Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.022
Filtrar
1.
BMC Vet Res ; 20(1): 174, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702700

RESUMO

Antimicrobial resistance is considered one of the most critical threat for both human and animal health. Recently, reports of infection or colonization by carbapenemase-producing Enterobacterales in companion animals had been described. This study report the first molecular characterization of NDM-producing Enterobacterales causing infections in companion animals from Argentina. Nineteen out of 3662 Enterobacterales isolates analyzed between October 2021 and July 2022 were resistant to carbapenemes by VITEK2C and disk diffusion method, and suspected to be carbapenemase-producers. Ten isolates were recovered from canine and nine from feline animals. Isolates were identified as K. pneumoniae (n = 9), E. coli (n = 6) and E. cloacae complex (n = 4), and all of them presented positive synergy among EDTA and carbapenems disks, mCIM/eCIM indicative of metallo-carbapenemase production and were also positive by PCR for blaNDM gene. NDM variants were determined by Sanger sequencing method. All 19 isolates were resistant to ß-lactams and aminoglycosides but remained susceptible to colistin (100%), tigecycline (95%), fosfomycin (84%), nitrofurantoin (63%), minocycline (58%), chloramphenicol (42%), doxycycline (21%), enrofloxacin (5%), ciprofloxacin (5%) and trimethoprim/sulfamethoxazole (5%). Almost all isolates (17/19) co-harbored blaCTX-M plus blaCMY, one harbored blaCTX-M alone and the remaining blaCMY. E. coli and E. cloacae complex isolates harbored blaCTX-M-1/15 or blaCTX-M-2 groups, while all K. pneumoniae harbored only blaCTX-M-1/15 genes. All E. coli and E. cloacae complex isolates harbored blaNDM-1, while in K. pneumoniae blaNDM-1 (n = 6), blaNDM-5 (n = 2), and blaNDM-1 plus blaNDM-5 (n = 1) were confirmed. MLST analysis revealed the following sequence types by species, K. pneumoniae: ST15 (n = 5), ST273 (n = 2), ST11, and ST29; E. coli: ST162 (n = 3), ST457, ST224, and ST1196; E. cloacae complex: ST171, ST286, ST544 and ST61. To the best of our knowledge, this is the first description of NDM-producing E. cloacae complex isolates recovered from cats. Even though different species and clones were observed, it is remarkable the finding of some major clones among K. pneumoniae and E. coli, as well as the circulation of NDM as the main carbapenemase. Surveillance in companion pets is needed to detect the spread of carbapenem-resistant Enterobacterales and to alert about the dissemination of these pathogens among pets and humans.


Assuntos
Antibacterianos , Doenças do Gato , Doenças do Cão , Infecções por Enterobacteriaceae , beta-Lactamases , Animais , Gatos , Cães , Doenças do Gato/microbiologia , Doenças do Gato/epidemiologia , beta-Lactamases/genética , Argentina/epidemiologia , Infecções por Enterobacteriaceae/veterinária , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/epidemiologia , Antibacterianos/farmacologia , Doenças do Cão/microbiologia , Doenças do Cão/epidemiologia , Testes de Sensibilidade Microbiana , Animais de Estimação , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/genética , Enterobacteriaceae/enzimologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/enzimologia
2.
Curr Microbiol ; 81(7): 174, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753164

RESUMO

The Oscar fish (Astronotus ocellatus) is among the most commonly domesticated and exported ornamental fish species from Kerala. The ornamental fish industry faces a significant challenge with the emergence of diseases caused by multi-drug-resistant bacteria. In the present study, six isolates were resolved from the diseased Oscar fish showing haemorrhages, necrosis, and loss of pigmentation. After phenotypic and genotypic characterization, the bacteria were identified as Edwardsiella tarda, Klebsiella pneumoniae, Enterococcus faecalis, Escherichia coli, Brevibacillus borstelensis, and Staphylococcus hominis. Experimental challenge studies in healthy Oscar fish showed that E. tarda caused 100% mortality within 240 h with 6.99 × 106 CFU/fish as LD50 and histopathology revealed the typical signs of infection. The pathogen was re-recovered from the moribund fish thereby confirming Koch's postulates. E. tarda was confirmed through the positive amplification of tarda-specific gene and virulence genes viz., etfD and escB were also detected using PCR. Antibiotic susceptibility tests using disc diffusion displayed that the pathogen is multi-drug-resistant towards antibiotics belonging to aminoglycosides, tetracyclines, and quinolones categories with a MAR index of 0.32, which implicated the antibiotic pressure in the farm. Plasmid curing studies showed a paradigm shift in the resistance pattern with MAR index of 0.04, highlighting the resistance genes are plasmid-borne except for the chromosome-borne tetracycline resistance gene (tetA). This study is the first of its kind in detecting mass mortality caused by E. tarda in Oscar fish. Vigilant surveillance and strategic actions are crucial for the precise detection of pathogens and AMR in aquaculture.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Edwardsiella tarda , Infecções por Enterobacteriaceae , Doenças dos Peixes , Testes de Sensibilidade Microbiana , Animais , Doenças dos Peixes/microbiologia , Doenças dos Peixes/mortalidade , Edwardsiella tarda/genética , Edwardsiella tarda/patogenicidade , Edwardsiella tarda/isolamento & purificação , Edwardsiella tarda/efeitos dos fármacos , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/veterinária , Infecções por Enterobacteriaceae/mortalidade , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Peixes/microbiologia , Virulência/genética , Fatores de Virulência/genética
3.
Sci Rep ; 14(1): 9399, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658654

