Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
J Virol ; 97(9): e0055523, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37668370

RESUMO

In vitro investigations of host-virus interactions are reliant on suitable cell and tissue culture models. Results are only as good as the model they are generated in. However, choosing cell models for in vitro work often depends on availability and previous use alone. Despite the vast increase in coronavirus research over the past few years, scientists are still heavily reliant on: non-human, highly heterogeneous or not fully differentiated, or naturally unsusceptible cells requiring overexpression of receptors and other accessory factors. Complex primary or stem cell models are highly representative of human tissues but are expensive and time-consuming to develop and maintain with limited suitability for high-throughput experiments.Using tissue-specific expression patterns, we identified human kidney cells as an ideal target for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and broader coronavirus infection. We show the use of the well-characterized human kidney cell line Caki-1 for infection with three human coronaviruses (hCoVs): Betacoronaviruses SARS-CoV-2 and Middle Eastern respiratory syndrome coronavirus and Alphacoronavirus hCoV 229E. Caki-1 cells show equal or superior susceptibility to all three coronaviruses when compared to other commonly used cell lines for the cultivation of the respective virus. Antibody staining against SARS-CoV-2 N protein shows comparable replication rates. A panel of 26 custom antibodies shows the location of SARS-CoV-2 proteins during replication using immunocytochemistry. In addition, Caki-1 cells were found to be susceptible to two other human respiratory viruses, influenza A virus and respiratory syncytial virus, making them an ideal model for cross-comparison for a broad range of respiratory viruses. IMPORTANCE Cell lines remain the backbone of virus research, but results are only as good as their originating model. Despite increased research into human coronaviruses following the COVID-19 pandemic, researchers continue to rely on suboptimal cell line models of: non-human origin, incomplete differentiation, or lacking active interferon responses. We identified the human kidney Caki-1 cell line as a potential target for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This cell line could be shown to be infectable with a wide range of coronaviruses including common cold virus hCoV-229E, epidemic virus MERS-CoV, and SARS-CoV-2 as well as other important respiratory viruses influenza A virus and respiratory syncytial virus. We could show the localization of 26 SARS-CoV-2 proteins in Caki-1 cells during natural replication and the cells are competent of forming a cellular immune response. Together, this makes Caki-1 cells a unique tool for cross-virus comparison in one cell line.


Assuntos
Linhagem Celular , Infecções por Coronaviridae , Coronaviridae , Humanos , Coronaviridae/fisiologia , Rim/citologia , Pandemias , Infecções por Coronaviridae/patologia , Infecções por Coronaviridae/virologia
3.
Virology ; 563: 20-27, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34411808

RESUMO

Viruses of the subfamily Orthocoronavirinae can cause mild to severe disease in people, including COVID-19, MERS and SARS. Their most common natural hosts are bat and bird species, which are mostly split across four virus genera. Molecular clock analyses of orthocoronaviruses suggested the most recent common ancestor of these viruses might have emerged either around 10,000 years ago or, using models accounting for selection, many millions of years. Here, we reassess the evolutionary history of these viruses. We present time-aware phylogenetic analyses of a RNA-dependent RNA polymerase locus from 123 orthocoronaviruses isolated from birds and bats, including those in New Zealand, which were geographically isolated from other bats around 35 million years ago. We used this age, as well as the age of the avian-mammals split, to calibrate the molecular clocks, under the assumption that these ages are applicable to the analyzed viruses. We found that the time to the most recent ancestor common for all orthocoronaviruses is likely 150 or more million years, supporting clock analyses that account for selection.


Assuntos
Aves/virologia , Quirópteros/virologia , Infecções por Coronaviridae/virologia , Coronaviridae , Genoma Viral , Animais , Coronaviridae/classificação , Coronaviridae/genética , Evolução Molecular , Nova Zelândia/epidemiologia
4.
Avian Pathol ; 50(4): 295-310, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34126817

