease and increased risk of cardiovascular disease. Porphyromonas gingivalis (Pg), a key oral pathogen, and its cell surface-expressed gingipains, induce oedema in a zebrafish larvae infection model although the mechanism of these vascular effects is unknown. Here, we aimed to determine whether Pg-induced vascular damage is mediated by gingipains. In vitro, human endothelial cells from different vascular beds were invaded by wild-type (W83) but not gingipain-deficient (ΔK/R-ab) Pg. W83 infection resulted in increased endothelial permeability as well as decreased cell surface abundance of endothelial adhesion molecules PECAM-1 and VE-cadherin compared to infection with ΔK/R-ab. In agreement, when transgenic zebrafish larvae expressing fluorescently labelled PECAM-1 or VE-cadherin were systemically infected with W83 or ΔK/R-ab, a significant reduction in adhesion molecule fluorescence was observed specifically in endothelium proximal to W83 bacteria through a gingipain-dependent mechanism. Furthermore, this was associated with increased vascular permeability in vivo when assessed by dextran leakage microangiography. These data are the first to show that Pg directly mediates vascular damage in vivo by degrading PECAM-1 and VE-cadherin. Our data provide a molecular mechanism by which Pg might contribute to cardiovascular disease.


Assuntos
Infecções por Bacteroidaceae/etiologia , Cardiomegalia/etiologia , Edema/etiologia , Células Endoteliais/efeitos dos fármacos , Cisteína Endopeptidases Gingipaínas/toxicidade , Porphyromonas gingivalis/patogenicidade , Animais , Animais Geneticamente Modificados , Antígenos CD/genética , Antígenos CD/metabolismo , Infecções por Bacteroidaceae/genética , Infecções por Bacteroidaceae/metabolismo , Infecções por Bacteroidaceae/patologia , Caderinas/genética , Caderinas/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Edema/genética , Edema/metabolismo , Edema/patologia , Embrião não Mamífero , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Angiofluoresceinografia , Expressão Gênica/efeitos dos fármacos , Genes Reporter , Cisteína Endopeptidases Gingipaínas/biossíntese , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Larva/efeitos dos fármacos , Larva/microbiologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Porphyromonas gingivalis/crescimento & desenvolvimento , Porphyromonas gingivalis/metabolismo , Cultura Primária de Células , Transdução de Sinais , Peixe-Zebra
5.
Lupus ; 30(1): 80-85, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33115372

RESUMO

OBJECTIVE: The objective of this study was to determine and compare the distribution of fimA genotypes of Porphyromonas gingivalis (P. gingivalis) in systemic lupus erythematosus (SLE) patients compared with control subjects. MATERIAL AND METHODS: This observational cross-sectional study included 281 patients divided into two groups. Group 1 (G1) consisted of 162 control subjects (30-54 years old) and, group 2 (G2) included 119 subjects (10-69 years old) diagnosed with SLE. The presence of P. gingivalis was detected by PCR. DNA sequences in acquired plaque samples were identified using P. gingivalis specific sequences and further analyzed to differentiate their fimA genotypes using six sets of fimA genotype-specific primers. RESULTS: The presence of periodontitis (PE) was similar in both groups; similar measurements were obtained regarding clinical attachment loss (CAL) (G1 1.76 ± 0.72 vs. G2 1.95 ± 0.76). G2 showed the highest frequency of P. gingivalis (94.95%). FimA genotype II is considered the most virulent and, was the most frequently found in the SLE group (53.09%). CONCLUSION: The genotypes associated with PE are more frequently detected in SLE, which could make them susceptible to develop PE.


Assuntos
Infecções por Bacteroidaceae/genética , Genótipo , Lúpus Eritematoso Sistêmico/genética , Periodontite/microbiologia , Porphyromonas gingivalis/genética , Adolescente , Adulto , Idoso , Infecções por Bacteroidaceae/microbiologia , Criança , Estudos Transversais , Feminino , Humanos , Lúpus Eritematoso Sistêmico/microbiologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Porphyromonas gingivalis/isolamento & purificação , Adulto Jovem
6.
J Leukoc Biol ; 108(4): 1037-1050, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33311847