RESUMO

Edwardsiella piscicida causes significant economic losses to the aquaculture industry worldwide. Phage-based biocontrol methods are experiencing a renaissance because of the spread of drug-resistant genes and bacteria resulting from the heavy use of antibiotics. Here, we showed that the novel Edwardsiella phage EPP-1 could achieve comparable efficacy to florfenicol using a zebrafish model of Edwardsiella piscicida infection and could reduce the content of the floR resistance gene in zebrafish excreta. Specifically, phage EPP-1 inhibited bacterial growth in vitro and significantly improved the zebrafish survival rate in vivo (P = 0.0035), achieving an efficacy comparable to that of florfenicol (P = 0.2304). Notably, integrating the results of 16S rRNA sequencing, metagenomic sequencing, and qPCR, although the effects of phage EPP-1 converged with those of florfenicol in terms of the community composition and potential function of the zebrafish gut microbiota, it reduced the floR gene content in zebrafish excreta and aquaculture water. Overall, our study highlights the feasibility and safety of phage therapy for edwardsiellosis control, which has profound implications for the development of antibiotic alternatives to address the antibiotic crisis.


Assuntos
Antibacterianos , Bacteriófagos , Edwardsiella , Infecções por Enterobacteriaceae , Tianfenicol/análogos & derivados , Peixe-Zebra , Animais , Peixe-Zebra/microbiologia , Edwardsiella/genética , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/veterinária , Infecções por Enterobacteriaceae/terapia , Bacteriófagos/genética , Bacteriófagos/fisiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal , Terapia por Fagos/métodos , RNA Ribossômico 16S/genética , Doenças dos Peixes/microbiologia , Doenças dos Peixes/terapia , Doenças dos Peixes/prevenção & controle , Tianfenicol/farmacologia , Aquicultura/métodos
4.
Emerg Microbes Infect ; 13(1): 2337678, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38629492

RESUMO

Despite carbapenems not being used in animals, carbapenem-resistant Enterobacterales (CRE), particularly New Delhi metallo-ß-lactamase-producing CRE (NDM-CRE), are prevalent in livestock. Concurrently, the incidence of human infections caused by NDM-CRE is rising, particularly in children. Although a positive association between livestock production and human NDM-CRE infections at the national level was identified, the evidence of direct transmission of NDM originating from livestock to humans remains largely unknown. Here, we conducted a cross-sectional study in Chengdu, Sichuan Province, to examine the prevalence of NDM-CRE in chickens and pigs along the breeding-slaughtering-retail chains, in pork in cafeterias of schools, and in colonizations and infections from children's hospital and examined the correlation of NDM-CRE among animals, foods and humans. Overall, the blaNDM increases gradually along the chicken and pig breeding (4.70%/2.0%) -slaughtering (7.60%/22.40%) -retail (65.56%/34.26%) chains. The slaughterhouse has become a hotspot for cross-contamination and amplifier of blaNDM. Notably, 63.11% of pork from the school cafeteria was positive for blaNDM. The prevalence of blaNDM in intestinal and infection samples from children's hospitals was 21.68% and 19.80%, respectively. whole genome sequencing (WGS) analysis revealed the sporadic, not large-scale, clonal spread of NDM-CRE along the chicken and pig breeding-slaughtering-retail chain, with further spreading via IncX3-blaNDM plasmid within each stage of whole chains. Clonal transmission of NDM-CRE is predominant in children's hospitals. The IncX3-blaNDM plasmid was highly prevalent among animals and humans and accounted for 57.7% of Escherichia coli and 91.3% of Klebsiella pneumoniae. Attention should be directed towards the IncX3 plasmid to control the transmission of blaNDM between animals and humans.


