Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.519
Filtrar
1.
Open Vet J ; 14(1): 25-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633174

RESUMO

Background: Affection with Corynebacterium pseudotuberculosis (C. pseudotuberculosis) and development of cellulitis and/or abscess formation with cutaneous lymphangitis in cattle is rare to some extent, so literature about the biochemical changes that would accompany this infection is rare. Aim: In this context, the present study was designed to screen the effect of the infection with C. pseudotuberculosis cutaneous lymphangitis on the release of some immune molecules, organ functions, and redox state in Baladi cows. Methods: Fourteen Baladi cows from a small dairy farm in El-Behira, Egypt, were selected to complete this study. After bacteriological culture confirmation, seven of them were found suffering from cutaneous lesions due to infection with C. pseudotuberculosis (Diseased group), while the others were healthy (Healthy group). Serum samples were obtained to evaluate the presumptive changes in some clinicopathological parameters. Results: Serum analysis revealed a significant decrease in the levels of interferon-gamma and interleukin-17 as well as a significant decrement in the concentration of beta-defensin (ß-defensin) and lipocalin-2. While serum level of interleukin-10 recorded a significant increase in these animals when compared to healthy control animals. Concurrently, the affected animals recorded a significant elevation in serum levels of hepato-cardiac enzymes, urea, and creatinine in addition to disturbance in the serum redox state. Conclusion: In conclusion, infection with C. pseudotuberculosis cattle may disturb the defensive immune state, body organ function, and redox state of the animals.


Assuntos
Doenças dos Bovinos , Infecções por Corynebacterium , Linfangite , beta-Defensinas , Feminino , Bovinos , Animais , Linfangite/veterinária , Citocinas , Inflamação/veterinária , Doenças dos Bovinos/microbiologia , Infecções por Corynebacterium/microbiologia , Infecções por Corynebacterium/patologia , Infecções por Corynebacterium/veterinária
2.
Open Vet J ; 14(1): 416-427, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633182

RESUMO

Background: Acute lung injury (ALI) is a severe condition distinguished by inflammation and impaired gas exchange in the lungs. Staphylococcus aureus, a common bacterium, can cause ALI through its virulence factors. Aloe vera is a medicinal plant that has been traditionally used to treat a variety of illnesses due to its anti-inflammatory properties. Chitosan nanoparticles are biocompatible and totally biodegradable materials that have shown potential in drug delivery systems. Aim: To explore the antibacterial activity of Aloe vera-loaded chitosan nanoparticles (AV-CS-NPs) against S. aureus in vitro and in vivo with advanced techniques. Methods: The antibacterial efficacy of AV-CS-NPs was evaluated through a broth microdilution assay. In addition, the impact of AV-CS-NPs on S. aureus-induced ALI in rats was examined by analyzing the expression of genes linked to inflammation, oxidative stress, and apoptosis. Furthermore, rat lung tissue was scanned histologically. The rats were divided into three groups: control, ALI, and treatment with AV-CS-NPs. Results: The AV-CS-NPs that were prepared exhibited clustered semispherical and spherical forms, having an average particle size of approximately 60 nm. These nanoparticles displayed a diverse structure with an uneven distribution of particle sizes. The maximum entrapment efficiency of 95.5% ± 1.25% was achieved. The obtained findings revealed that The minimum inhibitory concentration and minimum bactericidal concentration values were determined to be 5 and 10 ug/ml, respectively, indicating the potent bactericidal effect of the NPs. Also, S. aureus infected rats explored upregulation in the mRNA expression of TLR2 and TLR4 compared to healthy control groups. AV-CS-NP treatment reverses the case where there was repression in mRNA expression of TLR2 and TLR4 compared to S. aureus-treated rats. Conclusion: These NPs can serve as potential candidates for the development of alternative antimicrobial agents.


Assuntos
Lesão Pulmonar Aguda , Aloe , Quitosana , Nanopartículas , Doenças dos Roedores , Ratos , Animais , Quitosana/química , Quitosana/farmacologia , NF-kappa B/farmacologia , Staphylococcus aureus , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Nanopartículas/química , Transdução de Sinais , Antibacterianos/farmacologia , Lesão Pulmonar Aguda/veterinária , Inflamação/veterinária , RNA Mensageiro/farmacologia
3.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38563227

RESUMO

The liver plays a critical role in metabolic activity and is the body's first immune barrier, and maintaining liver health is particularly important for poultry production. MicroRNAs (miRNAs) are involved in a wide range of biological activities due to their capacity as posttranscriptional regulatory elements. A growing body of research indicates that miR-21-5p plays a vital role as a modulator of liver metabolism in various species. However, the effect of miR-21-5p on the chicken liver is unclear. In the current study, we discovered that the fatty liver had high levels of miR-21-5p. Then the qPCR, Western blot, flow cytometry, enzyme-linked immunosorbent assay, dual-luciferase, and immunofluorescence assays were, respectively, used to determine the impact of miR-21-5p in the chicken liver, and it turned out that miR-21-5p enhanced lipogenesis, oxidative stress, and inflammatory responses, which ultimately induced hepatocyte apoptosis. Mechanically, we verified that miR-21-5p can directly target nuclear factor I B (NFIB) and kruppel-like factor 3 (KLF3). Furthermore, our experiments revealed that the suppression of NFIB promoted apoptosis and inflammation, and the KLF3 inhibitor accelerated lipogenesis and enhanced oxidative stress. Furthermore, the cotransfection results suggest that the PI3K/AKT pathway is also involved in the process of miRNA-21-5p-mediate liver metabolism regulation. In summary, our study demonstrated that miRNA-21-5p plays a role in hepatocyte lipogenesis, oxidative stress, inflammation, and apoptosis, via targeting NFIB and KLF3 to suppress the PI3K/AKT signal pathway in chicken.


