Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(4)2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675993

RESUMO

Bellinger River virus (BRV) is a serpentovirus (nidovirus) that was likely responsible for the catastrophic mortality of the Australian freshwater turtle Myuchelys georgesi in February 2015. From November 2015 to November 2020, swabs were collected from turtles during repeated river surveys to estimate the prevalence of BRV RNA, identify risk factors associated with BRV infection, and refine sample collection. BRV RNA prevalence at first capture was significantly higher in M. georgesi (10.8%) than in a coexisting turtle, Emydura macquarii (1.0%). For M. georgesi, various risk factors were identified depending on the analysis method, but a positive BRV result was consistently associated with a larger body size. All turtles were asymptomatic when sampled and conjunctival swabs were inferred to be optimal for ongoing monitoring. Although the absence of disease and recent BRV detections suggests a reduced ongoing threat, the potential for the virus to persist in an endemic focus or resurge in cyclical epidemics cannot be excluded. Therefore, BRV is an ongoing potential threat to the conservation of M. georgesi, and strict adherence to biosecurity principles is essential to minimise the risk of reintroduction or spread of BRV or other pathogens.


Assuntos
Espécies em Perigo de Extinção , Tartarugas , Animais , Tartarugas/virologia , Austrália/epidemiologia , Nidovirales/genética , Nidovirales/isolamento & purificação , Infecções por Nidovirales/epidemiologia , Infecções por Nidovirales/veterinária , Infecções por Nidovirales/virologia , Prevalência , Filogenia , Rios/virologia , RNA Viral/genética , Fatores de Risco
2.
Infect Genet Evol ; 120: 105585, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508364

RESUMO

In this study, a picornavirus and a nidovirus were identified from a single available nasopharyngeal swab (NPS) sample of a freshly deceased sheep, as the only vertebrate viruses found with viral metagenomics and next-generation sequencing methods. The sample was originated from a mixed feedlot farm in Hungary where sheep and cattle were held together but in separate stalls. Most of the sheep had respiratory signs (coughing and increased respiratory effort) at the time of sampling. Other NPS were not, but additional enteric samples were collected from sheep (n = 27) and cattle (n = 11) of the same farm at that time. The complete/nearly complete genomes of the identified viruses were determined using RT-PCR and Nanopore (MinION-Flonge) / Dye-terminator sequencing techniques. The results of detailed genomic and phylogenetic analyses indicate that the identified picornavirus most likely belongs to a type 4 genotype of species Bovine rhinitis B virus (BRBV-4, OR885914) of genus Aphthovirus, family Picornaviridae while the ovine nidovirus (OvNV, OR885915) - as a novel variant - could belong to the recently created Bovine nidovirus 1 (BoNV) species of genus Bostovirus, family Tobaniviridae. None of the identified viruses were detectable in the enteric samples using RT-PCR and generic screening primer pairs. Both viruses are well-known respiratory pathogens of cattle, but their presence was not demonstrated before in other animals, like sheep. Furthermore, neither BRBV-4 nor BoNVs were investigated in European cattle and/or sheep flocks, therefore it cannot be determined whether the presence of these viruses in sheep was a result of a single host species switch/spillover event or these viruses are circulating in not just cattle but sheep populations as well. Further studies required to investigate the spread of these viruses in Hungarian and European sheep and cattle populations and to identify their pathogenic potential in sheep.


Assuntos
Filogenia , Infecções por Picornaviridae , Picornaviridae , Doenças dos Ovinos , Animais , Hungria , Picornaviridae/genética , Picornaviridae/isolamento & purificação , Picornaviridae/classificação , Ovinos , Doenças dos Ovinos/virologia , Bovinos , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/virologia , Coinfecção/virologia , Coinfecção/veterinária , Genoma Viral , Nidovirales/genética , Nidovirales/isolamento & purificação , Nidovirales/classificação , Infecções por Nidovirales/veterinária , Infecções por Nidovirales/virologia
3.
Vet Q ; 41(1): 89-96, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33416037