Assuntos
Infecções por Enterobacteriaceae , Enterobacteriaceae , Criança , Humanos , Animais , Suínos , Enterobacteriaceae/genética , Estudos Transversais , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Galinhas , Escherichia coli/genética , beta-Lactamases/genética , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/veterinária , Klebsiella pneumoniae/genética , Plasmídeos
5.
Prev Vet Med ; 227: 106205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678816

RESUMO

Mastitis is the most common disease of dairy cattle and can be manifested in clinical and subclinical forms. The overuse of antimicrobials in the treatment and prevention of mastitis favours antimicrobial resistance and milk can be a potential route of dissemination. This study aimed to evaluate the biological quality of bulk tank milk (BTM) and the microbiological quality and signs of mastitis of freshly milked raw milk. In addition, to evaluate antimicrobial resistance in Enterobacteriaceae and Staphylococcus spp. isolated from freshly milked raw milk. None of the farms were within the official Brazilian biological quality limits for BTM. Freshly milked raw milk with signs of clinical (CMM), subclinical (SCMM) and no signs (MFM) of mastitis were detected in 6.67%, 27.62% and 65.71% samples, respectively. Most samples of freshly milked raw milk showed acceptable microbiological quality, when evaluating the indicators total coliforms (78.10%), Escherichia coli (88.57%) and Staphylococcus aureus (100%). Klebsiella oxytoca and S. aureus were the most prevalent microorganisms in SCMM and MFM samples. Antimicrobial resistance and multidrug resistance (MDR) were observed in 65.12% and 13.95% of Enterobacteriaceae and 84.31% and 5.88% of Staphylococcus spp., respectively, isolated from both SCMM and MFM samples. Enterobacteriaceae resistant to third-generation cephalosporin (3GCR) (6.98%) and carbapenems (CRE) (6.98%) and methicillin-resistant S. aureus (MRSA) (4.88%) were observed. Antimicrobial-resistant bacteria can spread resistance genes to previously susceptible bacteria. This is a problem that affects animal, human and environmental health and should be evaluated within the one-health concept.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Enterobacteriaceae , Mastite Bovina , Leite , Staphylococcus , Animais , Bovinos , Leite/microbiologia , Mastite Bovina/microbiologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Feminino , Staphylococcus/efeitos dos fármacos , Brasil , Antibacterianos/farmacologia , Infecções por Enterobacteriaceae/veterinária , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Assintomáticas , Testes de Sensibilidade Microbiana/veterinária
6.
Fish Shellfish Immunol ; 149: 109527, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561068

RESUMO

Skin mucus analysis has recently been used as a non-invasive method to evaluate for fish welfare. The present research study was conducted to examine the skin mucosal immunity and skin microbiota profiles of sturgeons infected with Citrobacter freundii. Our histology results showed that the thickness of the epidermal layer of skin remained thinner, and the number of mucous cells was significantly decreased in sturgeons after infection (p < 0.05). Total protein, alanine aminotransferase, aspartate aminotransferase, superoxide dismutase, and creatine kinase levels in the mucus showed biphasic pattern (decrease and then increase). Lactate dehydrogenase, lysozyme, and acid phosphatase activities in the mucus showed an increasing trend after infection. Furthermore, 16S rRNA sequencing also revealed that C. freundii infection also affected the diversity and community structure of the skin mucus microbiota. An increase in microbial diversity (p > 0.05) and a decrease in microbial abundance (p < 0.05) after infection were noted. The predominant bacterial phyla in the skin mucus were Proteobacteria, Fusobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Specifically, the relative abundance of Fusobacteria increased after infection. The predominant bacterial genera in the skin mucus were Cetobacterium, Pelomonas, Bradyrhizobium, Flavobacterium, and Pseudomonas. The relative abundance of Cetobacterium, Pseudomonas, and Flavobacterium increased after infection. Our current research findings will provide new insights into the theoretical basis for future research studies exploring the mechanism of sturgeon infection with C. freundii.


Assuntos
Citrobacter freundii , Infecções por Enterobacteriaceae , Doenças dos Peixes , Peixes , Imunidade nas Mucosas , Microbiota , Pele , Animais , Citrobacter freundii/imunologia , Microbiota/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Pele/imunologia , Pele/microbiologia , Peixes/imunologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Infecções por Enterobacteriaceae/microbiologia , Muco/imunologia , Muco/microbiologia , RNA Ribossômico 16S/genética
7.
Fish Shellfish Immunol ; 149: 109556, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608848