miR-21-5p is a typical noncoding RNA that could inhibit messenger RNA expression by targeting the 3ʹ-untranslated region to participate in fatty liver-related disease formation and progression. We demonstrated that miRNA-21-5p plays a role in hepatocyte lipogenesis, oxidative stress, inflammation, and apoptosis, via targeting nuclear factor I B and kruppel-like factor 3 to suppress the PI3K/AKT signal pathway in chicken. This research established the regulatory network mechanisms of miR-21-5p in chicken hepatic lipogenesis and fatty liver syndrome.


Assuntos
MicroRNAs , Proteínas Proto-Oncogênicas c-akt , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição NFI/metabolismo , Galinhas/genética , Galinhas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Lipogênese/genética , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo , Fígado/metabolismo , Apoptose , Inflamação/metabolismo , Inflamação/veterinária , Proliferação de Células
4.
Open Vet J ; 14(3): 830-839, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38682150

RESUMO

Background: Heat stress (HS) is a main abiotic stress factor for the health and welfare of animals. Recently, the use of nano-emulsion essential oils exhibited a promising approach to mitigate the detrimental impacts of abiotic and biotic stresses, ultimately contributing to the global aim of sustainable livestock production. Aim: The current study was piloted to assess the impact of eugenol nano-emulsion (EUGN) supplementation on growth performance, serum metabolites, redox homeostasis, immune response, and pro-inflammatory reactions in growing rabbits exposed to HS. Methods: A total of 100 male weaning rabbits aged 35 days were divided into 4 treatments. Rabbits were fed the diet with EUGN at different concentrations: 0 (control group; EUGN0), 50 (EUGN50), 100 (EUGN100), and 150 (EUGN150) mg/kg diet for 8 weeks under summer conditions. Results: Dietary EUGN levels significantly improved (p < 0.05) the body weight, body weight gain, carcass weights, and improved feed conversion ratio of rabbits. EUGN supplementation significantly increased Hb, platelets, and red blood cells , while the mean corpuscular hemoglobin and eosinophils were significantly decreased compared to the control one. Compared with EUGN0 stressed rabbits, all EUGN-experimental groups had a reduction in levels of total glycerides (p < 0.01), uric acid, total bilirubin, direct bilirubin, and gamma-glutamyl transpeptidase (p < 0.01). Total antioxidant capacity and glutathione peroxidase were significantly improved by EUGN treatment when compared to the control one (p < 0.01), while the EUGN100 exhibited the greatest levels of catalase. Lipid peroxidation (malondialdehyde) was significantly decreased in EUGN-treated groups. All pro-inflammatory cytokines serum interleukin 4, Interleukin 1ß, and tumor necrosis factor alpha were considerably decreased after dietary EUGN supplementation (p < 0.05). The serum concentrations of immunoglobulins (IgG and IgM) were significantly improved in rabbits of the EUGN150 group. Conclusion: This study shows that EUGN can be used as a novel feed additive to enhance the growth performance, immune variables, and antioxidants, and reduce the inflammatory response of growing rabbits exposed to thermal stress.


Assuntos
Ração Animal , Dieta , Suplementos Nutricionais , Eugenol , Homeostase , Animais , Coelhos , Eugenol/administração & dosagem , Eugenol/farmacologia , Masculino , Suplementos Nutricionais/análise , Ração Animal/análise , Homeostase/efeitos dos fármacos , Dieta/veterinária , Oxirredução/efeitos dos fármacos , Emulsões , Inflamação/veterinária , Resposta ao Choque Térmico/efeitos dos fármacos
5.
Poult Sci ; 103(5): 103638, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579575

RESUMO

Transport stress (TS) not only weakens poultry performance but also affects animal welfare. Additionally, TS can evoke cardiac damage by triggering sterile inflammation in chicks, but the underlying mechanism is not fully understood. Here, we aimed to elucidate how TS induces sterile inflammation and heart injury and to clarify the antagonism effect of astragalus polysaccharides (APS). We randomly divided 60 chicks (one-day-old female) into 5 groups (n = 12): Control_0h (Con_0h) group (chicks were slaughtered at initiation), Control group (stress-free control), TS group (simulated TS exposure for 8 h), TS plus water (TS+W) group, and TS plus APS (TS+APS) group. Before simulation transport, the chicks of TS+W and TS+APS groups were, respectively, dietary with 100 µL of water or APS (250 µg/mL). H&E staining was employed for cardiac histopathological observation. ELISA assay was used to measure oxidative stress marker levels (GSH, GPX, GST, and MDA). A commercial kit was used to isolate the mitochondrial portion, and qRT-PCR was employed to measure the mitochondrial DNA (mtDNA) levels. Furthermore, we evaluated the activity of mtDNA-mediated NF-κB, NLRP3 inflammasome, and cGAS-STING inflammatory pathways and the expression of downstream inflammatory factors by Western Blotting or qRT-PCR. Our findings revealed that APS notably relieved TS-induced myocardial histopathological lesions and infiltrations. Likewise, the decrease in proinflammatory factors (TNF-α, IL-1ß, and IL-6) and IFN-ß by APS further supported this result. Meanwhile, TS caused severe oxidative stress in the chick heart, as evidenced by decreased antioxidant enzymes and increased MDA. Importantly, APS prevented mtDNA stress and leakage by reducing oxidative stress. Interestingly, TS-induced mtDNA leakage caused a series of inflammation events via mtDNA-PRRs pathways, including TLR21-NF-κB, NLRP3 inflammasome, and cGAS-STING signaling. Encouragingly, all these adverse changes related to inflammation events induced by mtDNA-PRRs activation were all relieved by APS treatment. In summary, our findings provide the first evidence that inhibition of mtDNA-PRRs pathway-mediated sterile inflammation by APS could protect against TS-induced cardiac damage in chicks.