RESUMO

BACKGROUND: Neutrophil extracellular traps (NETs) represent a novel cellular mechanism of antimicrobial defense activity. Intravascular neutrophils produce extracellular web-like structures composed of chromatin, histones, and cytoplasmic granule proteins to attack and kill microbes. They may impact both pathogen and host; NETs correlate strongly with disseminated intravascular coagulation and mortality in critically ill humans. The mechanism was first discovered in human neutrophils in 2004. Presumptive heterophil extracellular traps (HETs) in a non-avian reptile species were first described in blood films of a gopher tortoise with systemic inflammation. OBJECTIVE: While prior reports are limited to blood film review and in vitro studies, this descriptive case series highlights the cytological identification of presumptive HETs in nine reptile patients. METHODS: Subjects included six gopher tortoises, one blood python (Python curtus), one Burmese python (P. bivittatus), and one desert king snake (Lampropeltis getula splendida). All six gopher tortoises (Gopherus polyphemus) had upper respiratory disease with bacterial etiology (including Helicobacter sp. and/or Mycoplasma sp.), and snakes had upper respiratory tract infection confirmed with serpentovirus (n = 2) or bacterial dermatitis (n = 1). RESULTS: Cytology samples with identified HETs included tissue imprints (n = 4), nasal discharge (n = 3), an oral swab (n = 1), and a fine needle aspirate of a skin lesion (n = 1). The identification of specific bacterial (n = 6) and/or viral pathogens (n = 2) was notable. CLINICAL RELEVANCE: To the authors' knowledge, this is the first report of presumptive HETs recognized in reptile cytology specimens, suggesting an active cellular process in vivo in response to systemic inflammation in non-avian reptiles, and contributing to further understanding of extracellular traps in these species.


Assuntos
Armadilhas Extracelulares , Inflamação/veterinária , Neutrófilos , Animais , Boidae/virologia , Colubridae/virologia , Feminino , Helicobacter , Infecções por Helicobacter/veterinária , Masculino , Mycoplasma , Infecções por Mycoplasma/veterinária , Nidovirales , Infecções por Nidovirales/veterinária , Tartarugas/microbiologia
4.
J Vet Med Sci ; 82(6): 788-792, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32378646

RESUMO

Reptile-associated nidoviruses (serpentoviruses) have been reported to cause proliferative interstitial pneumonia in pythons and other reptile species. A captive, younger than 2 years old, intact female ball python (Python regius) showed increased oral mucus, wheezing, and audible breathing with weight loss. Gross and microscopic examination revealed large amounts of mucus in the esophagus and proliferative interstitial pneumonia. Serpentovirus genes were detected from the lung tissues by polymerase chain reaction. The current serpentoviruses was phylogenetically grouped with the serpentovirus previously identified in the US. No case of serpentovirus infection has been reported in Asia. The present report provides information of complete genome sequence and global distribution of serpentovirus.


Assuntos
Boidae/virologia , Infecções por Nidovirales/veterinária , Nidovirales/isolamento & purificação , Animais , Feminino , Genoma Viral , Doenças Pulmonares Intersticiais/veterinária , Doenças Pulmonares Intersticiais/virologia , Nidovirales/genética , Filogenia , Reação em Cadeia da Polimerase , Taiwan
5.
Virol J ; 17(1): 6, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31952524

RESUMO

BACKGROUND: Pneumonia and stomatitis represent severe and often fatal diseases in different captive snakes. Apart from bacterial infections, paramyxo-, adeno-, reo- and arenaviruses cause these diseases. In 2014, new viruses emerged as the cause of pneumonia in pythons. In a few publications, nidoviruses have been reported in association with pneumonia in ball pythons and a tiger python. The viruses were found using new sequencing methods from the organ tissue of dead animals. METHODS: Severe pneumonia and stomatitis resulted in a high mortality rate in a captive breeding collection of green tree pythons. Unbiased deep sequencing lead to the detection of nidoviral sequences. A developed RT-qPCR was used to confirm the metagenome results and to determine the importance of this virus. A total of 1554 different boid snakes, including animals suffering from respiratory diseases as well as healthy controls, were screened for nidoviruses. Furthermore, in addition to two full-length sequences, partial sequences were generated from different snake species. RESULTS: The assembled full-length snake nidovirus genomes share only an overall genome sequence identity of less than 66.9% to other published snake nidoviruses and new partial sequences vary between 99.89 and 79.4%. Highest viral loads were detected in lung samples. The snake nidovirus was not only present in diseased animals, but also in snakes showing no typical clinical signs. CONCLUSIONS: Our findings further highlight the possible importance of snake nidoviruses in respiratory diseases and proof multiple circulating strains with varying disease potential. Nidovirus detection in clinical healthy individuals might represent testing during the incubation period or reconvalescence. Our investigations show new aspects of nidovirus infections in pythons. Nidoviruses should be included in routine diagnostic workup of diseased reptiles.


