Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(1)2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35062301

RESUMO

Human respiratory syncytial virus (hRSV) infection brings a wide spectrum of clinical outcomes, from a mild cold to severe bronchiolitis or even acute interstitial pneumonia. Among the known factors influencing this clinical diversity, genetic background has often been mentioned. In parallel, recent evidence has also pointed out that an early infectious experience affects heterologous infections severity. Here, we analyzed the importance of these two host-related factors in shaping the immune response in pneumoviral disease. We show that a prior gammaherpesvirus infection improves, in a genetic background-dependent manner, the immune system response against a subsequent lethal dose of pneumovirus primary infection notably by inducing a systematic expansion of the CD8+ bystander cell pool and by modifying the resident alveolar macrophages (AMs) phenotype to induce immediate cyto/chemokinic responses upon pneumovirus exposure, thereby drastically attenuating the host inflammatory response without affecting viral replication. Moreover, we show that these AMs present similar rapid and increased production of neutrophil chemokines both in front of pneumoviral or bacterial challenge, confirming recent studies attributing a critical antibacterial role of primed AMs. These results corroborate other recent studies suggesting that the innate immunity cells are themselves capable of memory, a capacity hitherto reserved for acquired immunity.


Assuntos
Patrimônio Genético , Infecções por Herpesviridae/imunologia , Macrófagos Alveolares/imunologia , Infecções por Pneumovirus/imunologia , Pneumovirus/imunologia , Rhadinovirus/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Feminino , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Imunidade Inata , Inflamação/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Infecções Pneumocócicas/imunologia , Pneumovirus/fisiologia , Infecções por Pneumovirus/genética , Infecções por Pneumovirus/patologia , Infecções por Pneumovirus/virologia , Rhadinovirus/fisiologia
2.
Mucosal Immunol ; 13(5): 799-813, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32424182

RESUMO

Human respiratory syncytial virus (RSV) is a pneumovirus that causes severe infections in infants worldwide. Despite intensive research, safe and effective vaccines against RSV have remained elusive. The main reason is that RSV infection of children previously immunized with formalin-inactivated-RSV vaccines has been associated with exacerbated pathology, a phenomenon called RSV vaccine-enhanced respiratory disease. In parallel, despite the high RSV prevalence, only a minor proportion of children develop severe diseases. Interestingly, variation in the immune responses against RSV or following RSV vaccination could be linked with differences of exposure to microbes during childhood. Gammaherpesviruses (γHVs), such as the Epstein-Barr virus, are persistent viruses that deeply influence the immune system of their host and could therefore affect the development of pneumovirus-induced immunopathologies for the long term. Here, we showed that a previous ɣHV infection protects against both pneumovirus vaccine-enhanced disease and pneumovirus primary infection and that CD8 T cells are essential for this protection. These observations shed a new light on the understanding of pneumovirus-induced diseases and open new perspectives for the development of vaccine strategies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Suscetibilidade a Doenças , Gammaherpesvirinae/imunologia , Interações Hospedeiro-Patógeno/imunologia , Infecções por Pneumovirus/etiologia , Infecções por Pneumovirus/metabolismo , Pneumovirus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Humanos , Imunofenotipagem , Leucócitos/imunologia , Leucócitos/metabolismo , Leucócitos/patologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Interações Microbianas , Infecções por Pneumovirus/patologia , Infecções por Vírus Respiratório Sincicial/etiologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sincicial Respiratório Humano/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Vacinação , Vacinas Virais/imunologia
3.
PLoS One ; 11(12): e0168779, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28005954

RESUMO

The human pneumovirus respiratory syncytial virus (RSV) is the most common pathogen causing lower respiratory tract disease in young children worldwide. A hallmark of severe human RSV infection is the strong neutrophil recruitment to the airways and lungs. Massive neutrophil activation has been proven detrimental in numerous diseases, yet in RSV the contribution of neutrophils to disease severity, and thereby, the relevance of targeting them, is largely unknown. To determine the relevance of potential neutrophil targeting therapies, we implemented antibody-mediated neutrophil depletion in a mouse pneumonia virus of mice (PVM) model. PVM is a host specific murine pneumovirus closely related to human RSV, which reproduces many of the features of RSV infection, such as high viral replication and neutrophil recruitment. Clinical disease and markers of lung inflammation and injury were studied in PVM-infected mice treated with either depleting or isotype control antibodies. To confirm our results we performed all experiments in two mice strains: C57Bl6 and BALBc mice. Neutrophil depletion in blood and lungs was efficient throughout the disease. Remarkably, in both mouse strains we found no difference in clinical disease severity between neutrophil-depleted and control arms. In line with this observation, we found no differences between groups in histopathological lung injury and lung viral loads. In conclusion, our study shows that in mice neutrophil recruitment to the lungs does not affect disease outcome or viral clearance during severe PVM infection. As such, this model does not support the notion that neutrophils play a key role in mouse pneumovirus disease.