RESUMO

Japanese eel, Anguilla japonica, holds significant importance in Taiwanese aquaculture. With the intensification of eel farming, the impact of Edwardsiella tarda has become increasingly severe. Consequently, the abusive use of antibiotics has risen. Bacillus subtilis natto NTU-18, a strain of Bacillus with a high survival rate in feed processing, plays a crucial role in promoting intestinal health through competitive rejection, enhancing immune responses against bacterial pathogens, and improving intestinal health by modulating gastrointestinal microbiota to produce beneficial metabolites of mice and grass carp, Ctenopharyngodon idella. This study investigated the effects of different proportions (control, 0.25 %, 0.5 %, 1 %, and 2 %) of B. subtilis natto NTU-18 added to paste feed on the growth performance, intestinal morphology, and microbiota, expression of immune-related genes, and resistance to E. tarda in Japanese glass eel. The results indicated that the growth performance of all groups with B. subtilis natto NTU-18 added was significantly higher than that of the control group and did not impact the villi morphology. The expression of immune-related genes in the kidney, specifically HSP70 and SOD, was significantly higher from 0.5 % and above than the control; however, no significant differences were observed in CAT, POD, and HSP90. In the liver, significant differences were found in HSP70 and IgM above 0.25 % compared to the control group, with no significant differences in SOD, CAT, POD, and HSP90 among all groups. Additionally, intestinal microbiota analysis revealed that the 2 % additional group had significantly lower diversity than other groups, with Cetobacterium as the dominant species. The challenge test observed that the survival rates of the 0.5 % and 1 % groups were significantly higher. This research suggests that adding 0.5 % and 1 % of B. subtilis natto NTU-18 to the diet is beneficial for Japanese glass eel's immunity, growth performance, and disease resistance.


Assuntos
Anguilla , Ração Animal , Bacillus subtilis , Dieta , Resistência à Doença , Doenças dos Peixes , Microbioma Gastrointestinal , Intestinos , Probióticos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Anguilla/imunologia , Anguilla/crescimento & desenvolvimento , Ração Animal/análise , Resistência à Doença/efeitos dos fármacos , Doenças dos Peixes/imunologia , Dieta/veterinária , Probióticos/farmacologia , Probióticos/administração & dosagem , Intestinos/imunologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Edwardsiella tarda/fisiologia , Suplementos Nutricionais/análise , Imunidade Inata , Distribuição Aleatória
8.
Fish Shellfish Immunol ; 148: 109502, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471627

RESUMO

ß-defensin of flounder plays an important role in immunomodulation by recruiting immune cells and has a potential vaccine adjuvant effect in addition to its bactericidal activity. In this study, adjuvant effects of ß-defensin on DNA vaccine OmpC against edwardsiellosis in flounder (Paralichthys olivaceus) were investigated. The bicistronic eukaryotic expression plasmid pBudCE4.1 plasmid vector with two independent coding regions was selected to construct DNA vaccine of p-OmpC which express only the gene for the outer membrane protein of Edwardsiella tarda and the vaccine of p-OmpC-ßdefensin which express both the outer membrane protein of the bacterium and ß-defensin of flounder. In vitro and in vivo studies have shown that the constructed plasmids can be expressed in flounder embryonic cell lines and injection sites of muscles. After vaccination by intramuscular injection, both p-OmpC and p-OmpC-ßdefensin groups showed significant upregulation of immune-response. Compared to the pBbudCE4.1 and the p-OmpC vaccinated groups, the p-OmpC-ßdefensin vaccinated group showed significantly more cell aggregation at the injection site and intense immune response. The proportion of sIgM+ cells, as well as the CD4-1+ and CD4-2+ cells in both spleen and kidney was significantly higher in the p-OmpC-ßdefensin vaccinated group at peak time point than in the control groups. The relative survival rate of the p-OmpC-ßdefensin vaccine was 74.17%, which was significantly higher than that of the p-OmpC vaccinated group 48.33%. The results in this study determined that ß-defensin enhances the responses in cellular and humoral immunity and evokes a high degree of protection against E. tarda, which is a promising candidate for vaccine adjuvant.


Assuntos
Infecções por Enterobacteriaceae , Doenças dos Peixes , Linguado , Vacinas de DNA , beta-Defensinas , Animais , beta-Defensinas/genética , Adjuvantes de Vacinas , Adjuvantes Imunológicos/farmacologia , Edwardsiella tarda , Vacinas Bacterianas , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Enterobacteriaceae/veterinária
9.
Toxicol Pathol ; 52(1): 67-80, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38477038

RESUMO

NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice, lacking many components of a mature immune system, are at increased risk of disease. General understanding of potential pathogens of these mice is limited. We describe a high mortality disease outbreak caused by an opportunistic bacterial infection in NSG mice. Affected animals exhibited perianal fecal staining, dehydration, and wasting. Histopathologic lesions included a primary necrotizing enterocolitis, with inflammatory and necrotizing lesions also occurring in the liver, kidneys, heart, and brain of some mice. All affected individuals tested negative for known opportunistic pathogens of immunodeficient mice. We initially identified a member of Enterobacter cloacae complex (ECC) in association with the outbreak by traditional diagnostics. ECC was cultured from extraintestinal organs, both with and without histopathologic lesions, suggesting bacteremia. Infrared spectroscopy and MALDI-TOF mass spectrometry demonstrated that isolates from the outbreak shared molecular features and likely a common origin. We subsequently hypothesized that advanced sequencing methods would identify a single species of ECC associated with clinical disease. Using a novel targeted amplicon-based next-generation sequencing assay, we identified Enterobacter hormaechei in association with this outbreak. Knowledge of this organism as a potential opportunistic pathogen in NSG mice is critical for preclinical studies to prevent loss of animals and confounding of research.