Assuntos
Boidae/virologia , Infecções por Nidovirales/veterinária , Nidovirales , Animais , Doenças Transmissíveis Emergentes/veterinária , Doenças Transmissíveis Emergentes/virologia , Metagenômica , Nidovirales/genética , Nidovirales/isolamento & purificação , Filogenia , Pneumonia/veterinária , Pneumonia/virologia , RNA Viral/genética , Estomatite/veterinária , Estomatite/virologia
6.
J Virol Methods ; 273: 113689, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31276700

RESUMO

In 2013, a unique seventh yellow head virus genotype (YHV7) was detected in Black Tiger shrimp (Penaeus monodon) broodstock that suffered high mortality following their capture from Joseph Bonaparte Gulf (JBG) in northern Australia. To assist with its diagnosis and assessment of its distribution, prevalence and pathogenicity, YHV7-specific TaqMan real-time qPCR and conventional nested PCR primer sets were designed to ORF1b gene sequences divergent from the other YHV genotypes. Using high (≥108) copies of plasmid (p)DNA controls containing ORF1b gene inserts of representative strains of YHV genotypes 1-7, both PCR tests displayed specificity for YHV7. Amplifications of serial 10-fold dilutions of quantified YHV7 pDNA and synthetic ssRNA showed that both tests could reliably detect 10 genome copies. Pleopods/gills from wild P. monodon sourced from locations in geographically disparate regions across northern Australia as well as 96 juveniles (48 either appearing normal or displaying signs of morbidity) from a commercial pond experiencing mortalities were screened to partially validate the diagnostic capacity of the qPCR test. Based on these data and PCR primer/probe sequence mismatches with other newly identified YHV genotypes, both YHV7-specific PCR tests should prove useful in the sensitive detection and discrimination of this genotype from YHV 2 (gill-associated virus) and YHV6 that can occur in Australian P. monodon, as well as from YHV genotypes currently listed as exotic to Australia.


Assuntos
Infecções por Nidovirales/veterinária , Penaeidae/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Roniviridae/isolamento & purificação , Animais , Austrália , Primers do DNA/genética , Genoma Viral , Genótipo , Brânquias/virologia , Infecções por Nidovirales/mortalidade , Infecções por Nidovirales/virologia , RNA Viral/análise , Roniviridae/genética , Sensibilidade e Especificidade
7.
J Aquat Anim Health ; 30(4): 253-263, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30315600

RESUMO

Indigenous small cyprinid fish species play an important role in Great Lakes ecosystems and also comprise the backbone of a multimillion-dollar baitfish industry. Due to their widespread use in sport fisheries of the Laurentian Great Lakes, there are increasing concerns that baitfish may introduce or disseminate fish pathogens. In this study, we evaluated whether baitfish purchased from 78 randomly selected retail bait dealers in Michigan harbored fish viruses. Between September 2015 and June 2016, 5,400 baitfish divided into 90 lots of 60 fish were purchased. Fish were tested for the presence of viral hemorrhagic septicemia virus (VHSV), spring viremia of carp virus (SVCV), golden shiner reovirus (GSRV), fathead minnow nidovirus (FHMNV), fathead minnow picornavirus (FHMPV), and white sucker bunyavirus (WSBV). Using the epithelioma papulosum cyprini cell line and molecular confirmation, we demonstrated the presence of viruses in 18 of the 90 fish lots (20.0%) analyzed. The most prevalent virus was FHMNV, being detected in 6 of 30 lots of Fathead Minnow Pimephales promelas and 3 of 42 lots of Emerald Shiners Notropis atherinoides. We also confirmed GSRV in two fish species: the Golden Shiner Notemigonus crysoleucas (5 of 11 lots) and Fathead Minnow (3 of 30 lots). Two VHSV (genotype IVb) isolates were recovered from a single lot of Emerald Shiners. No SVCV, FHMPV, or WSBV was detected in any of the fish examined. Some of the infected fish exhibited clinical signs and histopathological alterations. This study demonstrates that live baitfish are a potential vector for the spread of viral pathogens and underscores the importance of fish health certifications for the Great Lakes baitfish industry.