Assuntos
Modelos Animais de Doenças , Vírus da Pneumonia Murina/imunologia , Neutrófilos/imunologia , Pneumonia/imunologia , Infecções por Pneumovirus/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neutrófilos/patologia , Pneumonia/patologia , Infecções por Pneumovirus/patologia , Vírus Sinciciais Respiratórios/imunologia
4.
Antiviral Res ; 121: 109-19, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26145728

RESUMO

We reported previously that priming of the respiratory tract with immunobiotic Lactobacillus prior to virus challenge protects mice against subsequent lethal infection with pneumonia virus of mice (PVM). We present here the results of gene microarray which document differential expression of proinflammatory mediators in response to PVM infection alone and those suppressed in response to Lactobacillus plantarum. We also demonstrate for the first time that intranasal inoculation with live or heat-inactivated L. plantarum or Lactobacillus reuteri promotes full survival from PVM infection when administered within 24h after virus challenge. Survival in response to L. plantarum administered after virus challenge is associated with suppression of proinflammatory cytokines, limited virus recovery, and diminished neutrophil recruitment to lung tissue and airways. Utilizing this post-virus challenge protocol, we found that protective responses elicited by L. plantarum at the respiratory tract were distinct from those at the gastrointestinal mucosa, as mice devoid of the anti-inflammatory cytokine, interleukin (IL)-10, exhibit survival and inflammatory responses that are indistinguishable from those of their wild-type counterparts. Finally, although L. plantarum interacts specifically with pattern recognition receptors TLR2 and NOD2, the respective gene-deleted mice were fully protected against lethal PVM infection by L. plantarum, as are mice devoid of type I interferon receptors. Taken together, L. plantarum is a versatile and flexible agent that is capable of averting the lethal sequelae of severe respiratory infection both prior to and post-virus challenge via complex and potentially redundant mechanisms.


Assuntos
Fatores Imunológicos/administração & dosagem , Lactobacillus plantarum/imunologia , Limosilactobacillus reuteri/imunologia , Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/patologia , Infecções por Pneumovirus/terapia , Probióticos/administração & dosagem , Administração Intranasal , Animais , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Análise de Sobrevida
5.
Virology ; 468-470: 140-149, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25173090

RESUMO

Interferon gamma (IFNγ) has complex immunomodulatory and antiviral properties. While IFNγ is detected in the airways in response to infection with the pneumovirus pathogen, pneumonia virus of mice (PVM; Family Paramyxoviridae), its role in promoting disease has not been fully explored. Here, we evaluate PVM infection in IFNγ(-/-) mice. Although the IFNγ gene-deletion has no impact on weight loss, survival or virus kinetics, expression of IFNß, IFNλ2/3 and IFN-stimulated 2-5' oligoadenylate synthetases was significantly diminished compared to wild-type counterparts. Furthermore, PVM infection in IFNγ(-/-) mice promoted prominent inflammation, including eosinophil and neutrophil infiltration into the airways and lung parenchyma, observed several days after peak virus titer. Potential mechanisms include over-production of chemoattractant and eosinophil-active cytokines (CXCL1, CCL11, CCL3 and IL5) in PVM-infected IFNγ(-/-) mice; likewise, IFNγ actively antagonized IL5-dependent eosinophil survival ex vivo. Our results may have clinical implications for pneumovirus infection in individuals with IFNγ signaling defects.