RESUMO

Bone destruction in inflammatory osteolytic diseases including periodontitis is related to excessive activity of osteoclasts (OC), which originate from precursor cells of the myeloid lineage, termed osteoclast precursors (OCP). In contrast to ample knowledge that we currently have on mature OC, little is known about OCP and their regulation during bacterial infection. Therefore, this study aimed to identify and characterize OCP following chronic infection with a periodontal bacteria Porphyromonas gingivalis (Pg). We used a micro-osmotic pump to continually release Pg subcutaneously in a murine model. Two weeks after Pg infection, the frequency of CD11b+c-fms+Ly6Chi population is significantly elevated within the bone marrow, spleen and peripheral blood. In vitro and in vivo studies identified these cells as the OCP-containing population and Pg infection significantly enhanced the osteoclastogenic activity of these cells. Furthermore, mRNA sequencing analysis indicated a unique gene and pathway profile in CD11b+c-fms+Ly6Chi population following Pg infection, with changes in genes and pathways related to OC differentiation, cell proliferation and apoptosis, inflammatory response, phagocytosis and immunity, as well as antigen processing and presentation. Moreover, using IL-6 knockout mice, we found that IL-6 is important for Pg-induced accumulation of CD11b+c-fms+Ly6Chi population from the bone marrow and periphery. Our results provide new insights into the characterization and regulation of OCP following a chronic bacterial infection. This knowledge is relevant to the understanding of the pathogenesis of bacteria-induced bone loss, and to the identification of potential therapeutic targets of bone loss diseases.


Assuntos
Infecções por Bacteroidaceae/imunologia , Diferenciação Celular/imunologia , Osteoclastos/imunologia , Osteólise/imunologia , Porphyromonas gingivalis/imunologia , Células-Tronco/imunologia , Animais , Infecções por Bacteroidaceae/genética , Infecções por Bacteroidaceae/patologia , Diferenciação Celular/genética , Doença Crônica , Modelos Animais de Doenças , Interleucina-6/genética , Interleucina-6/imunologia , Camundongos , Camundongos Knockout , Osteoclastos/patologia , Osteólise/genética , Osteólise/microbiologia , Osteólise/patologia , Células-Tronco/patologia
7.
J Neuroinflammation ; 17(1): 347, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33213462

RESUMO

BACKGROUND: The R1441G mutation in the leucine-rich repeat kinase 2 (LRRK2) gene results in late-onset Parkinson's disease (PD). Peripheral inflammation and gut microbiota are closely associated with the pathogenesis of PD. Chronic periodontitis is a common type of peripheral inflammation, which is associated with PD. Porphyromonas gingivalis (Pg), the most common bacterium causing chronic periodontitis, can cause alteration of gut microbiota. It is not known whether Pg-induced dysbiosis plays a role in the pathophysiology of PD. METHODS: In this study, live Pg were orally administrated to animals, three times a week for 1 month. Pg-derived lipopolysaccharide (LPS) was used to stimulate mononuclear cells in vitro. The effects of oral Pg administration on the gut and brain were evaluated through behaviors, morphology, and cytokine expression. RESULTS: Dopaminergic neurons in the substantia nigra were reduced, and activated microglial cells were increased in R1441G mice given oral Pg. In addition, an increase in mRNA expression of tumor necrosis factor (TNF-α) and interleukin-1ß (IL-1ß) as well as protein level of α-synuclein together with a decrease in zonula occludens-1 (Zo-1) was detected in the colon in Pg-treated R1441G mice. Furthermore, serum interleukin-17A (IL-17A) and brain IL-17 receptor A (IL-17RA) were increased in Pg-treated R1441G mice. CONCLUSIONS: These findings suggest that oral Pg-induced inflammation may play an important role in the pathophysiology of LRRK2-associated PD.


Assuntos
Microbioma Gastrointestinal/fisiologia , Imunidade/fisiologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/imunologia , Microglia/imunologia , Doenças Neurodegenerativas/imunologia , Porphyromonas gingivalis/imunologia , Administração Oral , Animais , Infecções por Bacteroidaceae/genética , Infecções por Bacteroidaceae/imunologia , Células Cultivadas , Neurônios Dopaminérgicos/imunologia , Neurônios Dopaminérgicos/microbiologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Camundongos Transgênicos , Microglia/microbiologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/microbiologia , Permeabilidade , Substância Negra/imunologia , Substância Negra/microbiologia
8.
PLoS Pathog ; 16(6): e1008559, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32497109