Assuntos
Cyprinidae/virologia , Doenças dos Peixes/virologia , Animais , Linhagem Celular , Doenças dos Peixes/epidemiologia , Michigan/epidemiologia , Nidovirales/isolamento & purificação , Infecções por Nidovirales/veterinária , Novirhabdovirus/isolamento & purificação , Reoviridae/isolamento & purificação , Infecções por Reoviridae/veterinária , Infecções por Rhabdoviridae/veterinária
8.
Dev Comp Immunol ; 88: 137-143, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30031867

RESUMO

Plasmolipin has been characterized as a cell entry receptor for mouse endogenous retrovirus. In black tiger shrimp, two isoforms of plasmolipin genes, PmPLP1 and PmPLP2, have been identified from the Penaeus monodon EST database. The PmPLP1 is highly up-regulated in yellow head virus (YHV)-infected shrimp. Herein, the function of PmPLP1 is shown to be involved in YHV infection. The immunoblotting and immunolocalization showed that the PmPLP1 protein was highly expressed and located at the plasma membrane of gills from YHV-infected shrimp. Moreover, the PmPLP1 expressed in the Sf9 insect cells resided at the cell membrane rendering the cells more susceptible to YHV infection. Using the ELISA binding and mortality assays, the synthetic external loop of PmPLP1 was shown to bind the purified YHV and neutralize the virus resulting in the decrease in YHV infection. Our results suggested that the PmPLP1 was likely a receptor of YHV in shrimp.


Assuntos
Proteínas de Artrópodes/imunologia , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/imunologia , Infecções por Nidovirales/imunologia , Penaeidae/imunologia , Roniviridae/imunologia , Animais , Proteínas de Artrópodes/metabolismo , Membrana Celular/imunologia , Membrana Celular/metabolismo , Brânquias/citologia , Brânquias/imunologia , Brânquias/virologia , Hemócitos/citologia , Hemócitos/imunologia , Hemócitos/metabolismo , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/metabolismo , Infecções por Nidovirales/veterinária , Ligação Proteica/imunologia , Roniviridae/metabolismo , Células Sf9 , Spodoptera , Regulação para Cima
10.
Virology ; 517: 77-87, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29329683

RESUMO

Circumstantial evidence has linked a new group of nidoviruses with respiratory disease in pythons, lizards, and cattle. We conducted experimental infections in ball pythons (Python regius) to test the hypothesis that ball python nidovirus (BPNV) infection results in respiratory disease. Three ball pythons were inoculated orally and intratracheally with cell culture isolated BPNV and two were sham inoculated. Antemortem choanal, oroesophageal, and cloacal swabs and postmortem tissues of infected snakes were positive for viral RNA, protein, and infectious virus by qRT-PCR, immunohistochemistry, western blot and virus isolation. Clinical signs included oral mucosal reddening, abundant mucus secretions, open-mouthed breathing, and anorexia. Histologic lesions included chronic-active mucinous rhinitis, stomatitis, tracheitis, esophagitis and proliferative interstitial pneumonia. Control snakes remained negative and free of clinical signs throughout the experiment. Our findings establish a causal relationship between nidovirus infection and respiratory disease in ball pythons and shed light on disease progression and transmission.