RESUMO

Infectious bronchitis virus (IBV) was first isolated in Australia in 1962. Ongoing surveillance and characterization of Australian IBVs have shown that they have evolved separately from strains found throughout the rest of the world, resulting in the evolution of a range of unique strains and changes in the dominant wild-type strains, affecting tissue tropism, pathogenicity, antigenicity, and gene arrangement. Between 1961 and 1976 highly nephropathogenic genotype GI-5 and GI-6 strains, causing mortalities of 40% to 100%, predominated, while strains causing mainly respiratory disease, with lower mortality rates, have predominated since then. Since 1988, viruses belonging to two distinct and novel genotypes, GIII and GV, have been detected. The genome organization of the GIII strains has not been seen in any other gammacoronavirus. Mutations that emerged soon after the introduction of vaccination, incursion of strains with a novel lineage from unknown sources, recombination between IBVs from different genetic lineages, and gene translocations and deletions have contributed to an increasingly complex IBV population. These processes and the consequences of this variation for the biology of these viruses provide an insight into the evolution of endemic coronaviruses during their control by vaccination and may provide a better understanding of the potential for evolution of other coronaviruses, including SARS-CoV-2. Furthermore, the continuing capacity of attenuated IBV vaccines developed over 40 years ago to provide protection against viruses in the same genetic lineage provides some assurance that coronavirus vaccines developed to control other coronaviruses may continue to be effective for an extended period.


Assuntos
Evolução Biológica , Galinhas , Infecções por Coronaviridae/veterinária , Vírus da Bronquite Infecciosa/fisiologia , Doenças das Aves Domésticas/virologia , Animais , Variação Antigênica , Austrália/epidemiologia , Infecções por Coronaviridae/epidemiologia , Infecções por Coronaviridae/prevenção & controle , Infecções por Coronaviridae/virologia , Evolução Molecular , Variação Genética , Vírus da Bronquite Infecciosa/classificação , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/imunologia , Fenótipo , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais
5.
PLoS Pathog ; 17(4): e1009149, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33878118

RESUMO

The COVID-19 pandemic has demonstrated the serious potential for novel zoonotic coronaviruses to emerge and cause major outbreaks. The immediate animal origin of the causative virus, SARS-CoV-2, remains unknown, a notoriously challenging task for emerging disease investigations. Coevolution with hosts leads to specific evolutionary signatures within viral genomes that can inform likely animal origins. We obtained a set of 650 spike protein and 511 whole genome nucleotide sequences from 222 and 185 viruses belonging to the family Coronaviridae, respectively. We then trained random forest models independently on genome composition biases of spike protein and whole genome sequences, including dinucleotide and codon usage biases in order to predict animal host (of nine possible categories, including human). In hold-one-out cross-validation, predictive accuracy on unseen coronaviruses consistently reached ~73%, indicating evolutionary signal in spike proteins to be just as informative as whole genome sequences. However, different composition biases were informative in each case. Applying optimised random forest models to classify human sequences of MERS-CoV and SARS-CoV revealed evolutionary signatures consistent with their recognised intermediate hosts (camelids, carnivores), while human sequences of SARS-CoV-2 were predicted as having bat hosts (suborder Yinpterochiroptera), supporting bats as the suspected origins of the current pandemic. In addition to phylogeny, variation in genome composition can act as an informative approach to predict emerging virus traits as soon as sequences are available. More widely, this work demonstrates the potential in combining genetic resources with machine learning algorithms to address long-standing challenges in emerging infectious diseases.


Assuntos
Evolução Biológica , Infecções por Coronaviridae/diagnóstico , Infecções por Coronaviridae/virologia , Coronaviridae/patogenicidade , Genoma Viral , Aprendizado de Máquina , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Infecções por Coronaviridae/genética , Infecções por Coronaviridae/metabolismo , Filogenia , Glicoproteína da Espícula de Coronavírus/genética
6.
J Vet Diagn Invest ; 33(3): 457-468, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33739188

RESUMO

Every day, thousands of samples from diverse populations of animals are submitted to veterinary diagnostic laboratories (VDLs) for testing. Each VDL has its own laboratory information management system (LIMS), with processes and procedures to capture submission information, perform laboratory tests, define the boundaries of test results (i.e., positive or negative), and report results, in addition to internal business and accounting applications. Enormous quantities of data are accumulated and stored within VDL LIMSs. There is a need for platforms that allow VDLs to exchange and share portions of laboratory data using standardized, reliable, and sustainable information technology processes. Here we report concepts and applications for standardization and aggregation of data from swine submissions to multiple VDLs to detect and monitor porcine enteric coronaviruses by RT-PCR. Oral fluids, feces, and fecal swabs were the specimens submitted most frequently for enteric coronavirus testing. Statistical algorithms were used successfully to scan and monitor the overall and state-specific percentage of positive submissions. Major findings revealed a consistently recurrent seasonal pattern, with the highest percentage of positive submissions detected during December-February for porcine epidemic diarrhea virus, porcine deltacoronavirus, and transmissible gastroenteritis virus (TGEV). After 2014, very few submissions tested positive for TGEV. Monitoring VDL data proactively has the potential to signal and alert stakeholders early of significant changes from expected detection. We demonstrate the importance of, and applications for, data organized and aggregated by using LOINC and SNOMED CTs, as well as the use of customized messaging to allow inter-VDL exchange of information.