Assuntos
Enterobacter , Infecções por Enterobacteriaceae , Animais , Feminino , Camundongos , Surtos de Doenças , Enterobacter/genética , Enterobacter/isolamento & purificação , Infecções por Enterobacteriaceae/veterinária , Infecções por Enterobacteriaceae/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos Endogâmicos NOD
10.
Fish Shellfish Immunol ; 146: 109417, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301814

RESUMO

Edwardsiella piscicida (E. piscicida) is a gram-negative pathogen that survives in intracellular environment. Currently, the interplay between E. piscicida and host cells has not been completely explored. In this study, we found that E. piscicida disturbed iron homeostasis in grass carp monocytes/macrophages to maintain its own growth. Further investigation revealed the bacteria induced an increase of intracellular iron, which was subjected to the degradation of ferritin. Moreover, the autophagy inhibitor impeded the degradation of ferritin and increase of intracellular iron in E. piscicida-infected monocytes/macrophages, implying possible involvement of autophagy response in the process of E. piscicida-broken iron homeostasis. Along this line, confocal microscopy observed that E. piscicida elicited the colocalization of ferritin with LC3-positive autophagosome in the monocytes/macrophages, indicating that E. piscicida mediated the degradation of ferritin possibly through the autophagic pathway. These results deepened our understanding of the interaction between E. piscicida and fish cells, hinting that the disruption of iron homeostasis was an important factor for pathogenicity of E. piscicida. They also indicated that autophagy was a possible mechanism governing intracellular iron metabolism in response to E. piscicida infection and might offer a new avenue for anti-E. piscicida strategies in the future.


Assuntos
Edwardsiella , Infecções por Enterobacteriaceae , Doenças dos Peixes , Hemocromatose , Animais , Monócitos/metabolismo , Peixes/metabolismo , Edwardsiella/fisiologia , Macrófagos/metabolismo , Autofagia , Ferro/metabolismo , Ferritinas/genética , Doenças dos Peixes/microbiologia , Infecções por Enterobacteriaceae/veterinária , Infecções por Enterobacteriaceae/microbiologia , Proteínas de Bactérias/metabolismo
11.
J Vet Diagn Invest ; 36(1): 124-127, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37919965

RESUMO

Carbapenemase-producing Enterobacterales (CPE) are one of the most urgent threats to human healthcare globally. Descriptions of CPE outbreaks in veterinary hospitals suggest the need for screening strategies for CPE from companion animals. Our aim was to optimize a chromogenic agar method with and without selective enrichment to isolate CPE from companion animal feces in an ongoing outbreak of New Delhi metallo-ß-lactamse-5 Escherichia coli. A limit of detection (LOD) assay for spiked canine and feline feces was performed for both methods using a carbapenamase-producing E. coli (24213-18); the LOD (1.5 × 103 cfu/g of feces) was equivalent to that reported for human fecal specimens. We screened 1,247 companion animal fecal specimens for carriage of CPE by 1) direct plating to chromogenic agar and 2) plating to chromogenic agar following selective enrichment. Twenty-one specimens were positive for CPE by both direct culture and enrichment culture. No specimens were positive with selective enrichment and negative by direct culture. A selective enrichment step did not result in any increased recovery of CPE from companion animals, which suggests that enrichment broth may not be necessary for outbreak surveillance testing. It is important to continue to validate methods for the detection of CPE in companion animals as outbreaks become more common in veterinary facilities.


Assuntos
Doenças do Gato , Doenças do Cão , Infecções por Enterobacteriaceae , Animais , Gatos , Cães , Humanos , Escherichia coli , Enterobacteriaceae , Ágar , Doenças do Gato/diagnóstico , Doenças do Gato/epidemiologia , Técnicas Bacteriológicas/veterinária , Técnicas Bacteriológicas/métodos , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologia , Proteínas de Bactérias , Surtos de Doenças/veterinária , Infecções por Enterobacteriaceae/diagnóstico , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/veterinária , Testes de Sensibilidade Microbiana/veterinária
12.
J Fish Dis ; 47(3): e13902, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38041240

RESUMO

To prevent catfish idiopathic anaemia, diets fortified with iron have been adopted as a regular practice on commercial catfish farms to promote erythropoiesis. However, the effects of prolonged exposure of excess dietary iron on production performance and disease resistance for hybrid catfish (Ictalurus punctatus × I. furcatus) remains unknown. Four experimental diets were supplemented with ferrous monosulphate to provide 0, 500, 1000, and 1500 mg of iron per kg of diet. Groups of 16 hybrid catfish juveniles (~22.4 g) were stocked in each of 20, 110-L aquaria (n = 5), and experimental diets were offered to the fish to apparent satiation for 12 weeks. At the end of the study, production performance, survival, condition indices, as well as protein and iron retention were unaffected by the dietary treatments. Blood haematocrit and the iron concentration in the whole-body presented a linear increase with the increasing the dietary iron. The remaining fish from the feeding trial was challenged with Edwardsiella ictaluri. Mortality was mainly observed for the dietary groups treated with iron supplemented diets. The results for this study suggest that iron supplementation beyond the required levels does affect the blood production, and it may increase their susceptibility to E. ictaluri infection.