Assuntos
Boidae/virologia , Infecções por Nidovirales/veterinária , Nidovirales , Infecções Respiratórias/veterinária , Animais , Anticorpos Antivirais , Linhagem Celular , Masculino , Infecções por Nidovirales/imunologia , Infecções por Nidovirales/patologia , Infecções por Nidovirales/virologia , RNA Viral , Infecções Respiratórias/imunologia , Infecções Respiratórias/patologia , Infecções Respiratórias/virologia
11.
Artigo em Inglês, Alemão | MEDLINE | ID: mdl-27735965

RESUMO

OBJECTIVES: Nidoviruses have recently been described as a putative cause of severe respiratory disease in pythons in the USA and Europe. The objective of this study was to establish the use of a conventional PCR for the detection of nidoviruses in samples from live animals and to extend the list of susceptible species. MATERIALS AND METHODS: A PCR targeting a portion of ORF1a of python nidoviruses was used to detect nidoviruses in diagnostic samples from live boas and pythons. A total of 95 pythons, 84 boas and 22 snakes of unknown species were included in the study. Samples tested included oral swabs and whole blood. RESULTS: Nidoviruses were detected in 27.4% of the pythons and 2.4% of the boas tested. They were most commonly detected in ball pythons (Python [P.] regius) and Indian rock pythons (P. molurus), but were also detected for the first time in other python species, including Morelia spp. and Boa constrictor. Oral swabs were most commonly tested positive. CONCLUSION: The PCR described here can be used for the detection of nidoviruses in oral swabs from live snakes. These viruses appear to be relatively common among snakes in captivity in Europe and screening for these viruses should be considered in the clinical work-up. CLINICAL RELEVANCE: Nidoviruses are believed to be an important cause of respiratory disease in pythons, but can also infect boas. Detection of these viruses in live animals is now possible and can be of interest both in diseased animals as well as in quarantine situations.


Assuntos
Boidae/virologia , Infecções por Nidovirales/veterinária , Nidovirales/isolamento & purificação , Infecções Respiratórias/veterinária , Animais , Boca/virologia , Nidovirales/genética , Infecções por Nidovirales/diagnóstico , Infecções por Nidovirales/virologia , Filogenia , Reação em Cadeia da Polimerase/veterinária , RNA Viral/isolamento & purificação , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/virologia
12.
J Aquat Anim Health ; 28(2): 131-41, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27230033

RESUMO

In 2011, the Fathead Minnow nidovirus (FHMNV; Genus Bafinivirus, Family Coronaviridae, Order Nidovirales) was isolated from pond-raised juvenile Muskellunge Esox masquinongy suffering from lingering mortality at the Wild Rose Hatchery in Wild Rose, Wisconsin. Moribund Muskellunge exhibited tubular necrosis in the kidneys as well as multifocal coalescing necrotizing hepatitis. The FHMNV was also isolated from apparently healthy juvenile Muskellunge at the Wolf Lake State Fish Hatchery in Mattawan, Michigan. The identity of the two syncytia-forming viruses (designated MUS-WR and MUS-WL from Wild Rose Hatchery and Wolf Lake State Fish Hatchery, respectively) as strains of FHMNV was determined based on multiple-gene sequencing and phylogenetic analyses. The pathogenicity of the MUS-WL FHMNV strain was determined by experimentally infecting naive juvenile Muskellunge through intraperitoneal injection with two viral concentrations (63 and 6.3 × 10(3) TCID50/fish). Both doses resulted in 100% mortality in experimentally infected fish, which exhibited severely pale gills and petechial hemorrhaging in eyes, fins, and skin. Histopathological alterations in experimentally infected fish were observed mainly in the hematopoietic tissues in the form of focal areas of necrosis. Phylogenetic analysis of concatenated partial spike glycoprotein and helicase gene sequences revealed differences between the MUS-WL FHMNV, MUS-WR FHMNV, and two other FHMNV originally isolated from moribund Fathead Minnows Pimephales promelas including the index FHMNV strain (GU002364). Based on a partial helicase gene sequence, a reverse transcriptase PCR assay was developed that is specific to FHMNV. These results give evidence that the risks posed to Muskellunge by FHMNV should be taken seriously. Received May 1, 2015; accepted February 8, 2016.