Assuntos
Infecções por Coronaviridae/veterinária , Coronaviridae/isolamento & purificação , Laboratórios/normas , Doenças dos Suínos/virologia , Animais , Teste para COVID-19/veterinária , Infecções por Coronaviridae/diagnóstico , Infecções por Coronaviridae/virologia , Surtos de Doenças , Fezes/virologia , Padrões de Referência , Estações do Ano , Suínos , Doenças dos Suínos/diagnóstico
7.
Biochem Biophys Res Commun ; 538: 24-34, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33413979

RESUMO

Two pandemics of respiratory distress diseases associated with zoonotic introductions of the species Severe acute respiratory syndrome-related coronavirus in the human population during 21st century raised unprecedented interest in coronavirus research and assigned it unseen urgency. The two viruses responsible for the outbreaks, SARS-CoV and SARS-CoV-2, respectively, are in the spotlight, and SARS-CoV-2 is the focus of the current fast-paced research. Its foundation was laid down by studies of many corona- and related viruses that collectively form the vast order Nidovirales. Comparative genomics of nidoviruses played a key role in this advancement over more than 30 years. It facilitated the transfer of knowledge from characterized to newly identified viruses, including SARS-CoV and SARS-CoV-2, as well as contributed to the dissection of the nidovirus proteome and identification of patterns of variations between different taxonomic groups, from species to families. This review revisits selected cases of protein conservation and variation that define nidoviruses, illustrates the remarkable plasticity of the proteome during nidovirus adaptation, and asks questions at the interface of the proteome and processes that are vital for nidovirus reproduction and could inform the ongoing research of SARS-CoV-2.


Assuntos
Infecções por Coronaviridae/virologia , Nidovirales/classificação , Nidovirales/genética , Sequência Conservada , Evolução Molecular , Variação Genética , Genômica , Humanos , Filogenia , Proteoma , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/classificação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2/classificação , SARS-CoV-2/genética , Proteínas Virais
8.
Transbound Emerg Dis ; 68(3): 1097-1110, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32799433

RESUMO

COVID-19 is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has rapidly spread to 216 countries and territories since first outbreak in December of 2019, posing a substantial economic losses and extraordinary threats to the public health worldwide. Although bats have been suggested as the natural host of SARS-CoV-2, transmission chains of this virus, role of animals during cross-species transmission, and future concerns remain unclear. Diverse animal coronaviruses have extensively been studied since the discovery of avian coronavirus in 1930s. The current article comprehensively reviews and discusses the current understanding about animal coronaviruses and SARS-CoV-2 for their emergence, transmission, zoonotic potential, alteration of tissue/host tropism, evolution, status of vaccines and surveillance. This study aims at providing guidance for control of COVID-19 and preventative strategies for possible future outbreaks of zoonotic coronavirus via cross-species transmission.


Assuntos
COVID-19/virologia , Infecções por Coronaviridae/veterinária , Coronavirus/classificação , SARS-CoV-2/genética , Animais , Infecções por Coronaviridae/virologia , Humanos
9.
Pathog Dis ; 79(1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33238302