Assuntos
Galinhas , DNA Mitocondrial , Inflamação , Polissacarídeos , Doenças das Aves Domésticas , Animais , Polissacarídeos/farmacologia , Polissacarídeos/administração & dosagem , DNA Mitocondrial/metabolismo , Inflamação/veterinária , Inflamação/induzido quimicamente , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/induzido quimicamente , Feminino , Estresse Fisiológico/efeitos dos fármacos , Astrágalo/química , Distribuição Aleatória , Cardiopatias/veterinária , Cardiopatias/prevenção & controle , Cardiopatias/induzido quimicamente , Cardiopatias/etiologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
6.
Vet J ; 304: 106103, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38522779

RESUMO

The objectives of this study were to assess: 1) differences in the metabolic status, systemic inflammation, daily milk yield, and daily rumination time between Holstein dairy cows with different vaginal discharge scores (VDS) in the first 7±3 DIM, and 2) effects of intrauterine dextrose infusion on metabolic status, systemic inflammation, daily milk yield and daily rumination time in dairy cows with VDS4 and VDS5. Cows (n=641) from a farm located in central Pennsylvania were screened at 7±3 DIM (study d 0) to assess vaginal discharge scores. Vaginal discharge was scored using a five-point scale (i.e., 1- clear fluid, 2- <50% white purulent fluid, 3- >50% white purulent fluid, 4- red-brownish fluid without fetid smell, and 5- fetid red-brownish watery fluid). Cows with VDS4 and VDS5 were blocked by parity and randomly assigned to one of two treatment groups: 1) CONV (VDS4 n=15; VDS5 n= 23): two injections of ceftiofur (per label; 6.6 mg/Kg) 72 h apart; and 2) DEX (VDS4 n=15; VDS5 n=22): three intrauterine infusions of a 50% dextrose solution (1 L/cow) every 24 h. Cows that presented a VDS 1, 2, and 3 were categorized as normal vaginal discharge animals (NOMVDS; n=35) and were randomly selected and matched by parity to CONV and DEX cows. Daily milk yield and rumination time for the first 150 DIM were collected from on-farm computer records. Blood samples were collected to assess haptoglobin (HP) and ß-hydroxybutyrate (BHB) concentrations at study d 0, d 7, and d 14 relative to enrollment. Subclinical ketosis was defined as having a BHB concentration >1.2 mmol/dL at any of the sampling points. The data were analyzed using the MIXED and GLIMMIX procedures of SAS as a randomized complete block design. When comparing cows with different VDS (i.e., NOMVDS, VDS4, VDS5) separately, cows with VDS5 had the highest concentration of HP at enrollment compared to cows with VDS4 and NOMVDS; however, cows with VDS4 had higher concentrations of HP compared to cows with NOMVDS. Cows with VDS4 or VDS5 had a higher incidence of subclinical ketosis compared to cows with NOMVDS (p=0.005; VDS4= 62.08±9.16%; VDS5=74.44±6.74%; NOMVDS=34.36±8.53%). Similarly, daily milk yield (p<.0001; VDS4=30.17±1.32 kg/d; VDS5=27.40±1.27 kg/d; NOMVDS=35.14±1.35 kg/d) and daily rumination time (p=0.001; VDS4=490.77±19.44 min; VDS5=465±16.67 min; NOMVDS=558.29±18.80 min) was lower for cows with VDS4 and VDS5 compared to cows with NOMVDS at 7±3 days in milk. When analyzing HP concentration between treatment groups in cows with VDS4 (p=0.70), VDS5 (p=0.25), or VDS4 and VDS5 combined (p=0.31), there was no difference in HP concentration by study d 14 between treatment groups. Interestingly, when only cows with VDS4 were considered for treatment, both treatments, DEX and CONV, increased the daily milk yield to the levels of NOMVDS cows by 14 days in milk. On the other hand, when only cows with VDS5 were considered for treatment, cows treated with DEX produced, on average, 4.48 kg/d less milk in the first 150 days in milk compared to cows treated with CONV or cows that had NOMVDS. Similarly, when cows with either VDS4 or VDS5 were considered for treatment, DEX treatment also impaired milk yield. These results suggest that cows with either VDS 4 or 5 have an altered inflammatory status, and decreased milk yield and rumination compared to cows with NOMVDS. Furthermore, DEX treatment may have similar effects on daily milk yield and metabolic status compared to CONV in cows with VDS4, while DEX is not recommended for cows with VDS5.