Assuntos
Aquicultura , Esocidae , Doenças dos Peixes/virologia , Infecções por Nidovirales/veterinária , Nidovirales/isolamento & purificação , Animais , Doenças dos Peixes/mortalidade , Nidovirales/classificação , Nidovirales/genética , Infecções por Nidovirales/virologia , Filogenia
13.
J Biotechnol ; 228: 95-102, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27140871

RESUMO

Protection of shrimp from yellow head virus (YHV) infection has been demonstrated by injection and oral delivery of dsRNA-YHV protease gene (dsYHV) or shrimp endogenous gene (dsRab7). However, to achieve complete viral suppression and to prolong dsRNA activity, the development of an effective dsRNA delivery system is required. In this study, four cationic liposomes were synthesized and tested for their ability to increase dsRNA efficiency. The results demonstrated that entrapping dsYHV in a cholesterol-based cationic liposome gave the best protection against YHV infection when compared with other cationic lipids. The cholesterol-based cationic liposome-dsYHV (Chol-dsYHV) complex conferred YHV protection in a dose-dependent manner. Injection with Chol-dsYHV at 0.05µg dsYHV/g shrimp could give comparable level of YHV protection to the injection with 1.25µg naked dsYHV/g shrimp. The shrimp injected with Chol- dsYHV at 1.25µg dsRNA/g shrimp showed only 50% mortality at 60days post injection whereas the naked dsYHV at the same concentration gave 90% mortality. Thus, the liposome-entrapped dsYHV could lower an effective dsRNA concentration in viral protection and prolong dsRNA activity. In addition, encapsulating dsRab7 in the cholesterol-based cationic liposome could protect the dsRab7 from enzymatic digestion, and continuous feeding the shrimp with the diet formulated with the liposome-entrapped dsRab7 for 4days in the total of 960µg dsRab7/g shrimp could enhance YHV protection efficiency compared with the naked dsRab7. Our studies reveal that cholesterol-based cationic liposome is a promising dsRNA carrier to enhance dsRNA efficiency in both injection and oral delivery systems.


Assuntos
Colesterol/química , Lipossomos/farmacologia , Infecções por Nidovirales , Penaeidae/virologia , RNA de Cadeia Dupla/metabolismo , Roniviridae/efeitos dos fármacos , Animais , Lipossomos/administração & dosagem , Infecções por Nidovirales/tratamento farmacológico , Infecções por Nidovirales/prevenção & controle , Infecções por Nidovirales/veterinária , Infecções por Nidovirales/virologia , Interferência de RNA/efeitos dos fármacos , Roniviridae/genética , Replicação Viral/efeitos dos fármacos
14.
Dis Aquat Organ ; 119(1): 37-44, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27068501

RESUMO

Since the initial isolation of the fathead minnow nidovirus (FHMNV), concerns have been raised regarding the risks it may pose to other fish species. In this study, 7 fish species resident to the Laurentian Great Lakes were challenged intraperitoneally with 2 doses of FHMNV: 102.8 and 104.8 median tissue culture infective dose (TCID(50)) ml(-1). Infected spotfin shiner Cyprinella spiloptera and golden shiner Notemigonus crysoleucas suffered morbidity and mortality during the 40 d observation period, while other species, including creek chub Semotilus atromaculatus, rainbow trout Oncorhynchus mykiss, largemouth bass Micropterus salmoides and walleye Sander vitreus, showed no clinical signs or mortality. FHMNV was re-isolated on the epithelioma papulosum cyprini cell line from the tissues of infected spotfin shiner and golden shiner, which harbored high numbers of viral RNA copies as measured by quantitative loop-mediated isothermal amplification. Infected spotfin shiner and golden shiner exhibited external petechiae, exophthalmia, oedematous kidneys, and liver pallor. Histopathological analysis revealed multifocal areas of necrosis in the kidney, spleen and liver of infected fish. Spotfin shiner and golden shiner were then infected with 2 doses of FHMNV (10(3.5) and 10(3.9) TCID(50) ml(-1)) by immersion to mimic more natural modes of infection. Spotfin shiner experienced 60% mortality at both doses, while golden shiner did not experience mortality nor develop any clinical signs following a 40 d observation period. Overall, piscivorous fish tested in this study do not seem to be at risk for infection, while cyprinids appear to vary in their susceptibility to the strain of FHMNV used in this study.