RESUMO

BACKGROUND: biomarkers can be helpful in identifying patients who may profit by explicit treatments or evaluating the reaction to the treatment of specific disease. Finding unique biomarkers in the process of disease could help clinicians in identifying serious disease in the early stage, so as to improve prognosis. OBJECTIVE: these investigations, nonetheless, have made constrained progress. Numerous infections are known to cause intense viral encephalitis (VE) in people which can cause a variable level of meningeal just as parenchymal aggravation. Initial clinical manifestations in most encephalitis are nonspecific, resembling a viral-like illness. However, with disease progression, symptoms can become quite severe and fatal, including prominent cranial hypertension, cognitive problems, cerebral hernia and respiratory failure. Forwards: the clinical and research center discoveries in huge numbers of those viral issues are to a great extent comparable and in this way increasingly explicit biomarkers for indicative and prognostic intentions are justified. These biomarkers are progressively significant in the acknowledgment and treatment of the viral central nervous system (CNS) issue. CONCLUSION: Clinical manifestations have been the indicative approaches for analysis of viral encephalitis. Lots of studies have been endeavored to distinguish progressively objective laboratory-based quantitative CSF biomarkers for VE.


Assuntos
Antivirais/uso terapêutico , Encefalite Viral/tratamento farmacológico , Encefalite Viral/metabolismo , Encefalite Viral/virologia , Vacinas/uso terapêutico , Biomarcadores , Infecções por Coronaviridae/virologia , Encefalite Japonesa/virologia , Infecções por HIV/virologia , Herpes Simples/virologia , Humanos , Influenza Humana/virologia , Prognóstico , Febre do Nilo Ocidental/virologia , Infecção por Zika virus/virologia
10.
Virus Res ; 290: 198175, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33007342

RESUMO

The outbreak and spread of new strains of coronavirus (SARS-CoV-2) remain a global threat with increasing cases in affected countries. The evolutionary tree of SARS-CoV-2 revealed that Porcine Reproductive and Respiratory Syndrome virus 2, which belongs to the Beta arterivirus genus from the Arteriviridae family is possibly the most ancient ancestral origin of SARS-CoV-2 and other Coronaviridae. This review focuses on phylogenomic distribution and evolutionary lineage of zoonotic viral cross-species transmission of the Coronaviridae family and the implications of bat microbiome in zoonotic viral transmission and infection. The review also casts light on the role of the human microbiome in predicting and controlling viral infections. The significance of microbiome-mediated interventions in the treatment of viral infections is also discussed. Finally, the importance of synthetic viruses in the study of viral evolution and transmission is highlighted.


Assuntos
Evolução Biológica , Infecções por Coronaviridae/transmissão , Coronaviridae/genética , Microbiota , Zoonoses/transmissão , Animais , COVID-19/transmissão , COVID-19/virologia , Quirópteros/virologia , Coronaviridae/classificação , Coronaviridae/fisiologia , Infecções por Coronaviridae/virologia , Genoma Viral/genética , Humanos , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Zoonoses/virologia
11.
Nat Rev Immunol ; 20(11): 709-713, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33024281

RESUMO

Immunity is a multifaceted phenomenon. For T cell-mediated memory responses to SARS-CoV-2, it is relevant to consider their impact both on COVID-19 disease severity and on viral spread in a population. Here, we reflect on the immunological and epidemiological aspects and implications of pre-existing cross-reactive immune memory to SARS-CoV-2, which largely originates from previous exposure to circulating common cold coronaviruses. We propose four immunological scenarios for the impact of cross-reactive CD4+ memory T cells on COVID-19 severity and viral transmission. For each scenario, we discuss its implications for the dynamics of herd immunity and on projections of the global impact of SARS-CoV-2 on the human population, and assess its plausibility. In sum, we argue that key potential impacts of cross-reactive T cell memory are already incorporated into epidemiological models based on data of transmission dynamics, particularly with regard to their implications for herd immunity. The implications of immunological processes on other aspects of SARS-CoV-2 epidemiology are worthy of future study.


Assuntos
Anticorpos Antivirais/biossíntese , Betacoronavirus/imunologia , Infecções por Coronaviridae/prevenção & controle , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Vacinas Virais/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/patogenicidade , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , COVID-19 , Vacinas contra COVID-19 , Coronaviridae/efeitos dos fármacos , Coronaviridae/imunologia , Infecções por Coronaviridae/epidemiologia , Infecções por Coronaviridae/imunologia , Infecções por Coronaviridae/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Reações Cruzadas , Humanos , Imunidade Coletiva/efeitos dos fármacos , Memória Imunológica , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Rhinovirus/efeitos dos fármacos , Rhinovirus/imunologia , SARS-CoV-2 , Vacinas Virais/administração & dosagem , Vacinas Virais/biossíntese
12.
Clin Immunol ; 220: 108588, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32905851