Assuntos
Peixes-Gato , Infecções por Enterobacteriaceae , Doenças dos Peixes , Ictaluridae , Animais , Resistência à Doença , Edwardsiella ictaluri , Ferro/farmacologia , Ferro da Dieta , Hematócrito , Doenças dos Peixes/prevenção & controle , Dieta/veterinária , Suplementos Nutricionais , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Enterobacteriaceae/veterinária
13.
J Fish Dis ; 47(4): e13910, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38153008

RESUMO

Enteric septicemia of catfish (ESC), caused by the gram-negative enteric bacteria Edwardsiella ictaluri, is a significant threat to catfish aquaculture in the southeastern United States. Antibiotic intervention can reduce mortality; however, antibiotic use results in an imbalance, or dysbiosis, of the gut microbiota, which may increase susceptibility of otherwise healthy fish to enteric infections. Herein, recovery of the intestinal microbiota and survivability of channel catfish in response to ESC challenge was evaluated following a 10-day course of florfenicol and subsequent probiotic or prebiotic supplementation. Following completion of florfenicol therapy, fish were transitioned to a basal diet or diets supplemented with a probiotic or prebiotic for the remainder of the study. Digesta was collected on Days 0, 4, 8 and 12, beginning on the first day after cessation of antibiotic treatment, and gut microbiota was characterized by Illumina sequencing of the 16S rRNA gene (V4 region). Remaining fish were challenged with E. ictaluri and monitored for 32 days post-challenge. Florfenicol administration resulted in dysbiosis characterized by inflated microbial diversity, which began to recover in terms of diversity and composition 4 days after cessation of florfenicol administration. Fish fed the probiotic diet had higher survival in response to ESC challenge than the prebiotic (p = .019) and negative control (p = .029) groups.


Assuntos
Peixes-Gato , Infecções por Enterobacteriaceae , Doenças dos Peixes , Microbioma Gastrointestinal , Ictaluridae , Probióticos , Tianfenicol/análogos & derivados , Animais , Edwardsiella ictaluri/fisiologia , Prebióticos , Disbiose , RNA Ribossômico 16S , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia , Antibacterianos/farmacologia , Suplementos Nutricionais , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Enterobacteriaceae/veterinária
14.
Fish Shellfish Immunol ; 143: 109203, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37940083

RESUMO

Calreticulin (Crt), a conserved lectin-like pleiotropic protein, plays crucial roles in mammalian immune response. In fish, the immunological function of Crt is limited investigated. Herein, we studied the antibacterial immunity of two type of Crt homologues (i.e. PoCrt-1 and PoCrt-2) in Japanese flounder (Paralichthys olivaceus). PoCrt-1 and PoCrt-2 are composed of 419 and 427 amino acid residues respectively, with 69.09% overall sequence identities with each other. Both PoCrt-1 and PoCrt-2 contain a signal peptide and three functional domains i.e. N-, P- and C-domains. Both PoCrt-1 and PoCrt-2 were constitutively expressed at various tissues with highest expression level in liver, and obviously regulated by Edwardsiella tarda and Vibrio harveyi. Furthermore, recombinant PoCrt-1 and PoCrt-2 (rPoCrt-1 and rPoCrt-2) could bind to different Gram-negative bacteria with highest binding index with E. tarda. At same time, in vitro rPoCrt-1 and rPoCrt-2 could agglutinate E. tarda, V. harveyi, and Vibrio anguillarum, and inhibit the bacterial growth. Similarly, in vivo rPoCrt-1 and rPoCrt-2 could significantly suppress the dissemination of E. tarda. Overall, these observations add new insights into the antibacterial immunity of Crt in P. olivaceus.


Assuntos
Infecções por Enterobacteriaceae , Doenças dos Peixes , Linguado , Vibrioses , Animais , Calreticulina , Vibrioses/veterinária , Peixes/metabolismo , Antibacterianos , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/veterinária , Proteínas de Peixes , Mamíferos/metabolismo
15.
Fish Shellfish Immunol ; 142: 109115, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37758096