Assuntos
Citocinas/metabolismo , Regulação Viral da Expressão Gênica/imunologia , Interferon Tipo I/metabolismo , Interferon gama/metabolismo , Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/patologia , Animais , Citocinas/genética , Eosinófilos/citologia , Deleção de Genes , Inflamação/metabolismo , Inflamação/patologia , Interferon Tipo I/genética , Interferon beta/genética , Interferon beta/metabolismo , Interferon gama/genética , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus da Pneumonia Murina/genética , Infecções por Pneumovirus/metabolismo
6.
Vet Microbiol ; 173(1-2): 136-40, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25129384

RESUMO

A pneumonia virus of mice (PVM) from an African hedgehog (Atelerix arbiventris) with suspected wobbly hedgehog syndrome (WHS) was detected and genetically characterized. The affected hedgehog had a nonsuppurative encephalitis with vacuolization of the white matter, and the brain samples yielded RNA reads highly homogeneous to PVM strain 15 (96.5% of full genomic sequence homology by analysis of next generation sequencing). PVM antigen was also detected in the brain and the lungs immunohistochemically. A PVM was strongly suggested as a causative agent of encephalitis of a hedgehog with suspected WHS. This is a first report of PVM infection in hedgehogs.


Assuntos
Encefalite Viral/veterinária , Vírus da Pneumonia Murina/isolamento & purificação , Infecções por Pneumovirus/veterinária , Animais , Encéfalo/patologia , Encéfalo/virologia , Encefalite Viral/patologia , Encefalite Viral/virologia , Feminino , Ouriços , Sequenciamento de Nucleotídeos em Larga Escala , Pulmão/patologia , Pulmão/virologia , Camundongos , Vírus da Pneumonia Murina/genética , Infecções por Pneumovirus/patologia , Infecções por Pneumovirus/virologia
7.
PLoS One ; 9(7): e102749, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25047452

RESUMO

BACKGROUND: Pulmonary edema plays a pivotal role in the pathophysiology of respiratory syncytial virus (RSV)-induced respiratory failure. In this study we determined whether treatment with TIP (AP301), a synthetic cyclic peptide that mimics the lectin-like domain of human TNF, decreases pulmonary edema in a mouse model of severe human RSV infection. TIP is currently undergoing clinical trials as a therapy for pulmonary permeability edema and has been shown to decrease pulmonary edema in different lung injury models. METHODS: C57BL/6 mice were infected with pneumonia virus of mice (PVM) and received TIP or saline (control group) by intratracheal instillation on day five (early administration) or day seven (late administration) after infection. In a separate set of experiments the effect of multiple dose administration of TIP versus saline was tested. Pulmonary edema was determined by the lung wet-to-dry (W/D) weight ratio and was assessed at different time-points after the administration of TIP. Secondary outcomes included clinical scores and lung cellular response. RESULTS: TIP did not have an effect on pulmonary edema in different dose regimens at different time points during PVM infection. In addition, TIP administration did not affect clinical severity scores or lung cellular response. CONCLUSION: In this murine model of severe RSV infection TIP did not affect pulmonary edema nor course of disease.


Assuntos
Vírus da Pneumonia Murina/isolamento & purificação , Peptídeos Cíclicos/uso terapêutico , Infecções por Pneumovirus/tratamento farmacológico , Edema Pulmonar/tratamento farmacológico , Edema Pulmonar/virologia , Animais , Humanos , Masculino , Camundongos Endogâmicos C57BL , Vírus da Pneumonia Murina/efeitos dos fármacos , Peptídeos Cíclicos/química , Infecções por Pneumovirus/complicações , Infecções por Pneumovirus/patologia , Edema Pulmonar/patologia , Infecções por Vírus Respiratório Sincicial/complicações , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Vírus Sinciciais Respiratórios/isolamento & purificação , Fator de Necrose Tumoral alfa/química
8.
J Immunol ; 192(11): 5265-72, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24748495