RESUMO

Though recent reports link SARS-CoV-2 infections with hyper-inflammatory states in children, most children experience no/mild symptoms, and hospitalization and mortality rates are low in the age group. As symptoms are usually mild and seroconversion occurs at low frequencies, it remains unclear whether children significantly contribute to community transmission. Several hypotheses try to explain age-related differences in disease presentation and severity. Possible reasons for milder presentations in children as compared to adults include frequent contact to seasonal coronaviruses, presence of cross-reactive antibodies, and/or co-clearance with other viruses. Increased expression of ACE2 in young people may facilitate virus infection, while limiting inflammation and reducing the risk of severe disease. Further potential factors include recent vaccinations and a more diverse memory T cell repertoire. This manuscript reviews age-related host factors that may protect children from COVID-19 and complications associated, and addresses the confusion around seropositivity and immunity.


Assuntos
Anticorpos Antivirais/sangue , Betacoronavirus/patogenicidade , Infecções por Coronaviridae/prevenção & controle , Coronaviridae/patogenicidade , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Imunidade Adaptativa/efeitos dos fármacos , Adolescente , Doenças Assintomáticas , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/imunologia , COVID-19 , Criança , Coronaviridae/efeitos dos fármacos , Coronaviridae/imunologia , Infecções por Coronaviridae/epidemiologia , Infecções por Coronaviridae/imunologia , Infecções por Coronaviridae/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Proteção Cruzada , Feminino , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Imunidade Inata/efeitos dos fármacos , Masculino , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , SARS-CoV-2 , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/virologia , Reino Unido/epidemiologia , Vacinação , Adulto Jovem
13.
Med Sci (Paris) ; 36(8-9): 783-796, 2020.
Artigo em Francês | MEDLINE | ID: mdl-32773024

RESUMO

SARS-CoV-2 is a new human coronavirus (CoV), which emerged in People's Republic of China at the end of 2019 and is responsible for the global Covid-19 pandemic that caused more than 540 000 deaths in six months. Understanding the origin of this virus is an important issue and it is necessary to determine the mechanisms of its dissemination in order to be able to contain new epidemics. Based on phylogenetic inferences, sequence analysis and structure-function relationships of coronavirus proteins, informed by the knowledge currently available, we discuss the different scenarios evoked to account for the origin - natural or synthetic - of the virus. On the basis of currently available data, it is impossible to determine whether SARS-CoV-2 is the result of a natural zoonotic emergence or an accidental escape from experimental strains. Regardless of its origin, the study of the evolution of the molecular mechanisms involved in the emergence of this pandemic virus is essential to develop therapeutic and vaccine strategies.


TITLE: Retrouver les origines du SARS-CoV-2 dans les phylogénies de coronavirus. ABSTRACT: Le SARS-CoV-2 est un nouveau coronavirus (CoV) humain. Il a émergé en Chine fin 2019 et est responsable de la pandémie mondiale de Covid-19 qui a causé plus de 540 000 décès en six mois. La compréhension de l'origine de ce virus est une question importante et il est nécessaire de déterminer les mécanismes de sa dissémination afin de pouvoir se prémunir de nouvelles épidémies. En nous fondant sur des inférences phylogénétiques, l'analyse des séquences et les relations structure-fonction des protéines de coronavirus, éclairées par les connaissances actuellement disponibles, nous discutons les différents scénarios évoqués pour rendre compte de l'origine - naturelle ou synthétique - du virus.


Assuntos
Betacoronavirus/genética , Doenças Transmissíveis Emergentes/virologia , Infecções por Coronavirus/virologia , Coronavirus/classificação , Evolução Molecular , Pandemias , Filogenia , Pneumonia Viral/virologia , RNA Viral/genética , Sequência de Aminoácidos , Animais , Betacoronavirus/classificação , Betacoronavirus/isolamento & purificação , Derramamento de Material Biológico , COVID-19 , China/epidemiologia , Infecções por Coronaviridae/transmissão , Infecções por Coronaviridae/veterinária , Infecções por Coronaviridae/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Reservatórios de Doenças , Mutação com Ganho de Função , Genoma Viral , HIV/genética , Especificidade de Hospedeiro , Humanos , Mamíferos/virologia , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Vírus Reordenados/genética , SARS-CoV-2 , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/fisiologia , Zoonoses
14.
Cell Physiol Biochem ; 54(4): 767-790, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32830930