Assuntos
Doenças dos Bovinos , Endometrite , Cetose , Descarga Vaginal , Gravidez , Feminino , Animais , Bovinos , Antibacterianos/uso terapêutico , Antibacterianos/metabolismo , Endometrite/tratamento farmacológico , Endometrite/veterinária , Leite/metabolismo , Inflamação/tratamento farmacológico , Inflamação/veterinária , Descarga Vaginal/tratamento farmacológico , Descarga Vaginal/veterinária , Descarga Vaginal/metabolismo , Glucose , Cetose/veterinária , Lactação , Doenças dos Bovinos/tratamento farmacológico , Período Pós-Parto
7.
Vet Med Sci ; 10(3): e1409, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38516822

RESUMO

BACKGROUND: After submaximal exercise, blood values of eventing horses show physiological reactions. OBJECTIVES: This prospective longitudinal study investigated blood parameters in 20 elite eventing horses before and after two-four-star cross-country rides. METHODS: Using a mixed model adjusting for plasma volume shift, we assessed exercise-dependent parameters and compared blood values with reference ranges for healthy horses at rest. RESULTS: Following exercise, cortisol, triiodothyronine (T3) and thyroxine (T4) showed short-term increases, and superoxide-dismutase showed a small short-term increase. Hepatic values showed short-term (haemoglobin [HGB], globulins) or sustained increases (bilirubin, glutamate dehydrogenase, alanine aminotransferase). Digestion-related parameters showed small short-term increases (α-amylase, triglycerides) or decreases (cholesterol, DGGR-lipase), apparent through plasma shift adjustment. Zinc decreased in the short term, and iron showed a delayed decrease. White blood cell count increased persistently after training, whereas serum amyloid A remained unchanged. CONCLUSIONS: Exercised eventing horses had consistently elevated HGB and cortisol levels 10 and 30 min after submaximal exercise, exceeding the reference ranges for healthy horses at rest. Exercise activates the hypothalamic-pituitary-adrenocortical and hypothalamic-pituitary-thyroid axes. Antioxidant activity was observed. Increased energy requirements led to the mobilization of energy reserves, and a sustained increase in liver enzymes indicated hepatocellular injury. Mild haemolysis suggested increased muscle metabolism, whereas signs of inflammation were subtle. Further research is needed to identify which horses deviate from mean values.


Assuntos
Doenças dos Cavalos , Volume Plasmático , Animais , Cavalos , Hidrocortisona , Inflamação/veterinária , Estudos Longitudinais , Estresse Oxidativo , Estudos Prospectivos
8.
Poult Sci ; 103(5): 103637, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518665

RESUMO

To investigate the potential protective effect of prior cold stimulation on broiler intestine induced by acute cold stress (ACS). A total of 384 one-day-old broilers were divided into control (CON), ACS, cold stimulation Ⅰ (CS3+ACS), and cold stimulation Ⅱ (CS9+ACS) groups. Broilers in CON and ACS groups were reared normally, and birds in CS3+ACS and CS9+ACS groups were reared at 3℃ and 9℃ below CON group for 5 h, respectively, on alternate days from d 15 to 35. Broilers in ACS, CS3+ACS, and CS9+ACS groups were subjected to 10℃ for 24 h on d 43. Eventually, small intestine tissues were collected for histopathological observation and indexes detection. The results showed that intestinal tissues in all ACS-broilers exhibited inflammatory cell infiltrates, microvilli disruption, reduced villus length in jejunum and increased crypt depth in jejunum and ileum. Whereas these phenomena were relatively light in CS3+ACS group. Compared to CON group, mRNA expression of the TLR4/MyD88/NF-κB pathway-related genes (TLR4, MyD88, NF-κBp65, COX-2, iNOS, PTGEs, TNF-α), Th1/Th17-derived cytokines (IL-1ß, IL-2, IL-8, IL-12, IFN-γ, IL-17), and HSPs (HSP40, HSP60, HSP70, HSP90) was upregulated (P < 0.05), and that of Th2-deviated cytokines (IL-4, IL-6, IL-10, IL-13) and IκBα was downregulated (P < 0.05) in small intestine in almost all ACS-broilers. Compared to ACS group, mRNA expression of most of the TLR4/MyD88/NF-κB pathway-related genes, Th1/Th17-derived cytokines, and HSPs was downregulated and that of Th2-derived cytokines was upregulated in CS3+ACS group (P < 0.05). Protein expression levels of TLR4, MyD88, p-p65/p65, p-IκBα/IκBα, IKK, TNF-α, IL-1ß, IL-10, and HSPs were similar to their mRNA expression. The concentration of sIgA and activities of CAT, SOD, and GSH-px were decreased and MDA and H2O2 were increased in ACS and CS9+ACS groups compared to CON group (P < 0.05). Therefore, cold stress caused oxidative stress and inflammation, leading to gut immune dysfunction; while mild cold stimulation at 3℃ below normal rearing temperature alleviated cold stress-induced intestinal injure and dysfunction by modulating the TLR4/MyD88/NF-κB pathway in broilers.