RESUMO

Antibiotics continue to be the standard-of-care for bacterial vaginosis (BV), although recurrence rates are high. Vaginal probiotics may improve durability of BV treatment, although few probiotics for vaginal health contain Lactobacillus spp. that commonly colonize the lower female genital tract. Characteristics of vaginal Lactobacillus strains from South African women were evaluated for their probiotic potential in vitro compared to strains from commercial vaginal products, including growth at varying pHs, ability to lower pH, produce D-/L-lactate and H2O2, influence growth of BV-associated Gardnerella vaginalis and Prevotella bivia, adherence to cervical cells and susceptibility to antibiotics. Fifty-seven Lactobacillus strains were purified from cervico-vaginal fluid, including L. crispatus, L. jensenii, L. gasseri, L. mucosae, and L. vaginalis. L crispatus strains grew better at pHs below 4.5 and lowered pH more effectively than other strains. Production of D-/L-lactate and H2O2 varied between Lactobacillus species and strains. Lactobacillus strains generally inhibited P. bivia more uniformly than G. vaginalis isolates. All vaginal Lactobacillus isolates were resistant to metronidazole while susceptibility to clindamycin varied. Furthermore, vaginal Lactobacillus strains tended to be broadly susceptible to penicillin, amoxicillin, rifampicin and rifabutin. Whole-genome-sequencing of five of the best-performing vaginal Lactobacillus strains confirmed their likely safety, due to antimicrobial resistance elements being largely absent, while putative intact prophages were present in the genomes of two of the five strains. Overall, vaginal Lactobacillus strains largely performed better in these in vitro assays than probiotic strains currently used in probiotics for vaginal health. Including the best-performing vaginal Lactobacillus isolates in a region-specific probiotic for vaginal health may result in improved BV treatment options.


Assuntos
Infecções por Bacteroidaceae/microbiologia , Gardnerella vaginalis , Infecções por Bactérias Gram-Positivas/microbiologia , Lactobacillus , Prevotella , Vaginose Bacteriana/microbiologia , Adolescente , Adulto , Infecções por Bacteroidaceae/tratamento farmacológico , Infecções por Bacteroidaceae/genética , Infecções por Bacteroidaceae/metabolismo , Clindamicina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Feminino , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/genética , Infecções por Bactérias Gram-Positivas/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Ácido Láctico/metabolismo , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Lactobacillus/metabolismo , Metronidazol/farmacologia , África do Sul , Especificidade da Espécie , Vaginose Bacteriana/tratamento farmacológico , Vaginose Bacteriana/genética
9.
Crit Rev Microbiol ; 46(2): 213-236, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32267781

RESUMO

Porphyromonas gingivalis (P. gingivalis), a Gram-negative facultative anaerobe of the oral cavity, is associated with the onset of various adverse pregnancy outcomes. P. gingivalis is linked with the development of preeclampsia, preterm labour, spontaneous abortion, gestational diabetes, foetal growth restriction, and misconception. The unique virulence factors, surface adhesions, enzymes of P. gingivalis can directly injure and alter the morphology, microbiome the foetal and maternal tissues. P. gingivalis can even exaggerate the production of cytokines, free radicals and acute-phase proteins in the uterine compartment that increases the risk of myometrial contraction and onset of preterm labour. Although evidence confirms the presence of P. gingivalis in the amniotic fluid and placenta of women with poor pregnancy outcomes, the intricate molecular mechanisms by which P. gingivalis initiates various antenatal and postnatal maternal and foetal complications are not well explained in the literature. Therefore, the present review aims to comprehensively summarise and highlight the recent and unique molecular pathogenic mechanisms of P. gingivalis associated with adverse pregnancy outcomes.


Assuntos
Infecções por Bacteroidaceae/fisiopatologia , Porphyromonas gingivalis/fisiologia , Complicações na Gravidez/fisiopatologia , Resultado da Gravidez , Animais , Infecções por Bacteroidaceae/genética , Infecções por Bacteroidaceae/metabolismo , Infecções por Bacteroidaceae/microbiologia , Citocinas/genética , Citocinas/metabolismo , Feminino , Humanos , Boca/microbiologia , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/isolamento & purificação , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo , Complicações na Gravidez/microbiologia
10.
J Leukoc Biol ; 108(4): 1037-1050, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33463750

RESUMO

Bone destruction in inflammatory osteolytic diseases including periodontitis is related to excessive activity of osteoclasts (OC), which originate from precursor cells of the myeloid lineage, termed osteoclast precursors (OCP). In contrast to ample knowledge that we currently have on mature OC, little is known about OCP and their regulation during bacterial infection. Therefore, this study aimed to identify and characterize OCP following chronic infection with a periodontal bacteria Porphyromonas gingivalis (Pg). We used a microosmotic pump to continually release Pg subcutaneously in a murine model. Two weeks after Pg infection, the frequency of CD11b+c-fms+Ly6Chi population is significantly elevated within the bone marrow, spleen, and peripheral blood. In vitro and in vivo studies identified these cells as the OCP-containing population and Pg infection significantly enhanced the osteoclastogenic activity of these cells. Furthermore, mRNA sequencing analysis indicated a unique gene and pathway profile in CD11b+c-fms+Ly6Chi population following Pg infection, with changes in genes and pathways related to OC differentiation, cell proliferation and apoptosis, inflammatory response, phagocytosis, and immunity, as well as antigen processing and presentation. Moreover, using IL-6 knockout mice, we found that IL-6 is important for Pg-induced accumulation of CD11b+c-fms+Ly6Chi population from the bone marrow and periphery. Our results provide new insight into the characterization and regulation of OCP following a chronic bacterial infection. This knowledge is relevant to the understanding of the pathogenesis of bacteria-induced bone loss, and to the identification of potential therapeutic targets of bone loss diseases.