RESUMO

The pandemic of the severe acute respiratory syndrome coronavirus (SARS-CoV)-2 at the end of 2019 marked the third outbreak of a highly pathogenic coronavirus affecting the human population in the past twenty years. Cross-species zoonotic transmission of SARS-CoV-2 has caused severe pathogenicity and led to more than 655,000 fatalities worldwide until July 28, 2020. Outbursts of this virus underlined the importance of controlling infectious pathogens across international frontiers. Unfortunately, there is currently no clinically approved antiviral drug or vaccine against SARS-CoV-2, although several broad-spectrum antiviral drugs targeting multiple RNA viruses have shown a positive response and improved recovery in patients. In this review, we compile our current knowledge of the emergence, transmission, and pathogenesis of SARS-CoV-2 and explore several features of SARS-CoV-2. We emphasize the current therapeutic approaches used to treat infected patients. We also highlight the results of in vitro and in vivo data from several studies, which have broadened our knowledge of potential drug candidates for the successful treatment of patients infected with and discuss possible virus and host-based treatment options against SARS-CoV-2.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/genética , Betacoronavirus/fisiologia , COVID-19 , Vacinas contra COVID-19 , Coronaviridae/patogenicidade , Infecções por Coronaviridae/epidemiologia , Infecções por Coronaviridae/virologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Infecções por Coronavirus/transmissão , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/prevenção & controle , Citocinas/antagonistas & inibidores , Sistemas de Liberação de Medicamentos , Endocitose/efeitos dos fármacos , Previsões , Genoma Viral , Saúde Global , Humanos , Imunidade Coletiva , Imunização Passiva , Pandemias/prevenção & controle , Peptídeo Hidrolases/farmacologia , Peptídeo Hidrolases/uso terapêutico , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , RNA Viral/genética , Receptores de Coronavírus , Receptores Virais/antagonistas & inibidores , Receptores Virais/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinas Virais , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Zoonoses , Tratamento Farmacológico da COVID-19 , Soroterapia para COVID-19
15.
J Neurovirol ; 26(4): 459-473, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32737861

RESUMO

Seven coronavirus (CoV) species are known human pathogens: the epidemic viruses SARS-CoV, SARS-CoV-2, and MERS-CoV and those continuously circulating in human populations since initial isolation: HCoV-OC43, HCoV-229E, HCoV-HKU1, and HCoV-NL63. All have associations with human central nervous system (CNS) dysfunction. In infants and young children, the most common CNS phenomena are febrile seizures; in adults, non-focal abnormalities that may be either neurologic or constitutional. Neurotropism and neurovirulence are dependent in part on CNS expression of cell surface receptors mediating viral entry, and host immune response. In adults, CNS receptors for epidemic viruses are largely expressed on brain vasculature, whereas receptors for less pathogenic viruses are present in vasculature, brain parenchyma, and olfactory neuroepithelium, dependent upon viral species. Human coronaviruses can infect circulating mononuclear cells, but meningoencephalitis is rare. Well-documented human neuropathologies are infrequent and, for SARS, MERS, and COVID-19, can entail cerebrovascular accidents originating extrinsically to brain. There is evidence of neuronal infection in the absence of inflammatory infiltrates with SARS-CoV, and CSF studies of rare patients with seizures have demonstrated virus but no pleocytosis. In contrast to human disease, animal models of neuropathogenesis are well developed, and pathologies including demyelination, neuronal necrosis, and meningoencephalitis are seen with both native CoVs as well as human CoVs inoculated into nasal cavities or brain. This review covers basic CoV biology pertinent to CNS disease; the spectrum of clinical abnormalities encountered in infants, children, and adults; and the evidence for CoV infection of human brain, with reference to pertinent animal models of neuropathogenesis.