RESUMO

We have shown previously that priming of respiratory mucosa with live Lactobacillus species promotes robust and prolonged survival from an otherwise lethal infection with pneumonia virus of mice, a property known as heterologous immunity. Lactobacillus priming results in a moderate reduction in virus recovery and a dramatic reduction in virus-induced proinflammatory cytokine production; the precise mechanisms underlying these findings remain to be elucidated. Because B cells have been shown to promote heterologous immunity against respiratory virus pathogens under similar conditions, in this study we explore the role of B cells in Lactobacillus-mediated protection against acute pneumovirus infection. We found that Lactobacillus-primed mice feature elevated levels of airway Igs IgG, IgA, and IgM and lung tissues with dense, B cell (B220(+))-enriched peribronchial and perivascular infiltrates with germinal centers consistent with descriptions of BALT. No B cells were detected in lung tissue of Lactobacillus-primed B cell deficient µMT mice or Jh mice, and Lactobacillus-primed µMT mice had no characteristic infiltrates or airway Igs. Nonetheless, we observed diminished virus recovery and profound suppression of virus-induced proinflammatory cytokines CCL2, IFN-γ, and CXCL10 in both wild-type and Lactobacillus-primed µMT mice. Furthermore, Lactobacillus plantarum-primed, B cell-deficient µMT and Jh mice were fully protected from an otherwise lethal pneumonia virus of mice infection, as were their respective wild-types. We conclude that B cells are dispensable for Lactobacillus-mediated heterologous immunity and were not crucial for promoting survival in response to an otherwise lethal pneumovirus infection.


Assuntos
Linfócitos B/imunologia , Lactobacillus/imunologia , Pulmão/imunologia , Infecções por Pneumovirus/imunologia , Pneumovirus/imunologia , Mucosa Respiratória/imunologia , Animais , Anticorpos Antibacterianos/genética , Anticorpos Antibacterianos/imunologia , Citocinas/genética , Citocinas/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Pneumovirus/genética , Infecções por Pneumovirus/genética , Infecções por Pneumovirus/patologia , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia
9.
J Virol ; 87(20): 11267-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23946463

RESUMO

Cytotoxic T cells (CTL) play a critical role in the clearance of respiratory viral infections, but they also contribute to disease manifestations. In this study, we infected mice with a genetically modified pneumonia virus of mice (PVM) that allowed visualization of virus-specific CTL and infected cells in situ. The first virus-specific T cells entered the lung via blood vessels in the scattered foci of PVM-infected cells, which densely clustered around the bronchi at day 7 after infection. At this time, overall pulmonary virus load was maximal, but the mice showed no overt signs of disease. On days 8 to 9, T cells gained access to the infected bronchial epithelium and to the lung interstitium, which was associated with a reduction in the number of virus-infected cells within the initial clusters but could not prevent further virus spread throughout the lung tissue. Interestingly, recruitment of virus-specific CTL throughout the parenchyma was still ongoing on day 10, when the virus infection was already largely controlled. This also represented the peak of clinical disease. Thus, disease was associated with an exuberant T cell infiltration late in the course of the infection, which may be required to completely eliminate virus at residual foci of infection. PVM-induced immunopathology may thus result from the need to generate widespread T cell infiltrates to complete the elimination of virus-infected cells in a large organ like the lung. This experimental model provides the first insights into the spatiotemporal evolution of pulmonary antiviral T cell immunity in vivo.


Assuntos
Pulmão/imunologia , Pulmão/patologia , Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/patologia , Linfócitos T Citotóxicos/imunologia , Animais , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Pneumovirus/virologia , Fatores de Tempo , Carga Viral
10.
Virology ; 443(2): 257-64, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23763766

RESUMO

A previous report of a novel pneumovirus (PnV) isolated from the respiratory tract of a dog described its significant homology to the rodent pathogen, pneumonia virus of mice (PVM). The original PnV-Ane4 pathogen replicated in and could be re-isolated in infectious state from mouse lung but elicited minimal mortality compared to PVM strain J3666. Here we assess phylogeny and physiologic responses to 10 new PnV isolates. The G/glycoprotein sequences of all PnVs include elongated amino-termini when compared to the characterized PVMs, and suggest division into groups A and B. While we observed significant differences in cytokine production and neutrophil recruitment to the lungs of BALB/c mice in response to survival doses (50 TCID50 units) of representative group A (114378-10-29-KY-F) and group B (7968-11-OK) PnVs, we observed no evidence for positive selection (dN > dS) among the PnV/PnV, PVM/PnV or PVM/PVM G/glycoprotein or F/fusion protein sequence pairs.