RESUMO

Interferon regulatory factor (IRF) family involves in the transcriptional regulation of type I Interferons (IFNs) and IFN-stimulated genes (ISGs) and plays a critical role in cytokine signaling and immune response. However, systematic identification of the IRF gene family in teleost has been rarely reported. In this study, twelve IRF members, named PoIRF1, PoIRF2, PoIRF3, PoIRF4a, PoIRF4b, PoIRF5, PoIRF6, PoIRF7, PoIRF8, PoIRF9, PoIRF10 and PoIRF11, were identified from genome-wide data of olive flounder (Paralichthys olivaceus). Phylogenetic analysis indicated that PoIRFs could be classified into four clades, including IRF1 subfamily (PoIRF1, PoIRF11), IRF3 subfamily (PoIRF3, PoIRF7), IRF4 subfamily (PoIRF4a, PoIRF8, PoIRF9, PoIRF10) and IRF5 subfamily (PoIRF5, PoIRF6). They were evolutionarily related to their counterparts in other fish. Gene structure and motif analysis showed that PoIRFs protein sequences were highly conserved. Under normal physiological conditions, all PoIRFs were generally expressed in multiple developmental stages and healthy tissues. After E. tarda attack and temperature stress, twelve PoIRFs showed significant and different changes in mRNA levels. The expression of PoIRF1, PoIRF3, PoIRF4a, PoIRF5, PoIRF7, PoIRF8, PoIRF9, PoIRF10 and PoIRF11 could be markedly induced by E. tarda, indicating that they played a key role in the process of antibacterial immunity. Besides, temperature stress could significantly stimulate the expression of PoIRF3, PoIRF5, PoIRF6 and PoIRF7, indicating that they could transmit signals rapidly when the temperature changes. In conclusion, this study reported the molecular properties and expression analysis of PoIRFs, and explored their role in immune response, which laid a favorable foundation for further studies on the evolution and functional characteristics of the IRF family in teleost fish.


Assuntos
Infecções por Enterobacteriaceae , Doenças dos Peixes , Linguado , Animais , Edwardsiella tarda , Filogenia , Temperatura , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Infecções por Enterobacteriaceae/veterinária
16.
J Vet Med Sci ; 85(10): 1094-1098, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37661420

RESUMO

A 31-month-old Holstein dairy cow aborted at 224 days of gestation with ejection of cheese-like lochia. Citrobacter koseri, which commonly exists in the normal flora of human and animal digestive tracts, was isolated from aborted fetal tissues (liver, spleen, kidney, heart, lung, cerebrum, and skeletal muscle) and fetal membranes. Histopathological examination revealed suppurative fibrinous meningoencephalitis of the cerebrum, cerebellum, and brainstem; suppurative bronchopneumonia; suppurative chorioamnionitis; and fibrous splenic serositis. Numerous gram-negative bacilli were detected in the cytoplasm of macrophages and/or neutrophils in these lesions. Bacteriological investigation and immunohistochemical staining identified the bacilli as C. koseri. This is the first report of cattle abortion caused by C. koseri infection in dairy cattle.


Assuntos
Doenças dos Bovinos , Citrobacter koseri , Infecções por Enterobacteriaceae , Sepse , Feminino , Animais , Humanos , Bovinos , Infecções por Enterobacteriaceae/veterinária , Sepse/veterinária , Macrófagos/patologia , Feto
17.
Appl Environ Microbiol ; 89(10): e0089923, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37732742

RESUMO

Copper plays a vital role in the host-pathogen interface, potentially making components of the bacterial copper response suitable targets for the development of innovative antimicrobial strategies. The anti-copper arsenal of intracellular pathogens has expanded as an adaptation to survive copper toxicity in order to escape intracellular killing by the host immune system. Herein, we employed transposon insertion sequencing to investigate the genetic mechanisms underlying the survival of Edwardsiella piscicida under copper stress. A novel transcriptional regulator, ETAE_2324 (named CorR), was identified to participate in the response to copper ions by controlling the expression of copA, the core component of cytoplasmic copper homeostasis. Furthermore, CorR regulated the expression of virulent determinant eseB, influencing the in vivo colonization of E. piscicida. Collectively, our results contribute to the comprehension of the underlying mechanism of the adaption of intracellular pathogens to copper stress during bacterial infections.IMPORTANCECopper ions play a pivotal role in the interaction between bacteria and the host during infection. The host's innate immune system employs copper ions for their bactericidal properties, thereby making bacterial copper tolerance a crucial determinant of virulence. Edwardsiella piscicida, a significant marine pathogen, has caused substantial losses in the global aquaculture industry. To comprehensively investigate how E. piscicida responds to copper stress, we utilized transposon insertion sequencing to explore genes associated with copper tolerance in culture media containing different concentrations of copper ions. A novel transcriptional regulator, CorR, was identified to respond to copper ions and regulates the expression of crucial components of copper homeostasis CopA, along with the essential virulence factor EseB. These findings offer valuable insights into the underlying mechanisms that govern bacterial copper tolerance and present novel perspectives for the development of vaccines and therapeutic strategies targeting E. piscicida.