Assuntos
Infecções por Coronavirus , Meningite Viral/patologia , Meningite Viral/virologia , Pandemias , Pneumonia Viral , Animais , Betacoronavirus , COVID-19 , Coronaviridae , Infecções por Coronaviridae/virologia , Humanos , SARS-CoV-2
16.
Int J Mol Sci ; 21(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481719

RESUMO

Mucociliary clearance, mediated by a coordinated function of cilia bathing in the airway surface liquid (ASL) on the surface of airway epithelium, protects the host from inhaled pathogens and is an essential component of the innate immunity. ASL is composed of the superficial mucus layer and the deeper periciliary liquid. Ion channels, transporters, and pumps coordinate the transcellular and paracellular movement of ions and water to maintain the ASL volume and mucus hydration. microRNA (miRNA) is a class of non-coding, short single-stranded RNA regulating gene expression by post-transcriptional mechanisms. miRNAs have been increasingly recognized as essential regulators of ion channels and transporters responsible for ASL homeostasis. miRNAs also influence the airway host defense. We summarize the most up-to-date information on the role of miRNAs in ASL homeostasis and host-pathogen interactions in the airway and discuss concepts for miRNA-directed therapy.


Assuntos
Infecções por Coronaviridae/metabolismo , Interações Hospedeiro-Patógeno , MicroRNAs/genética , Mucosa Respiratória/metabolismo , Absorção pelo Trato Respiratório , Animais , Infecções por Coronaviridae/genética , Infecções por Coronaviridae/virologia , Homeostase , Humanos , MicroRNAs/metabolismo , Mucosa Respiratória/virologia
17.
Drug Res (Stuttg) ; 70(7): 291-297, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32443163

RESUMO

The pharmacological and immunological properties of interferons, especially those of interferon beta, and the corresponding treatment strategies are described, and the results of studies with different interferons in coronavirus infections are analysed. Furthermore, the data obtained with high-dosed native interferon beta in life-threatening acute viral diseases as well as the results of clinical pilot studies with high-dosed recombinant interferon beta-1a are provided because they serve as the rationale for the proposed therapeutic regimen to be applied in acute viral infections. This regimen differs from those approved for treatment of multiple sclerosis and consists of interferon beta-1a administered as a 24 hour intravenous infusion at a daily dose of up to 90 µg for 3-5 consecutive days. Since under this regimen transient severe side effects can occur, it is analysed which patients are suitable for this kind of treatment in general and if patients with severe coronavirus infections could also be treated accordingly.


Assuntos
Antivirais/administração & dosagem , Infecções por Coronaviridae/tratamento farmacológico , Coronavirus/efeitos dos fármacos , Interferon beta-1a/administração & dosagem , Animais , Antivirais/efeitos adversos , Infecções por Coronaviridae/imunologia , Infecções por Coronaviridae/virologia , Coronavirus/imunologia , Coronavirus/patogenicidade , Interações entre Hospedeiro e Microrganismos , Humanos , Interferon beta-1a/efeitos adversos , Resultado do Tratamento
18.
Drug Discov Today ; 25(4): 668-688, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32006468

RESUMO

Human coronaviruses (CoVs) are enveloped viruses with a positive-sense single-stranded RNA genome. Currently, six human CoVs have been reported including human coronavirus 229E (HCoV-229E), OC43 (HCoV-OC43), NL63 (HCoV-NL63), HKU1 (HCoV-HKU1), severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV), and MiddleEast respiratory syndrome (MERS) coronavirus (MERS-CoV). They cause moderate to severe respiratory and intestinal infections in humans. In this review, we focus on recent advances in the research and development of small-molecule anti-human coronavirus therapies targeting different stages of the CoV life cycle.


Assuntos
Antivirais/uso terapêutico , Infecções por Coronaviridae/tratamento farmacológico , Coronavirus/efeitos dos fármacos , Desenho de Fármacos , Desenvolvimento de Medicamentos , Terapia de Alvo Molecular , Animais , Antivirais/efeitos adversos , Antivirais/química , Infecções por Coronaviridae/diagnóstico , Infecções por Coronaviridae/virologia , Coronavirus/crescimento & desenvolvimento , Coronavirus/patogenicidade , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
19.
J Virol ; 93(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31578288