Assuntos
Proteínas Aviárias , Galinhas , Fator 88 de Diferenciação Mieloide , NF-kappa B , Doenças das Aves Domésticas , Receptor 4 Toll-Like , Animais , Galinhas/fisiologia , Doenças das Aves Domésticas/imunologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , NF-kappa B/genética , Proteínas Aviárias/metabolismo , Proteínas Aviárias/genética , Resposta ao Choque Frio , Inflamação/veterinária , Inflamação/metabolismo , Transdução de Sinais , Masculino , Temperatura Baixa , Distribuição Aleatória
9.
Comp Immunol Microbiol Infect Dis ; 107: 102148, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430666

RESUMO

Leishmaniasis is a zoonotic disease caused by Leishmania spp., impacts multiple systems and organs. While hematological and biochemical profiles aren't definitive for diagnosis, recent studies have identified the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and systemic immune-inflammation index (SII) as predictors of morbidity and mortality in critically ill human and dog patients. This study examined 100 dogs diagnosed with leishmaniasis, categorized by the International Renal Interest Society (IRIS) stages 1-4. Additionally, the dogs were divided based on whether they survived less or more than one year (L1Y and G1Y). Control group consisted of 43 dogs. The NLR increased as the disease progressed (IRIS 1-4), presenting statistically significant differences (P<0.05) when compared to the control group (2,37±2,08) IRIS 3 and 4 (4,59±13,39 and 6,99±12,86, respectively), and G1Y and L1Y (3,60±4,02 and 4,87±5,82, respectively). Significant changes in SII were only evident in short-term survivors (L1Y 951,93±1402) and advanced renal disease cases (IRIS 4 stage 1073,68±1901,09). Conversely, PLR remained largely unchanged. In conclusion, these results suggest that the neutrophil-to-lymphocyte ratio (NLR) and systemic immune-inflammation index (SII) may serve as potential markers for assessing disease progression and prognosis in dogs diagnosed with leishmaniasis.


Assuntos
Leishmaniose , Neutrófilos , Humanos , Cães , Animais , Relevância Clínica , Linfócitos , Inflamação/veterinária , Leishmaniose/diagnóstico , Leishmaniose/veterinária , Estudos Retrospectivos
10.
Vet Immunol Immunopathol ; 270: 110738, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452577

RESUMO

Laminitis is a pathology of the equine digit ultimately leading to a failure of the dermo-epidermal interface. Neutrophil activation is recognized as a major factor in SIRS-associated laminitis and has recently been described in induced endocrinopathic laminitis evidenced by the presence of myeloperoxidase (MPO). Neutrophil extracellular traps (NET) are released with neutrophil activation. This study aimed to investigate the presence and activity of MPO and NET in the lamellar tissue of equids presented with naturally occurring laminitis. Samples of lamellar tissue of five horses and five donkeys presented with laminitis, as well as eight control horses without laminitis, were collected. Lamellar tissue extracts were submitted to ELISA and specific immuno-extraction followed by enzymatic detection (SIEFED) assays to confirm the presence and activity of both MPO and NET. Lamellar sections were also immunohistopathologically stained for MPO and NET. Analysis of lamellar tissue extracts revealed that laminitis cases had significantly higher levels of total MPO concentration, MPO activity, and NET-bound MPO activity in comparison to control horses. Moreover, a strong correlation was identified between the activity of NET-bound MPO and the total MPO activity, which suggests that MPO activity partly originates from NET-bound MPO. Immunohistochemical staining showed that MPO and NET labelling in laminitis cases was moderate to marked, primarily in the epidermis and in inflammatory infiltrates containing neutrophils, while labelling in control horses was minimal. This article constitutes the first indication of the presence and activity of NET-bound MPO in the lamellar tissue of horses and donkeys with naturally occurring laminitis. Targeting these substances may provide new treatment possibilities for this debilitating disease.


Assuntos
Dermatite , Armadilhas Extracelulares , Doenças do Pé , Doenças dos Cavalos , Cavalos , Animais , Doenças do Pé/veterinária , Dermatite/veterinária , Equidae , Peroxidase , Extratos de Tecidos , Doenças dos Cavalos/patologia , Inflamação/veterinária
11.
Sci Total Environ ; 923: 171475, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453063

RESUMO

Climbazole is an azole biocide that has been widely used in formulations of personal care products. Climbazole can cause developmental toxicity and endocrine disruption as well as gut disturbance in aquatic organisms. However, the mechanisms behind gut toxicity induced by climbazole still remain largely unclear in fish. Here, we evaluate the gut effects by exposing grass carp (Ctenopharyngodon idella) to climbazole at levels ranging from 0.2 to 20 µg/L for 42 days by evaluating gene transcription and expression, biochemical analyses, correlation network analysis, and molecular docking. Results showed that climbazole exposure increased cyp1a mRNA expression and ROS level in the three treatment groups. Climbazole also inhibited Nrf2 and Keap1 transcripts as well as proteins, and suppressed the transcript levels of their subordinate antioxidant molecules (cat, sod, and ho-1), increasing oxidative stress. Additionally, climbazole enhanced NF-κB and iκBα transcripts and proteins, and the transcripts of NF-κB downstream pro-inflammatory factors (tnfα, and il-1ß/6/8), leading to inflammation. Climbazole increased pro-apoptosis-related genes (fadd, bad1, and caspase3), and decreased anti-apoptosis-associated genes (bcl2, and bcl-xl), suggesting a direct reaction to apoptosis. The molecular docking data showed that climbazole could form stable hydrogen bonds with CYP1A. Mechanistically, our findings suggested that climbazole can induce inflammation and oxidative stress through CYP450s/ROS/Nrf2/NF-κB pathways, resulting in cell apoptosis in the gut of grass carp.