Assuntos
Infecções por Bacteroidaceae/imunologia , Reabsorção Óssea/imunologia , Osteoclastos/imunologia , Porphyromonas gingivalis/imunologia , Células-Tronco/imunologia , Animais , Infecções por Bacteroidaceae/genética , Infecções por Bacteroidaceae/patologia , Reabsorção Óssea/genética , Reabsorção Óssea/microbiologia , Reabsorção Óssea/patologia , Doença Crônica , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Osteoclastos/patologia , RNA-Seq , Células-Tronco/patologia
11.
Sci Rep ; 9(1): 17369, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31758083

RESUMO

Cyclin-dependent kinase 9 (CDK9), one crucial molecule in promoting the transition from transcription pausing to elongation, is a critical modulator of cell survival and death. However, the pathological function of CDK9 in bacterial inflammatory diseases has never been explored. CDK9 inhibition or knock-down attenuated Porphyromonas gingivalis-triggered inflammatory gene expression. Gene-expression microarray analysis of monocytes revealed that knock-down of CDK9 not only affected inflammatory responses, but also impacted cell death network, especially the receptor-interacting protein kinase 3 (RIPK3)-mixed lineage kinase domain-like (MLKL)-mediated necroptosis after P. gingivalis infection. Inhibition of CDK9 significantly decreased necroptosis with downregulation of both MLKL and phosphorylated MLKL. By regulating caspase-8 and cellular FLICE inhibitory protein (cFLIP), key molecules in regulating cell survival and death, CDK9 affected not only the classic RIPK1-RIPK3-mediated necroptosis, but also the alternate TIR-domain-containing adapter-inducing interferon-ß-RIPK3-mediated necroptosis. CDK9 inhibition dampened pro-inflammatory gene production in the acute infection process in the subcutaneous chamber model in vivo. Moreover, CDK9 inhibition contributed to the decreased periodontal bone loss and inflammatory response induced by P. gingivalis in the periodontal micro-environment. In conclusion, by modulating the RIPK3-MLKL-mediated necroptosis, CDK9 inhibition provided a novel mechanism to impact the progress of bacterial infection in the periodontal milieu.


Assuntos
Quinase 9 Dependente de Ciclina/fisiologia , Necroptose/genética , Periodontite/genética , Proteínas Quinases/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Adulto , Animais , Infecções por Bacteroidaceae/complicações , Infecções por Bacteroidaceae/genética , Infecções por Bacteroidaceae/metabolismo , Infecções por Bacteroidaceae/patologia , Estudos de Casos e Controles , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/metabolismo , Progressão da Doença , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Periodontite/metabolismo , Periodontite/microbiologia , Periodontite/patologia , Porphyromonas gingivalis/fisiologia , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Células THP-1 , Elongação da Transcrição Genética/efeitos dos fármacos
12.
Int J Med Sci ; 16(10): 1320-1327, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31692996

RESUMO

Porphyromonas gingivalis is a pivotal periodontal pathogen, and the epithelial cells serve as the first physical barrier to defend the host from bacterial attack. Within this host-bacteria interaction, P. gingivalis can modify the host immune reaction and adjust the gene expression, which is associated with periodontitis pathogenesis and developing strategies. Herein, a meta-analysis was made to get the differential gene expression profiles in epithelial cells with or without P. gingivalis infection. The network-based meta-analysis program for gene expression profiling was used. Both the gene ontology analysis and the pathway enrichment analysis of the differentially expressed genes were conducted. Our results determined that 290 genes were consistently up-regulated in P. gingivalis infected epithelial cells. 229 gene ontology biological process terms of up-regulated genes were discovered, including "negative regulation of apoptotic process" and "positive regulation of cell proliferation/migration/angiogenesis". In addition to the well-known inflammatory signaling pathways, the pathway associated with a transcriptional misregulation in cancer has also been increased. Our findings indicated that P. gingivalis benefited from the survival of epithelial cells, and got its success as a colonizer in oral epithelium. The results also suggested that infection of P. gingivalis might contribute to oral cancer through chronic inflammation. Negative regulation of the apoptotic process and transcriptional misregulation in cancer pathway are important contributors to the cellular physiology changes during infection development, which have particular relevance to the pathogenesis and progressions of periodontitis, even to the occurrence of oral cancer.