RESUMO

Coronaviruses (CoVs) have emerged from animal reservoirs to cause severe and lethal disease in humans, but there are currently no FDA-approved antivirals to treat the infections. One class of antiviral compounds, nucleoside analogues, mimics naturally occurring nucleosides to inhibit viral replication. While these compounds have been successful therapeutics for several viral infections, mutagenic nucleoside analogues, such as ribavirin and 5-fluorouracil, have been ineffective at inhibiting CoVs. This has been attributed to the proofreading activity of the viral 3'-5' exoribonuclease (ExoN). ß-d-N4-Hydroxycytidine (NHC) (EIDD-1931; Emory Institute for Drug Development) has recently been reported to inhibit multiple viruses. Here, we demonstrate that NHC inhibits both murine hepatitis virus (MHV) (50% effective concentration [EC50] = 0.17 µM) and Middle East respiratory syndrome CoV (MERS-CoV) (EC50 = 0.56 µM) with minimal cytotoxicity. NHC inhibited MHV lacking ExoN proofreading activity similarly to wild-type (WT) MHV, suggesting an ability to evade or overcome ExoN activity. NHC inhibited MHV only when added early during infection, decreased viral specific infectivity, and increased the number and proportion of G:A and C:U transition mutations present after a single infection. Low-level NHC resistance was difficult to achieve and was associated with multiple transition mutations across the genome in both MHV and MERS-CoV. These results point to a virus-mutagenic mechanism of NHC inhibition in CoVs and indicate a high genetic barrier to NHC resistance. Together, the data support further development of NHC for treatment of CoVs and suggest a novel mechanism of NHC interaction with the CoV replication complex that may shed light on critical aspects of replication.IMPORTANCE The emergence of coronaviruses (CoVs) into human populations from animal reservoirs has demonstrated their epidemic capability, pandemic potential, and ability to cause severe disease. However, no antivirals have been approved to treat these infections. Here, we demonstrate the potent antiviral activity of a broad-spectrum ribonucleoside analogue, ß-d-N4-hydroxycytidine (NHC), against two divergent CoVs. Viral proofreading activity does not markedly impact sensitivity to NHC inhibition, suggesting a novel interaction between a nucleoside analogue inhibitor and the CoV replicase. Further, passage in the presence of NHC generates only low-level resistance, likely due to the accumulation of multiple potentially deleterious transition mutations. Together, these data support a mutagenic mechanism of inhibition by NHC and further support the development of NHC for treatment of CoV infections.


Assuntos
Antivirais/farmacologia , Citidina/análogos & derivados , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Vírus da Hepatite Murina/efeitos dos fármacos , Vírus da Hepatite Murina/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Infecções por Coronaviridae/tratamento farmacológico , Infecções por Coronaviridae/virologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Citidina/farmacologia , Farmacorresistência Viral , Exorribonucleases/metabolismo , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Vírus da Hepatite Murina/metabolismo , Mutagênese , RNA Polimerase Dependente de RNA/metabolismo , Células Vero , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
20.
Vet Microbiol ; 237: 108398, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31585653

RESUMO

Feline infectious peritonitis (FIP) is a highly fatal disease caused by a virulent feline coronavirus in domestic and wild cats. We have previously reported the synthesis of potent coronavirus 3C-like protease (3CLpro) inhibitors and the efficacy of a protease inhibitor, GC376, in client-owned cats with FIP. In this study, we studied the effect of the amino acid changes in 3CLpro of feline coronavirus from a feline patient who received antiviral treatment for prolonged duration. We generated recombinant 3CLpro containing the identified amino acid changes (N25S, A252S or K260 N) and determined their susceptibility to protease inhibitors in the fluorescence resonance energy transfer assay. The assay showed that N25S in 3CLpro confers a small change (up to 1.68-fold increase in the 50% inhibitory concentration) in susceptibility to GC376, but other amino acid changes do not affect susceptibility. Modelling of 3CLpro carrying the amino acid changes was conducted to probe the structural basis for these findings. The results of this study may explain the observed absence of clinical resistance to the long-term antiviral treatment in the patients.


Assuntos
Doenças do Gato/virologia , Infecções por Coronaviridae/veterinária , Coronavirus Felino/enzimologia , Peritonite Infecciosa Felina/complicações , Inibidores de Proteases/uso terapêutico , Pirrolidinas/uso terapêutico , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Gatos , Infecções por Coronaviridae/tratamento farmacológico , Infecções por Coronaviridae/virologia , Masculino , Modelos Moleculares , Inibidores de Proteases/farmacologia , Conformação Proteica , Pirrolidinas/farmacologia , RNA Viral , Alinhamento de Sequência , Ácidos Sulfônicos , Proteínas Virais/química , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...