Assuntos
Carpas , Suplementos Nutricionais , Imidazóis , Animais , Suplementos Nutricionais/análise , Dieta , NF-kappa B , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Imunidade Inata , Azóis/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Inflamação/induzido quimicamente , Inflamação/veterinária , Estresse Oxidativo , Apoptose , Carpas/metabolismo
12.
Open Vet J ; 14(2): 730-737, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38549571

RESUMO

Background: Controlling apoptosis induced by oxidative stress in pancreatic ß-cells provides promising strategies for preventing and treating diabetes. Clinacanthus nutans leaves possess bioactive constituents with potential antioxidant and anti-diabetic properties. Aim: This study aimed to investigate the molecular mechanisms by which C. nutans extract protects pancreatic ß-cells from apoptotic damage in streptozotocin (STZ)-induced diabetic rats. Methods: Diabetes was induced in male Wistar rats by intraperitoneal injection of 45 mg/kg STZ, followed by 28 days of treatment with C. nutans leaf extract and Glibenclamide as the standard drug. At the end of the study, blood samples were collected to measure glucose levels, oxidative stress markers, and inflammation. Pancreatic tissue was stained immunohistochemically to detect c-Jun N-terminal kinase (JNK) and Caspase-3 expression. Results: The administration of C. nutans leaf extract to diabetic rats significantly reduced fasting blood glucose, malondialdehyde, and tumor necrosis factor-α levels, while concurrently enhancing the activity of superoxide dismutase. The immunohistochemical studies revealed a decrease in the expression of JNK and caspase-3 in the pancreatic islets of diabetic rats. Conclusion: Clinacanthus nutans exhibits the potential to protect pancreatic ß-cells from apoptosis by suppressing oxidative stress and inflammation.


Assuntos
Diabetes Mellitus Experimental , Doenças dos Roedores , Ratos , Masculino , Animais , Estreptozocina/uso terapêutico , Caspase 3/metabolismo , Ratos Wistar , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Estresse Oxidativo , Apoptose , Inflamação/tratamento farmacológico , Inflamação/veterinária , Extratos Vegetais/farmacologia , Extratos Vegetais/química
13.
Open Vet J ; 14(2): 664-673, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38549578

RESUMO

Background: Inflammation caused by Opisthorchis viverrini infection increases the risk of cholangitis, cholecystitis, and leads to bile duct cancer (cholangiocarcinoma or CCA). However, only certain infected individuals are susceptible to CCA, suggesting the involvement of host factors in cancer development. In addition, there are reports indicating differences in the locations of CCA. Aim: This study aims to investigate cellular inflammatory responses in the common bile duct (CB), intrahepatic bile duct (IHB), and gallbladder (GB) in susceptible and non-susceptible hosts following O. viverrini infection. Methods: Thirty Syrian golden hamsters (a susceptible host) and 30 BALB/c mice (a non-susceptible host) infected with O. viverrini were studied at six time points (five animals per group). Histopathological evaluations were conducted on samples from the IHB, CB, and GB. Inflammatory cell infiltration was quantitatively assessed and compared between groups and time points. Statistical analysis was performed using one-way ANOVA, with a significance level of p < 0.05. Results: Inflammation was significantly more pronounced in the IHB compared to the other two biliary locations. In comparison between susceptible and non-susceptible hosts, the intensity of inflammation was higher in the OV+H group than in the OV+M group (p < 0.05). Conclusion: This study highlights the association between host response to inflammation, tissue location, and host susceptibility, with the IHB showing particular susceptibility to inflammation and pathological changes. These findings contribute to our understanding of the increased risk of CCA in susceptible hosts.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Opistorquíase , Opisthorchis , Doenças dos Roedores , Cricetinae , Camundongos , Animais , Opistorquíase/complicações , Opistorquíase/patologia , Opistorquíase/veterinária , Opisthorchis/fisiologia , Ductos Biliares Intra-Hepáticos/patologia , Mesocricetus , Colangiocarcinoma/patologia , Colangiocarcinoma/veterinária , Inflamação/veterinária , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/veterinária
14.
BMC Vet Res ; 20(1): 110, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500105

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a common condition in veterinary medicine that is difficult to manage.Veterinary regenerative therapy based on adipose mesenchymal stem cells seem to be an effective strategy for the treatment of traumatic brain injury. In this study, we evaluated therapeutic efficacy of canine Adipose-derived mesenchymal stem cells (AD-MSCs)in a rat TBI model, in terms of improved nerve function and anti-neuroinflammation. RESULTS: Canine AD-MSCs promoted neural functional recovery, reduced neuronal apoptosis, and inhibited the activation of microglia and astrocytes in TBI rats. According to the results in vivo, we further investigated the regulatory mechanism of AD-MSCs on activated microglia by co-culture in vitro. Finally, we found that canine AD-MSCs promoted their polarization to the M2 phenotype, and inhibited their polarization to the M1 phenotype. What's more, AD-MSCs could reduce the migration, proliferation and Inflammatory cytokines of activated microglia, which is able to inhibit inflammation in the central system. CONCLUSIONS: Collectively, the present study demonstrates that transplantation of canine AD-MSCs can promote functional recovery in TBI rats via inhibition of neuronal apoptosis, glial cell activation and central system inflammation, thus providing a theoretical basis for canine AD-MSCs therapy for TBI in veterinary clinic.