Assuntos
Infecções por Bacteroidaceae/imunologia , Interações Hospedeiro-Patógeno/genética , Neoplasias Bucais/patologia , Periodontite/imunologia , Porphyromonas gingivalis/imunologia , Infecções por Bacteroidaceae/genética , Infecções por Bacteroidaceae/microbiologia , Infecções por Bacteroidaceae/patologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Progressão da Doença , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Perfilação da Expressão Gênica , Ontologia Genética , Gengiva/citologia , Gengiva/imunologia , Gengiva/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mucosa Bucal/citologia , Mucosa Bucal/imunologia , Mucosa Bucal/microbiologia , Neoplasias Bucais/genética , Neoplasias Bucais/imunologia , Neoplasias Bucais/microbiologia , Periodontite/genética , Periodontite/microbiologia , Periodontite/patologia , Porphyromonas gingivalis/isolamento & purificação , Porphyromonas gingivalis/patogenicidade , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Regulação para Cima
13.
J Bone Miner Res ; 34(10): 1938-1951, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31173390

RESUMO

Upon receptor activator of NF-κB ligand (RANKL) binding, RANK promotes osteoclast formation through the recruitment of tumor necrosis factor (TNF) receptor-associated factors (TRAFs). In vitro assays identified two RANK intracellular motifs that bind TRAFs: PVQEET560-565 (Motif 2) and PVQEQG604-609 (Motif 3), which potently mediate osteoclast formation in vitro. To validate the in vitro findings, we have generated knock-in (KI) mice harboring inactivating mutations in RANK Motifs 2 and 3. Homozygous KI (RANKKI/KI ) mice are born at the predicted Mendelian frequency and normal in tooth eruption. However, RANKKI/KI mice exhibit significantly more trabecular bone mass than age- and sex-matched heterozygous KI (RANK+/KI ) and wild-type (RANK+/+ ) counterparts. Bone marrow macrophages (BMMs) from RANKKI/KI mice do not form osteoclasts when they are stimulated with macrophage colony-stimulating factor (M-CSF) and RANKL in vitro. RANKL is able to activate the NF-κB, ERK, p38, and JNK pathways in RANKKI/KI BMMs, but it cannot stimulate c-Fos or NFATc1 in the RANKKI/KI cells. Previously, we showed that RANK signaling plays an important role in Porphyromonas gingivalis (Pg)-mediated osteoclast formation by committing BMMs into the osteoclast lineage. Here, we show that RANKL-primed RANKKI/KI BMMs are unable to differentiate into osteoclasts in response to Pg stimulation, indicating that the two RANK motifs are required for Pg-induced osteoclastogenesis. Mechanistically, RANK Motifs 2 and 3 facilitate Pg-induced osteoclastogenesis by stimulating c-Fos and NFATc1 expression during the RANKL pretreatment phase as well as rendering c-Fos and NFATc1 genes responsive to subsequent Pg stimulation. Cell-penetrating peptides (CPPs) conjugated with RANK segments containing Motif 2 or 3 block RANKL- and Pg-mediated osteoclastogenesis. The CPP conjugates abrogate RANKL-stimulated c-Fos and NFATc1 expression but do not affect RANKL-induced activation of NF-κB, ERK, p38, JNK, or Akt signaling pathway. Taken together, our current findings demonstrate that RANK Motifs 2 and 3 play pivotal roles in osteoclast formation in vivo and mediate Pg-induced osteoclastogenesis in vitro.


Assuntos
Diferenciação Celular , Sistema de Sinalização das MAP Quinases , Osteoclastos/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Motivos de Aminoácidos , Animais , Infecções por Bacteroidaceae/genética , Infecções por Bacteroidaceae/metabolismo , Infecções por Bacteroidaceae/patologia , Camundongos , Camundongos Mutantes , Osteoclastos/patologia , Porphyromonas gingivalis/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/genética
14.
Folia Microbiol (Praha) ; 64(4): 555-566, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30656591

RESUMO

Candida albicans can enhance the invasion of oral epithelial cells by Porphyromonas gingivalis, although the fungus is not a periodontal pathogen. In this study, we investigated whether C. albicans augments proinflammatory cytokine production by mouse macrophage-like J774.1 cells incubated with synthetic bacterial components. Mouse macrophage-like J774.1 cells, mouse primary splenocytes, human THP-1 cells, and A549 cells were pretreated with or without heat-killed C. albicans (HKCA) or substitutes for C. albicans cell wall components in 96-well flat-bottomed plates. Cells were then washed and incubated with Pam3CSK4, a Toll-like receptor (TLR) 2 ligand, or lipid A, a TLR4 ligand. Culture supernatants were analyzed by ELISA for secreted IL-6, MCP-1, TNF-α, and IL-8. HKCA augmented TLR ligand-induced proinflammatory cytokine production by J774.1 cells, mouse splenocytes, and THP-1 cells, but not A549 cells. However, IL-6, MCP-1, and TNF-α production induced by Pam3CSK4 or lipid A was not augmented when cells were pretreated with curdlan, a dectin-1 ligand, or mannan, a dectin-2 ligand. In contrast, pretreatment of cells with TLR ligands upregulated the production of IL-6 and TNF-α, but not MCP-1, induced by Pam3CSK4 or lipid A. The results suggest that C. albicans augments synthetic bacterial component-induced cytokine production by J774.1 cells via the TLR pathway, but not the dectin-1 or dectin-2 pathway.