Assuntos
Evolução Molecular , Inflamação/patologia , Infecções por Pneumovirus/patologia , Pneumovirus/classificação , Pneumovirus/patogenicidade , Sequência de Aminoácidos , Animais , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Inflamação/imunologia , Inflamação/virologia , Pulmão/imunologia , Pulmão/patologia , Glicoproteínas de Membrana , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Vírus da Pneumonia Murina/genética , Vírus da Pneumonia Murina/patogenicidade , Filogenia , Pneumovirus/genética , Infecções por Pneumovirus/virologia , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
J Allergy Clin Immunol ; 131(5): 1331-9.e10, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23561801

RESUMO

BACKGROUND: Respiratory tract viruses are a major environmental risk factor for both the inception and exacerbations of asthma. Genetic defects in Toll-like receptor (TLR) 7-mediated signaling, impaired type I interferon responses, or both have been reported in asthmatic patients, although their contribution to the onset and exacerbation of asthma remains poorly understood. OBJECTIVE: We sought to determine whether Pneumovirus infection in the absence of TLR7 predisposes to bronchiolitis and the inception of asthma. METHODS: Wild-type and TLR7-deficient (TLR7(-/-)) mice were inoculated with the rodent-specific pathogen pneumonia virus of mice at 1 (primary), 7 (secondary), and 13 (tertiary) weeks of age, and pathologic features of bronchiolitis or asthma were assessed. In some experiments infected mice were exposed to low-dose cockroach antigen. RESULTS: TLR7 deficiency increased viral load in the airway epithelium, which became sloughed and necrotic, and promoted an IFN-α/ß(low), IL-12p70(low), IL-1ß(high), IL-25(high), and IL-33(high) cytokine microenvironment that was associated with the recruitment of type 2 innate lymphoid cells/nuocytes and increased TH2-type cytokine production. Viral challenge of TLR7(-/-) mice induced all of the cardinal pathophysiologic features of asthma, including tissue eosinophilia, mast cell hyperplasia, IgE production, airway smooth muscle alterations, and airways hyperreactivity in a memory CD4(+) T cell-dependent manner. Importantly, infections with pneumonia virus of mice promoted allergic sensitization to inhaled cockroach antigen in the absence but not the presence of TLR7. CONCLUSION: TLR7 gene defects and Pneumovirus infection interact to establish an aberrant adaptive response that might underlie virus-induced asthma exacerbations in later life.


Assuntos
Asma/imunologia , Asma/patologia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Vírus da Pneumonia Murina , Infecções por Pneumovirus/complicações , Receptor 7 Toll-Like/deficiência , Receptor 7 Toll-Like/genética , Animais , Animais Recém-Nascidos , Asma/etiologia , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/fisiopatologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus da Pneumonia Murina/patogenicidade , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/patologia , Carga Viral
12.
J Interferon Cytokine Res ; 32(7): 332-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22385204

RESUMO

The respiratory syncytial virus (RSV) is a major pathogen of the human species. This pneumovirus is a prominent cause of airway morbidity in children and maintains an excessive hospitalization rate despite decades of research. As involvement of a genetic vulnerability is a possibility supported by recent data, we addressed the question of whether the Mx gene products, the typical target of which consists in single-stranded negative-polarity RNA viruses, could alter the course of pneumovirus-associated disease in vivo. Wild-type and Bos taurus Mx1-expressing transgenic FVB/J mice were inoculated with the mouse counterpart and closest phylogenetic relative of RSV, pneumonia virus of mice. Survival data and follow-up of body weight, histological scores, lung virus spread, and lung viral load unequivocally showed that the viral infection was severely repressed in Mx-transgenic mice, thus suggesting that pneumoviruses belong to the antiviral spectrum of mammalian Mx GTPases. Elucidating the underlying mechanisms at the molecular level could reveal critical information for the development of new anti-RSV molecules.


Assuntos
Proteínas de Ligação ao GTP/imunologia , Imunidade Inata , Infecções por Pneumovirus/imunologia , Pneumovirus/imunologia , Administração Intranasal , Animais , Animais Geneticamente Modificados , Bovinos , Feminino , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Proteínas de Resistência a Myxovirus , Pneumovirus/genética , Infecções por Pneumovirus/mortalidade , Infecções por Pneumovirus/patologia , Análise de Sobrevida
13.
Curr Med Chem ; 19(10): 1424-31, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22360479

RESUMO

Respiratory syncytial virus (RSV; Family Paramyxoviridae, Genus Pneumovirus) is a major respiratory pathogen of infants and children and an emerging pathogen of the elderly. Current management of RSV disease includes monoclonal antibody prophylaxis for infants identified as high risk and supportive care for those with active infection; there is no vaccine, although several are under study. In this manuscript, we review published findings from human autopsy studies, as well as experiments that focus on human clinical samples and mouse models of acute pneumovirus infection that elucidate basic principles of disease pathogenesis. Consideration of these data suggests that the inflammatory responses to RSV and related pneumoviral pathogens can be strong, persistent, and beyond the control of conventional antiviral and anti-inflammatory therapies, and can have profound negative consequences to the host. From this perspective, we consider the case for specific immunomodulatory strategies that may have the potential to alleviate some of the more serious sequelae of this disease.