Assuntos
Lesões Encefálicas Traumáticas , Doenças do Cão , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Doenças dos Roedores , Ratos , Animais , Cães , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/veterinária , Microglia , Macrófagos , Inflamação/veterinária , Transplante de Células-Tronco Mesenquimais/veterinária , Transplante de Células-Tronco Mesenquimais/métodos
15.
Res Vet Sci ; 171: 105231, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513460

RESUMO

Intestinal disorders can affect pigs of any age, especially when animals are young and more susceptible to infections and environmental stressors. For instance, pathogenic E. coli can alter intestinal functions, thus leading to altered nutrient adsorption by interacting with local cells through lipopolysaccharide (LPS). Among several compounds studied to counteract the negative effects on the intestine, short-chain fatty acids (SCFA) were demonstrated to exert beneficial effects on gut epithelial cells and resident immune cells. In this study, acetate and propionate were tested for their beneficial effects in a co-culture model of IPEC-J2 and porcine PBMC pre-stimulated with LPS from E. coli 0111:B4 aimed at mimicking the interaction between intestinal cells and immune cells in an inflammatory/activated status. IPEC-J2 viability was partially reduced when co-cultured with activated PBMC and nitric oxide concentration increased. IPEC-J2 up-regulated innate and inflammatory markers, namely BD-1, TLR-4, IL-8, TNF-α, NF-κB, and TGF-ß. Acetate and propionate positively modulated the inflammatory condition by sustaining cell viability, reducing the oxidative stress, and down-regulating the expression of inflammatory mediators. TNF-α expression and secretion showed an opposite effect in IPEC-J2 depending on the extent of LPS stimulation of PBMC and TGF-ß modulation. Therefore, SCFA proved to mediate a differential effect depending on the degree and duration of inflammation. The expression of the tight junction proteins (TJp) claudin-4 and zonula occludens-1 was up-regulated by LPS while SCFA influenced TJp with a different kinetics depending on PBMC stimulation. The co-culture model of IPEC-J2 and LPS-activated PBMC proved to be feasible to address the modulation of markers related to anti-bacterial immunity and inflammation, and intestinal epithelial barrier integrity, which are involved in the in vivo responsiveness and plasticity to infections.


Assuntos
Escherichia coli , Doenças dos Suínos , Animais , Suínos , Escherichia coli/metabolismo , Lipopolissacarídeos/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Propionatos , Leucócitos Mononucleares/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Ácidos Graxos Voláteis , Acetatos , Fator de Crescimento Transformador beta , Inflamação/veterinária , Mucosa Intestinal/metabolismo
16.
Vet Microbiol ; 291: 110032, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430715

RESUMO

In recent years, it has become apparent that imbalances in the gastrointestinal system can impact organs beyond the intestine such as the lungs. Given the established ability of probiotics to modulate the immune system by interacting with gastrointestinal cells, our research aimed to investigate whether administering the probiotic strain Bacillus subtilis-597 could mitigate the outcome of influenza virus infection in pigs. Pigs were fed a diet either with or without the probiotic strain B. subtilis-597 for 14 days before being intranasally inoculated with a swine influenza A H1N2 strain (1 C.2 lineage). Throughout the study, we collected fecal samples, blood samples, and nasal swabs to examine viral shedding and immune gene expression. After seven days of infection, the pigs were euthanized, and lung and ileum tissues were collected for gene expression analysis and pathological examination. Our findings indicate that the administration of B. subtilis-597 exhibit potential in reducing lung lesions, possibly attributable to a general suppression of the immune system as indicated by reduced C-reactive protein (CRP) levels in serum, decreased expression of interferon-stimulated genes (ISGs), and localized reduction of the inflammatory marker serum amyloid A (SAA) in ileum tissue. Notably, the immune-modulatory effects of B. subtilis-597 appeared to be unrelated to the gastrointestinal microbiota, as the composition remained unaltered by both the influenza infection and the administration of B. subtilis-597.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Probióticos , Doenças dos Suínos , Suínos , Animais , Humanos , Bacillus subtilis , Probióticos/farmacologia , Infecções por Orthomyxoviridae/veterinária , Inflamação/veterinária , Pulmão/patologia
17.
Fish Shellfish Immunol ; 148: 109511, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499215

RESUMO

Lactobacillus rhamnosus is a probiotic, which not only promotes the growth of animals, but also has anti-inflammatory effects. However, the mechanism by which Lactobacillus rhamnosus regulates intestinal immunity is not well comprehended. Hence, the study aimed to research how Lactobacillus rhamnosus affects the intestinal immunity using juvenile grass carp (Ctenopharyngodon idella) as a model. We selected 1800 juvenile grass carp for testing. They were divided into six treatments and fed with six gradients of Lactobacillus rhamnosus GCC-3 (0.0, 0.5, 1.0, 1.5, 2.0, 2.5 g/kg) for 70 days. Enteritis was subsequently induced with dextroside sodium sulfate. Results indicated that dietary Lactobacillus rhamnosus GCC-3 addition improved growth performance. Meanwhile, appropriate levels of Lactobacillus rhamnosus GCC-3 alleviated excessive inflammatory response by down-regulating the expression of TLR4 and NOD receptors, up-regulating the expression of TOR, and then down-regulating the expression of NF-κB. Additionally, appropriate Lactobacillus rhamnosus GCC-3 improved intestinal immunity by reducing pyroptosis triggered by NLRP3 inflammasome and mediated by GSDME. Furthermore, 16 S rRNA sequencing showing appropriate levels of Lactobacillus rhamnosus GCC-3 increased Lactobacillus and Bifidobacterium abundance and decreased Aeromonas abundance. These results suggest that Lactobacillus rhamnosus GCC-3 can alleviate intestinal inflammation through down-regulating NF-κB and up-regulating TOR signaling pathways, as well as by inhibiting pyroptosis.