Assuntos
Infecções por Bacteroidaceae/imunologia , Candida albicans/fisiologia , Citocinas/imunologia , Animais , Infecções por Bacteroidaceae/genética , Infecções por Bacteroidaceae/microbiologia , Candida albicans/química , Linhagem Celular , Citocinas/genética , Temperatura Alta , Humanos , Interleucina-6/genética , Interleucina-6/imunologia , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Porphyromonas gingivalis/química , Porphyromonas gingivalis/fisiologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
15.
Arch Oral Biol ; 96: 113-121, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30223242

RESUMO

OBJECTIVE: This study aimed to identify the differentially expressed genes (DEGs) in gingiva epithelial cells responding to Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis infections using bioinformatics method. STUDY DESIGN: GSE9723 dataset was downloaded from Gene Expression Omnibus, and DEGs between the infected cells and controls were identified using unpaired t-test. Overlapping DEGs in responding to Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis infections were extracted. Protein-protein interaction networks were constructed and functional modules were isolated using Molecular Complex Detection algorithm. Key genes in protein-protein interaction network and Molecular Complex Detection modules were subjected to functional enrichment analyses. In addition, the transcriptional factors were predicted. RESULTS: A total of 533 co-up-regulated and 202 co-down-regulated genes were identified. The up-regulated genes, including IL6, CCL19, EDN1, ADCY9, and BCL2 and the down-regulated genes, including CCNB1, PLK1, and CCNA2 were the key genes in the protein-protein interaction network and modules. They were intensively enriched in chemokine signaling pathway, calcium signaling pathway and cell cycle. Finally, two transcriptional factors, E12 and NRSF, targeting to the up-regulated genes and one transcriptional factor, NRP1, targeting the down-regulated genes, were predicted. CONCLUSIONS: CCNB1, PLK1, and CCNA2 might play important roles in the response of host epithelial cells to Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis.


Assuntos
Infecções por Bacteroidaceae/genética , Células Epiteliais/citologia , Expressão Gênica , Gengiva/citologia , Infecções por Pasteurellaceae/genética , Periodontite/genética , Aggregatibacter actinomycetemcomitans , Infecções por Bacteroidaceae/microbiologia , Biologia Computacional , Humanos , Infecções por Pasteurellaceae/microbiologia , Periodontite/microbiologia , Porphyromonas gingivalis , Fatores de Transcrição/genética
16.
Anaerobe ; 54: 128-135, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30189320

RESUMO

Quorum sensing (QS) signaling regulates the motility, adhesion, and biofilm formation of bacteria, and at the same time activates immune response in eukaryotic organisms. We recently demonstrated that the QS molecule, dihydroxy-2, 3-pentanedione (DPD), and its analogs significantly inhibit estradiol-regulated virulence of Prevotella aurantiaca, one of the four species in the Prevotella intermedia group. Here, we examined the combined effects of estradiol and QS signaling on 1) cytokine response of human gingival keratinocytes (HMK) against whole cell extract (WCE) of P. intermedia, Prevotella nigrescens, and Prevotella pallens, and 2) biofilm formation of these three Prevotella species. All experiments were performed in the presence or absence of estradiol, and with different QS molecules: DPD and its analogs (ethyl-DPD, butyl-DPD, and isobutyl-DPD). Concentrations of interleukin (IL)-1ß, -6, and -8 were determined by the Luminex multiplex immunoassay, biofilm mass was quantitatively evaluated by measuring protein concentration via the Bradford method, and the microtopography of biofilms was assessed by scanning electron microscopy (SEM) imaging. Concentrations of IL-6 and IL-8 were elevated when HMK cells were incubated with estradiol and WCE of P. intermedia and P. nigrescens, but decreased when incubated with estradiol and WCE of P. pallens. Butyl-DPD neutralized the estradiol- and WCE-induced regulation of HMK interleukin expression and, at the same time, inhibited the biofilm formation of P. intermedia and P. nigrescens. SEM micrographs revealed a decrease in biofilm mass after application of butyl-DPD, which was most detectable among the P. intermedia ATCC 25611 and P. nigrescens ATCC 33563 and AHN 8293 strains. In conclusion, butyl-DPD analog is able to neutralize the WCE-induced epithelial cytokine response and, at the same time, to inhibit the biofilm formation of P. intermedia and P. nigrescens.