Assuntos
Doenças dos Peixes/virologia , Infecções por Nidovirales/veterinária , Nidovirales/classificação , Animais , Doenças dos Peixes/patologia , Peixes , Infecções por Nidovirales/patologia , Infecções por Nidovirales/virologia , Fatores de Tempo
15.
Virology ; 491: 20-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26874014

RESUMO

The objective of this study was to investigate a role of a recently discovered marsupial nidovirus in the development of a neurological disease, termed wobbly possum disease (WPD), in the Australian brushtail possum (Trichosurus vulpecula). Four possums received 1 mL of a standard inoculum that had been prepared from tissues of WPD-affected possums, 4 possums received 1.8 mL (1 × 10(6) TCID50) of a cell lysate from inoculated cultures, and 4 possums received 1 mL (× 10(7) TCID50) of a purified WPD isolate. All but one possum that received infectious inocula developed neurological disease and histopathological lesions characteristic for WPD. High levels of viral RNA were detected in livers from all possums that received infectious inocula, but not from control possums. Altogether, our data provide strong experimental evidence for the causative involvement of WPD virus in development of a neurological disease in infected animals.


Assuntos
Infecções por Nidovirales/veterinária , Nidovirales/fisiologia , Trichosurus/virologia , Animais , Austrália , Feminino , Fígado/patologia , Fígado/virologia , Masculino , Nidovirales/classificação , Nidovirales/genética , Nidovirales/isolamento & purificação , Infecções por Nidovirales/patologia , Infecções por Nidovirales/virologia
16.
J Virol Methods ; 222: 66-71, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26028426

RESUMO

The objective of the study was to establish a system for isolation of a recently described, thus far uncultured, marsupial nidovirus associated with a neurological disease of possums, termed wobbly possum disease (WPD). Primary cultures of possum macrophages were established from livers of adult Australian brushtail possums (Trichosurus vulpecula). High viral copy numbers (up to 6.9×10(8)/mL of cell lysate) were detected in infected cell culture lysates from up to the 5th passage of the virus, indicating that the putative WPD virus (WPDV) was replicating in cultured cells. A purified virus stock with a density of 1.09 g/mL was prepared using iodixanol density gradient ultracentrifugation. Virus-like particles approximately 60 nm in diameter were observed using electron microscopy in negatively stained preparations of the purified virus. The one-step growth curve of WPDV in macrophage cultures showed the highest increase in intracellular viral RNA between 6 and 12h post-infection. Maximum levels of cell-associated viral RNA were detected at 24h post-infection, followed by a decline. Levels of extracellular RNA increased starting at 9h post-infection, with maximum levels detected at 48 h post-infection. The establishment of the in vitro system to culture WPDV will facilitate further characterisation of this novel nidovirus.


Assuntos
Macrófagos/virologia , Infecções por Nidovirales/veterinária , Nidovirales/crescimento & desenvolvimento , Nidovirales/isolamento & purificação , Trichosurus/virologia , Cultura de Vírus/métodos , Animais , Células Cultivadas , Centrifugação com Gradiente de Concentração , Microscopia Eletrônica de Transmissão , Nidovirales/ultraestrutura , Infecções por Nidovirales/virologia , Vírion/ultraestrutura
17.
J Gen Virol ; 96(8): 2188-2193, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25918239

RESUMO

The family Coronaviridae represents a diverse group of vertebrate RNA viruses, all with genomes greater than 26,000 nt. Here, we report the discovery and genetic characterization of a novel virus present in cattle with respiratory disease. Phylogenetic characterization of this virus revealed that it clusters within the subfamily Torovirinae, in the family Coronaviridae. The complete genome consists of only 20,261 nt and represents the smallest reported coronavirus genome. We identified seven ORFs, including the canonical nidovirus ORF1a and ORF1b. Analysis of polyprotein 1ab revealed that this virus, tentatively named bovine nidovirus (BoNV), shares the highest homology with the recently described python-borne nidoviruses and contains several conserved nidovirus motifs, but does not encode the NendoU or O-MT domains that are present in other viruses within the family Coronaviridae. In concert with its reduced genome, the atypical domain architecture indicates that this virus represents a unique lineage within the order Nidovirales.