Assuntos
Infecções por Enterobacteriaceae , Doenças dos Peixes , Animais , Cobre/toxicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Enterobacteriaceae/veterinária , Infecções por Enterobacteriaceae/microbiologia , Íons , Doenças dos Peixes/microbiologia
18.
J Fish Dis ; 46(10): 1125-1136, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37410863

RESUMO

Widespread distribution of a highly pathogenic Edwardsiella ictaluri strain in farmed tilapia in northern Vietnam has recently been reported. The subsequent investigation noticed a disease outbreak occurred at five nearby tilapia farms with floating cages, in which the clinical signs of both edwardsiellosis and columnaris diseases were observed on the same infected fish and caused 65% to 85% fish mortality. Naturally diseased fish (n = 109) were sampled from the five infected farms for bacterial identification and conducting challenge tests. The two bacteria Edwardsiella ictaluri and Flavobacterium oreochromis were identified by a combination of biochemical tests, PCR and 16SrRNA sequencing methods. Experimental challenge tests on Nile tilapia resulted in the median lethal dose (LD50 ) of E. ictaluri and F. oreochromis at 70 CFU/fish by intraperitoneal (i.p.) injection and 3.6 × 106 CFU/mL by immersion, respectively. The experimentally co-infected challenged fish exposed to LD50 doses resulted in 83% ± 6% mortality, with the infected fish exhibiting clinical signs of both edwardsiellosis and columnaris diseases, mimicking the naturally diseased fish. This finding suggests that the co-infection of E. ictaluri and F. oreochromis may interact in a synergistic manner, to enhance the overall severity of the infection and elevates the need for efficient methods to control both pathogens.


Assuntos
Ciclídeos , Infecções por Enterobacteriaceae , Doenças dos Peixes , Tilápia , Animais , Edwardsiella ictaluri/genética , Flavobacterium , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/veterinária , Infecções por Enterobacteriaceae/microbiologia , Doenças dos Peixes/microbiologia
19.
Fish Shellfish Immunol ; 139: 108878, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271328

RESUMO

The Matrix metalloproteinase (MMP) gene family is responsible for regulating the degradation of Extra Cellular Matrix (ECM) proteins, which are important for physiological processes such as wound healing, tissue remodeling, and stress response. Although MMPs have been studied in many species, their role in immune response in Japanese flounder (Paralichthys olivaceus) is still not fully understood. This study conducted a comprehensive analysis of MMPs in flounder, including gene structures, evolutionary relationships, conserved domains, molecular evolution, and expression patterns. Analysis revealed that MMP genes could be grouped into 17 subfamilies and were evolutionarily conserved and functionally-constrained. Meanwhile, MMP genes were found to express in different embryonic and larval stages and might play the role of sentinel in healthy tissues. Furthermore, expression profiling showed that MMPs had diverse functions in environmental stress, with 60% (9/15) and 73% (11/15) of MMPs showing differential expression patterns under temperature stress and Edwardsiella tarda (E. tarda) infection, respectively. These findings provide a useful resource for understanding the immune functions of MMP genes in Japanese flounder.


Assuntos
Infecções por Enterobacteriaceae , Doenças dos Peixes , Linguado , Animais , Linguado/genética , Edwardsiella tarda/fisiologia , Temperatura , Infecções por Enterobacteriaceae/veterinária , Imunidade , Metaloproteinases da Matriz/genética
20.
Fish Shellfish Immunol ; 138: 108818, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37201733

RESUMO

The signal transducer and activator of transcription (STAT) family members are not only the transcriptional activators, but also play important roles in regulating inflammatory response. Some members have been reported to be involved in innate bacterial and antiviral immunity in aquatic organisms. However, no systematic research on STATs has been found in teleost. In this present study, we characterized six STAT genes in Japanese flounder based on bioinformatics methods, namely PoSTAT1, PoSTAT2, PoSTAT3, PoSTAT4, PoSTAT5 and PoSTAT6. The phylogenetic analysis of STATs in fish indicated that STATs were highly conserved and revealed an absence of STAT5 in a few species. Further analysis of gene structures and motifs showed STAT proteins shared a similar structure and probably had similar functionality in Japanese flounder. The expression profiles of different development stages and tissues demonstrated that PoSTATs exhibited specificity in temporality and spatiality as well as PoSTAT4 was highly expressed in gill. The transcriptome data analysis of E. tarda and temperature stress showed that PoSTAT1 and PoSTAT2 were more respective to these two kinds of stress. In addition, the results also demonstrated that these PoSTATs might regulate immune response in different ways, manifested by up-regulation in E. tarda infection and down-regulation in temperature stress. In a word, this systematic analysis of PoSTATs would provide valuable information about the phylogenetic relationship of STATs in fish species and help understand the role of STAT genes in the immune response of Japanese flounder.


Assuntos
Infecções por Enterobacteriaceae , Doenças dos Peixes , Linguado , Animais , Imunidade Inata/genética , Edwardsiella tarda/fisiologia , Temperatura , Filogenia , Proteínas de Peixes/química , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/veterinária , Regulação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...