Assuntos
Infecções por Bacteroidaceae/imunologia , Células Epiteliais/imunologia , Gengiva/imunologia , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Interleucina-8/imunologia , Prevotella/fisiologia , Percepção de Quorum , Infecções por Bacteroidaceae/genética , Infecções por Bacteroidaceae/microbiologia , Biofilmes , Células Epiteliais/microbiologia , Gengiva/microbiologia , Humanos , Interleucina-1beta/genética , Interleucina-6/genética , Interleucina-8/genética , Queratinócitos/imunologia , Queratinócitos/microbiologia , Prevotella/classificação , Prevotella/genética , Prevotella/patogenicidade , Prevotella intermedia/genética , Prevotella intermedia/patogenicidade , Prevotella intermedia/fisiologia , Prevotella nigrescens/genética , Prevotella nigrescens/patogenicidade , Prevotella nigrescens/fisiologia
17.
Innate Immun ; 24(7): 439-447, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30176756

RESUMO

Genetic factors play a role in periodontitis. Here we examined whether the risk haplotype of MHC class III region BAT1-NFKBIL1-LTA and lymphotoxin-α polymorphisms associate with salivary biomarkers of periodontal disease. A total of 455 individuals with detailed clinical and radiographic periodontal health data were included in the study. A 610 K genotyping chip and a Sequenom platform were used in genotyping analyses. Phospholipid transfer protein activity, concentrations of lymphotoxin-α, IL-8 and myeloperoxidase, and a cumulative risk score (combining Porphyromonas gingivalis, IL-1ß and matrix metalloproteinase-8) were examined in saliva samples. Elevated IL-8 and myeloperoxidase concentrations and cumulative risk scores associated with advanced tooth loss, deepened periodontal pockets and signs of periodontal inflammation. In multiple logistic regression models adjusted for periodontal parameters and risk factors, myeloperoxidase concentration (odds ratio (OR); 1.37, P = 0.007) associated with increased odds for having the risk haplotype and lymphotoxin-α concentration with its genetic variants rs2857708, rs2009658 and rs2844482. In conclusion, salivary levels of IL-8, myeloperoxidase and cumulative risk scores associate with periodontal inflammation and tissue destruction, while those of myeloperoxidase and lymphotoxin-α associate with genetic factors as well.


Assuntos
Infecções por Bacteroidaceae/genética , Genótipo , Periodontite/genética , Porphyromonas gingivalis/fisiologia , Glândulas Salivares/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Idoso , RNA Helicases DEAD-box/genética , Feminino , Predisposição Genética para Doença , Haplótipos , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Interleucina-8/metabolismo , Linfotoxina-alfa/genética , Linfotoxina-alfa/metabolismo , Masculino , Metaloproteinases da Matriz/metabolismo , Pessoa de Meia-Idade , Periodontite/diagnóstico , Polimorfismo de Nucleotídeo Único , Risco , Saliva/metabolismo
18.
J Immunol ; 201(5): 1491-1499, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30037847

RESUMO

A link between obesity and periodontitis has been suggested because of compromised immune response and chronic inflammation in obese patients. In this study, we evaluated the anti-inflammatory properties of Kavain, an extract from Piper methysticum, on Porphyromonas gingivalis-induced inflammation in adipocytes with special focus on peroxisome proliferation-activated receptor γ coactivator α (PGC-1α) and related pathways. The 3T3-L1 mouse preadipocytes and primary adipocytes harvested from mouse adipose tissue were infected with P. gingivalis, and inflammation (TNF-α; adiponectin/adipokines), oxidative stress, and adipogenic marker (FAS, CEBPα, and PPAR-γ) expression were measured. Furthermore, effect of PGC-1α knockdown on Kavain action was evaluated. Results showed that P. gingivalis worsens adipocyte dysfunction through increase of TNF-α, IL-6, and iNOS and decrease of PGC-1α and adiponectin. Interestingly, although Kavain obliterated P. gingivalis-induced proinflammatory effects in wild-type cells, Kavain did not affect PGC-1α-deficient cells, strongly advocating for Kavain effects being mediated by PGC-1α. In vivo adipocytes challenged with i.p. injection of P. gingivalis alone or P. gingivalis and Kavain displayed the same phenotype as in vitro adipocytes. Altogether, our findings established anti-inflammatory and antioxidant effects of Kavain on adipocytes and emphasized protective action against P. gingivalis-induced adipogenesis. The use of compounds such as Kavain offer a portal to potential therapeutic approaches to counter chronic inflammation in obesity-related diseases.