Assuntos
Fatores Imunológicos/uso terapêutico , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Antivirais/uso terapêutico , Citocinas/antagonistas & inibidores , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Oligodesoxirribonucleotídeos Antissenso/uso terapêutico , Pneumovirus/genética , Pneumovirus/imunologia , Infecções por Pneumovirus/tratamento farmacológico , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/patologia , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sincicial Respiratório Humano/genética
14.
J Immunol ; 188(4): 1924-32, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22238461

RESUMO

IL-21 is a cytokine with pleiotropic actions, promoting terminal differentiation of B cells, increased Ig production, and the development of Th17 and T follicular helper cells. IL-21 is also implicated in the development of autoimmune disease and has antitumor activity. In this study, we investigated the role of IL-21 in host defense to pneumonia virus of mice (PVM), which initiates an infection in mice resembling that of respiratory syncytial virus disease in humans. We found that PVM-infected mice expressed IL-21 in lung CD4(+) T cells. Following infection, Il21r(-/-) mice exhibited less lung infiltration by neutrophils than did wild-type (WT) mice and correspondingly had lower levels of the chemokine CXCL1 in bronchoalveolar lavage fluid and lung parenchyma. CD8(+), CD4(+), and γδ T cell numbers were also lower in the lungs of PVM-infected Il21r(-/-) mice than in infected WT mice, with normal Th17 cytokines but diminished IL-6 production in PVM-infected Il21r(-/-) mice. Strikingly, Il21r(-/-) mice had enhanced survival following PVM infection, and moreover, treatment of WT mice with soluble IL-21R-Fc fusion protein enhanced their survival. These data reveal that IL-21 promotes the pathogenic inflammatory effect of PVM and indicate that manipulating IL-21 signaling may represent an immunomodulatory strategy for controlling PVM and potentially other respiratory virus infections.


Assuntos
Interleucinas/imunologia , Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/patologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL1/biossíntese , Quimiocina CXCL1/imunologia , Interleucina-6/biossíntese , Interleucina-6/deficiência , Interleucinas/biossíntese , Interleucinas/metabolismo , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Vírus da Pneumonia Murina/patogenicidade , Receptores de Interleucina-21/imunologia , Células Th17/imunologia
15.
Viruses ; 4(12): 3494-510, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23342367

RESUMO

Pneumonia Virus of Mice (PVM) is related to the human and bovine respiratory syncytial virus (RSV) pathogens, and has been used to study respiratory virus replication and the ensuing inflammatory response as a component of a natural host­pathogen relationship. As such, PVM infection in mice reproduces many of the clinical and pathologic features of the more severe forms of RSV infection in human infants. Here we review some of the most recent findings on the basic biology of PVM infection and its use as a model of disease, most notably for explorations of virus infection and allergic airways disease, for vaccine evaluation, and for the development of immunomodulatory strategies for acute respiratory virus infection.


Assuntos
Modelos Animais de Doenças , Vírus da Pneumonia Murina/patogenicidade , Infecções por Pneumovirus/patologia , Infecções Respiratórias/patologia , Infecções Respiratórias/virologia , Animais , Camundongos , Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/imunologia , Infecções Respiratórias/imunologia
16.
Virology ; 416(1-2): 26-31, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21600624

RESUMO

Canine pneumovirus (CnPnV) was recently isolated from the respiratory tracts of shelter dogs and shares sequence similarity with the rodent pathogen, pneumonia virus of mice (PVM). We show here that CnPnV replicates in and can elicit local proinflammatory cytokine production and neutrophil recruitment to lung tissue and the airways. In contrast to PVM J3666 infection, fatal CnPnV infections are observed only in response to high titer intranasal inocula (>67 TCID(50) units). Sera from mice that recover from CnPnV infection contain antibodies that cross-react with PVM antigens; these mice are protected against lethal PVM infection. Given these findings, it will be intriguing to determine the relative role(s) of CnPnV and PVM in eliciting respiratory symptoms in susceptible canine species.