Assuntos
Doenças dos Bovinos/virologia , Infecções por Nidovirales/veterinária , Nidovirales/isolamento & purificação , Doenças Respiratórias/virologia , Animais , Bovinos , Genoma Viral , Dados de Sequência Molecular , Nidovirales/classificação , Nidovirales/genética , Nidovirales/fisiologia , Infecções por Nidovirales/virologia , Fases de Leitura Aberta , Filogenia
19.
mBio ; 5(5): e01484-14, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25205093

RESUMO

UNLABELLED: A severe, sometimes fatal respiratory disease has been observed in captive ball pythons (Python regius) since the late 1990s. In order to better understand this disease and its etiology, we collected case and control samples and performed pathological and diagnostic analyses. Electron micrographs revealed filamentous virus-like particles in lung epithelial cells of sick animals. Diagnostic testing for known pathogens did not identify an etiologic agent, so unbiased metagenomic sequencing was performed. Abundant nidovirus-like sequences were identified in cases and were used to assemble the genome of a previously unknown virus in the order Nidovirales. The nidoviruses, which were not previously known to infect nonavian reptiles, are a diverse order that includes important human and veterinary pathogens. The presence of the viral RNA was confirmed in all diseased animals (n = 8) but was not detected in healthy pythons or other snakes (n = 57). Viral RNA levels were generally highest in the lung and other respiratory tract tissues. The 33.5-kb viral genome is the largest RNA genome yet described and shares canonical characteristics with other nidovirus genomes, although several features distinguish this from related viruses. This virus, which we named ball python nidovirus (BPNV), will likely establish a new genus in Torovirinae subfamily. The identification of a novel nidovirus in reptiles contributes to our understanding of the biology and evolution of related viruses, and its association with lung disease in pythons is a promising step toward elucidating an etiology for this long-standing veterinary disease. IMPORTANCE: Ball pythons are popular pets because of their diverse coloration, generally nonaggressive behavior, and relatively small size. Since the 1990s, veterinarians have been aware of an infectious respiratory disease of unknown cause in ball pythons that can be fatal. We used unbiased shotgun sequencing to discover a novel virus in the order Nidovirales that was present in cases but not controls. While nidoviruses are known to infect a variety of animals, this is the first report of a nidovirus recovered from any reptile. This report will enable diagnostics that will assist in determining the role of this virus in the causation of disease, which would allow control of the disease in zoos and private collections. Given its evolutionary divergence from known nidoviruses and its unique host, the study of reptile nidoviruses may further our understanding of related diseases and the viruses that cause them in humans and other animals.


Assuntos
Boidae/virologia , Genoma Viral , Nidovirales/isolamento & purificação , Animais , Sequência de Bases , Evolução Molecular , Dados de Sequência Molecular , Nidovirales/classificação , Infecções por Nidovirales/veterinária , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Vírion/genética
20.
Virol J ; 11: 144, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25106433

RESUMO

BACKGROUND: Respiratory infections are important causes of morbidity and mortality in reptiles; however, the causative agents are only infrequently identified. FINDINGS: Pneumonia, tracheitis and esophagitis were reported in a collection of ball pythons (Python regius). Eight of 12 snakes had evidence of bacterial pneumonia. High-throughput sequencing of total extracted nucleic acids from lung, esophagus and spleen revealed a novel nidovirus. PCR indicated the presence of viral RNA in lung, trachea, esophagus, liver, and spleen. In situ hybridization confirmed the presence of intracellular, intracytoplasmic viral nucleic acids in the lungs of infected snakes. Phylogenetic analysis based on a 1,136 amino acid segment of the polyprotein suggests that this virus may represent a new species in the subfamily Torovirinae. CONCLUSIONS: This report of a novel nidovirus in ball pythons may provide insight into the pathogenesis of respiratory disease in this species and enhances our knowledge of the diversity of nidoviruses.


Assuntos
Doenças dos Animais/epidemiologia , Boidae/virologia , Infecções por Nidovirales/veterinária , Nidovirales/genética , Doenças Respiratórias/veterinária , Doenças dos Animais/patologia , Doenças dos Animais/virologia , Animais , Surtos de Doenças , Feminino , Masculino , Dados de Sequência Molecular , Nidovirales/classificação , Filogenia , RNA Viral/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...