Assuntos
Adipócitos/imunologia , Infecções por Bacteroidaceae/tratamento farmacológico , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/imunologia , Porphyromonas gingivalis/imunologia , Pironas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/microbiologia , Adipócitos/patologia , Animais , Infecções por Bacteroidaceae/genética , Infecções por Bacteroidaceae/imunologia , Infecções por Bacteroidaceae/patologia , Citocinas/genética , Citocinas/imunologia , Técnicas de Silenciamento de Genes , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Porphyromonas gingivalis/patogenicidade , Transdução de Sinais/genética , Transdução de Sinais/imunologia
19.
Acta Odontol Scand ; 76(7): 520-524, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29726309

RESUMO

OBJECTIVE: To determine and compare the distribution of Porphyromonas gingivalis fimA genotypes in patients affected by Rheumatoid arthritis (RA) and periodontitis (PE). MATERIALS AND METHODS: This study involved 394 subjects divided into four groups, RA, PE, RA and PE and healthy subjects. PE was diagnosed by using clinical attachment loss (CAL) and probing depth (PD) indexes. Presence of P. gingivalis and its genotypes was identified by polymerase chain reaction in subgingival biofilm. RESULTS: P. gingivalis was more frequent in patients with RA (82.69%), and fimA II genotype was the most frequent in all groups, especially in PE/RA (76.71%). There was statistical difference (p < .05) regarding the frequency of P. gingivalis genotypes such as fimA Ib, II and III. CONCLUSIONS: Distribution of P. gingivalis fimA II genotypes was different among groups, it could play a critical role in the presence of PE in RA patients.


Assuntos
Artrite Reumatoide/genética , Infecções por Bacteroidaceae/genética , Genótipo , Periodontite/microbiologia , Porphyromonas gingivalis/genética , Adulto , Artrite Reumatoide/microbiologia , Infecções por Bacteroidaceae/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Porphyromonas gingivalis/isolamento & purificação
20.
Artigo em Inglês | MEDLINE | ID: mdl-29675399

RESUMO

Porphyromonas gingivalis (P. gingivalis) is a major periodontal pathogen that can induce an immune response leading to a destructive inflammatory process. During the inflammatory process, interleukin-12 (IL-12) is secreted, correlating with bacterial clearance by macrophages. Bacterial sialidase has recently been shown to influence the synthesis and modification of the macromolecules on its surface, and is associated with the interaction between bacteria and host cells. We have previously constructed a P. gingivalis sialidase gene mutant strain in P. gingivalis W83 (ΔPG0352) and found that ΔPG0352 showed less pathogenicity than the wild-type strain. In this study, U937-differentiated macrophages were stimulated by P. gingivalis W83, ΔPG0352, or PG0352 complemented strain (comΔPG0352). Transmission electron microscopy showed that P. gingivalis caused a loss of membrane integrity in macrophages and the intracellular bacteria were enclosed within endocytic vacuoles. The expression of both IL-12p35 and IL-12p40 genes and the levels of IL-12p70 were significantly higher in U937 stimulated by ΔPG0352 than in those with P. gingivalis W83 and comΔPG0352. In order to explain why ΔPG0352 induced more IL-12 in macrophages, immunofluorescence assays, PCR arrays, and gene silence or overexpression experiments were carried out. Immunofluorescence assays showed that ΔPG0352 induced lower expression of CR3 in macrophages. After CR3 was suppressed, there were no significant differences in the IL-12p70 levels between macrophages stimulated by P. gingivalis W83, ΔPG0352 or comΔPG0352. PCR array experiments showed that miR-21 and lncRNA GAS5 were differentially expressed between macrophages stimulated by P. gingivalis W83 and ΔPG0352, which had been identified by real-time PCR. The results of CR3 blocking and lncRNA GAS5 gene silence or overexpression showed that the difference in IL-12 levels between P. gingivalis W83 and ΔPG0352 groups was associated with CR3, lncRNA GAS5 and miR-21. Thus it can be concluded that the sialidase-deficient strain is more easily cleared by attenuating CR3 activation, reducing the inhibition of lncRNA GAS5, inducing less miR-21 and more IL-12 in macrophages. These results indicate that inhibiting the activity of sialidase in P. gingivalis will cause rapid clearing by macrophages.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Bacteroidaceae/metabolismo , Interleucina-12/metabolismo , Antígeno de Macrófago 1/metabolismo , MicroRNAs/metabolismo , Neuraminidase/deficiência , Porphyromonas gingivalis/enzimologia , RNA Longo não Codificante/metabolismo , Proteínas de Bactérias/genética , Infecções por Bacteroidaceae/genética , Infecções por Bacteroidaceae/microbiologia , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Interleucina-12/genética , Antígeno de Macrófago 1/genética , Macrófagos/metabolismo , MicroRNAs/genética , Neuraminidase/genética , Porphyromonas gingivalis/genética , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...