Assuntos
Inflamação/virologia , Pulmão/virologia , Infecções por Pneumovirus/virologia , Pneumovirus/classificação , Pneumovirus/fisiologia , Replicação Viral/fisiologia , Animais , Cães , Inflamação/patologia , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Pneumovirus/genética , Infecções por Pneumovirus/patologia
17.
J Virol ; 85(9): 4071-84, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21307191

RESUMO

Infection of mice with pneumonia virus of mice (PVM) provides a convenient experimental pathogenesis model in a natural host for a human respiratory syncytial virus-related virus. Extending our previous work showing that the PVM nonstructural (NS) proteins were pathogenicity factors in mice, we identify both the NS1 and NS2 proteins as antagonists of alpha/beta interferon (IFN-α/ß) and IFN-λ by use of recombinant PVM (rPVM) with single and combined deletions of the NS proteins (ΔNS1, ΔNS2, and ΔNS1 ΔNS2). Wild-type and NS deletion PVMs were evaluated for growth and pathogenesis by infecting knockout mice that lack functional receptors to IFN-α/ß, IFN-λ, or both. The absence of the receptor to IFN-α/ß (IFNAR) or IFN-λ (interleukin-28 receptor α chain [IL-28Rα]) individually did not reverse the attenuated virulence of the NS deletion viruses although loss of IFNAR partially restored replication efficiency. When both receptors were deleted, replication and virulence were largely rescued for rPVM ΔNS1 and were significantly but not completely rescued for rPVM ΔNS2. As for rPVM ΔNS1 ΔNS2, the effect was mostly limited to partial enhancement of replication. This indicates that both IFN-α/ß and IFN-λ contributed to restricting the NS deletion viruses, with the former playing the greater role. Interestingly, the replication and virulence of wild-type PVM were completely unaffected by the presence or absence of functional receptors to IFN-α/ß and IFN-λ, indicating that both systems are strongly suppressed during infection. However, pretreatment of mice with IFN-α/ß was protective against lethal rPVM challenge, whereas pretreatment with IFN-λ delayed but did not prevent disease and, in some cases, reduced mortality. The fact that virulence of rPVM lacking NS2 was not recovered completely when both interferon receptors were deleted suggests that NS2 may have further functions outside the IFN system.


Assuntos
Citocinas/antagonistas & inibidores , Interferon Tipo I/antagonistas & inibidores , Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/veterinária , Doenças dos Roedores/virologia , Proteínas não Estruturais Virais/imunologia , Fatores de Virulência/imunologia , Animais , Deleção de Genes , Histocitoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia , Vírus da Pneumonia Murina/patogenicidade , Infecções por Pneumovirus/patologia , Infecções por Pneumovirus/virologia , Doenças dos Roedores/patologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Replicação Viral
18.
Virol J ; 7: 320, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21078159

RESUMO

BACKGROUND: The innate immune responses of neonates differ dramatically from those of adults. Here we examine the acute inflammatory responses of neonatal and weanling mice infected with pneumonia virus of mice (PVM), a rodent pathogen (family Paramyxoviridae, genus Pneumovirus) that replicates the sequelae of severe respiratory syncytial virus infection. RESULTS: We demonstrate that virus replication proceeds indistinguishably in all age groups (inoculated at 1, 2, 3 and 4 weeks of age), although inflammatory responses vary in extent and character. Some of the biochemical mediators detected varied minimally with age at inoculation. Most of the mediators evaluated demonstrated elevated expression over baseline correlating directly with age at the time of virus inoculation. Among the latter group are CCL2, CCL3, and IFN-γ, all cytokines previously associated with PVM-induced inflammatory pathology in mature mice. Likewise, we detect neutrophil recruitment to lung tissue in all age groups, but recruitment is most pronounced among the older (3 - 4 week old) mice. Interestingly, all mice exhibit failure to thrive, lagging in expected weight gain for given age, including the youngest mice that present little overt evidence of inflammation. CONCLUSIONS: Our findings among the youngest mice may explain in part the phenomenon of atypical or minimally symptomatic respiratory infections in human neonates, which may be explored further with this infection model.


Assuntos
Vírus da Pneumonia Murina/imunologia , Vírus da Pneumonia Murina/patogenicidade , Infecções por Pneumovirus/veterinária , Fatores Etários , Animais , Animais Recém-Nascidos , Peso Corporal , Citocinas/biossíntese , Expressão Gênica , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/patologia , Replicação Viral
19.
J Immunol ; 183(1): 604-12, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19542471

RESUMO

Enhanced disease is the term used to describe the aberrant Th2-skewed responses to naturally acquired human respiratory syncytial virus (hRSV) infection observed in individuals vaccinated with formalin-inactivated viral Ags. Here we explore this paradigm with pneumonia virus of mice (PVM), a pathogen that faithfully reproduces features of severe hRSV infection in a rodent host. We demonstrate that PVM infection in mice vaccinated with formalin-inactivated Ags from PVM-infected cells (PVM Ags) yields Th2-skewed hypersensitivity, analogous to that observed in response to hRSV. Specifically, we detect elevated levels of IL-4, IL-5, IL-13, and eosinophils in bronchoalveolar lavage fluid of PVM-infected mice that were vaccinated with PVM Ags, but not among mice vaccinated with formalin-inactivated Ags from uninfected cells (control Ags). Interestingly, infection in PVM Ag-vaccinated mice was associated with a approximately 10-fold reduction in lung virus titer and protection against weight loss when compared with infected mice vaccinated with control Ags, despite the absence of serum-neutralizing Abs. Given recent findings documenting a role for eosinophils in promoting clearance of hRSV in vivo, we explored the role of eosinophils in altering the pathogenesis of disease with eosinophil-deficient mice. We found that eosinophil deficiency had no impact on virus titer in PVM Ag-vaccinated mice, nor on weight loss or levels of CCL11 (eotaxin-1), IFN-gamma, IL-5, or IL-13 in bronchoalveolar lavage fluid. However, levels of both IL-4 and CCL3 (macrophage inflammatory protein-1alpha) in bronchoalveolar lavage fluid were markedly diminished in PVM Ag-vaccinated, PVM-infected eosinophil-deficient mice when compared with wild-type controls.


Assuntos
Eosinófilos/imunologia , Eosinófilos/patologia , Formaldeído , Pulmão/imunologia , Pulmão/patologia , Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/prevenção & controle , Vacinas Virais/imunologia , Animais , Antígenos Virais/administração & dosagem , Antígenos Virais/imunologia , Linhagem Celular , Eosinófilos/virologia , Fixadores , Hipersensibilidade/imunologia , Hipersensibilidade/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Vírus da Pneumonia Murina/crescimento & desenvolvimento , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/patologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/efeitos adversos , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos
20.
Am J Physiol Lung Cell Mol Physiol ; 296(1): L46-56, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18996903

RESUMO

Severe infection with respiratory syncytial virus (RSV) in children can progress to respiratory distress and acute lung injury (ALI). Accumulating evidence suggests that mechanical ventilation (MV) is an important cofactor in the development of ALI by modulating the host immune responses to bacteria. This study investigates whether MV enhances the host response to pneumonia virus of mice (PVM), a mouse pneumovirus that has been used as a model for RSV infection in humans. BALB/c mice were inoculated intranasally with diluted clarified lung homogenates from mice infected with PVM strain J3666 or uninfected controls. Four days after inoculation, the mice were subjected to 4 h of MV (tidal volume, 10 ml/kg) or allowed to breathe spontaneously. When compared with that of mice inoculated with PVM only, the administration of MV to PVM-infected mice resulted in increased bronchoalveolar lavage fluid concentrations of the cytokines macrophage inflammatory protein (MIP)-2, MIP-1alpha (CCL3), and IL-6; increased alveolar-capillary permeability to high molecular weight proteins; and increased caspase-3 activity in lung homogenates. We conclude that MV enhances the activation of inflammatory and caspase cell death pathways in response to pneumovirus infection. We speculate that MV potentially contributes to the development of lung injury in patients with RSV infection.


Assuntos
Caspases/metabolismo , Vírus da Pneumonia Murina , Pneumonia Viral/terapia , Pneumonia/virologia , Infecções por Pneumovirus/terapia , Respiração Artificial/efeitos adversos , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/virologia , Animais , Apoptose/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Leucócitos/imunologia , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Permeabilidade , Pneumonia/etiologia , Pneumonia/imunologia , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/patologia , Respiração Artificial/métodos , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...