Assuntos
Carpas , Doenças dos Peixes , Lacticaseibacillus rhamnosus , Animais , NF-kappa B/metabolismo , Suplementos Nutricionais , Imunidade Inata , Carpas/metabolismo , Dieta/veterinária , Inflamação/veterinária , Ração Animal/análise , Proteínas de Peixes/genética
18.
Poult Sci ; 103(5): 103586, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442474

RESUMO

Intestinal inflammation is a primary contributor to poor growth performance during poultry production. Chlorogenic acid (CGA) is a natural phenolic acid that exhibits superior anti-inflammatory activity and improved intestinal health. To investigate the protective effects and molecular mechanisms of CGA during intestinal inflammation in lipopolysaccharide (LPS)-challenged broilers, we randomly divided 288 one-day-old male Cobb broilers into 4 groups: a control group fed a basal diet (CON group), a basal diet + LPS group (LPS group), and 2 basal diet groups fed 500 or 750 mg/kg CGA + LPS (CGA_500 or CGA_750 groups). Broilers were injected with LPS or saline at 15, 17, 19, and 21 d old. Chlorogenic acid supplementation improved the growth performance of LPS-challenged broilers by increasing average daily gain (ADG) and reducing feed/gain (F/G) ratios (P < 0.05). CGA also improved intestinal barrier function in LPS-challenged boilers by enhancing jejunum morphology and integrity, decreasing intestinal permeability, and increasing occludin 3, zonula occludens-1, and mucin 2 expression (P < 0.05). CGA supplementation also improved systemic and jejunum antioxidant capacity by significantly enhancing glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities (P < 0.05), and reducing malonaldehyde (MDA) and protein carbonyl (PCO) levels (P < 0.05). Chlorogenic acid supplementation reduced systemic and jejunum pro-inflammatory cytokines (interleukin (IL)-1ß, IL-6, and IL-12) and increased anti-inflammatory cytokines (IL-10) in LPS-challenged broilers (P < 0.05) by inhibiting the toll like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway (P < 0.05). In addition, the protective effects of CGA toward intestinal inflammation and apoptosis appeared to be correlated with inhibited endoplasmic reticulum (ER) stress (P < 0.05). In summary, CGA supplementation improved intestinal morphology and integrity by inhibiting TLR4/NF-κB and ER stress pathways, which potentially reduced oxidative stress and inflammation, and ultimately improved the growth performance of LPS-challenged broilers.


Assuntos
Galinhas , Ácido Clorogênico , Suplementos Nutricionais , Estresse do Retículo Endoplasmático , Lipopolissacarídeos , NF-kappa B , Doenças das Aves Domésticas , Animais , Ácido Clorogênico/administração & dosagem , Ácido Clorogênico/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , NF-kappa B/metabolismo , Doenças das Aves Domésticas/induzido quimicamente , Doenças das Aves Domésticas/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Suplementos Nutricionais/análise , Dieta/veterinária , Inflamação/veterinária , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Distribuição Aleatória , Ração Animal/análise , Intestinos/efeitos dos fármacos , Intestinos/patologia , Enteropatias/veterinária , Enteropatias/induzido quimicamente , Enteropatias/tratamento farmacológico , Enteropatias/prevenção & controle , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem
19.
Vet Med Sci ; 10(3): e1412, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38504633

RESUMO

BACKGROUND: Lipopolysaccharide (LPS) can induce systemic inflammation and affect the growth and development of poultry. As a kind of traditional Chinese medicine, polysaccharide of Atractylodes macrocephala Koidz (PAMK) can effectively improve the growth performance of animals and improve the immunity of animal bodies. OBJECTIVES: The purpose of this study was to investigate the effects of PAMK on LPS-induced inflammatory response, proliferation, differentiation and apoptosis of chicken embryonic myogenic cells. METHODS: We used chicken embryonic myogenic cells as a model by detecting EdU/MYHC immunofluorescence, the expression of inflammation, proliferation, differentiation-related genes and proteins and the number of apoptotic cells in the condition of adding LPS, PAMK, belnacasan (an inhibitor of Caspase1) or their combinations. RESULTS: The results showed that LPS stimulation increased the expression of inflammatory factors, inhibited proliferation and differentiation, and excessive apoptosis in chicken embryonic myogenic cells, and PAMK alleviated these adverse effects induced by LPS. After the addition of belnacasan (inhibitor of Caspase1), apoptosis in myogenic cells was inhibited, and therefore, the number of apoptotic cells and the expression of pro-apoptotic genes Caspase1 and Caspase3 were increased. In addition, belnacasan inhibited the increased expression of inflammatory factors, inhibited proliferation, differentiation and excessive apoptosis in chicken embryonic myogenic cells induced by LPS. CONCLUSIONS: This study provides a theoretical basis for further exploring the mechanism of action of PAMK and exogenous LPS on chicken embryonic myogenic cells and lays the foundation for the development and application of green feed additives in animal husbandry industry.


Assuntos
Atractylodes , Lipopolissacarídeos , Animais , Lipopolissacarídeos/toxicidade , Galinhas , Polissacarídeos/farmacologia , Apoptose , Proliferação de Células , Inflamação/veterinária
20.
Poult Sci ; 103(4): 103521, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367470

RESUMO

The objective of this study is to investigate the beneficial effects and underlying mechanism of dietary ß-mannanase supplementation on the productive performance of laying hens fed with metabolic energy (ME)-reduced diets. A total of 448 Hy-Line gray laying hens were randomly assigned to seven groups. Each group had 8 replicates with 8 hens. The groups included a control diet (CON) with a ME of 2750 kcal/Kg, diets reduced by 100 kcal/Kg or 200 kcal/Kg ME (ME_100 or ME_200), and diets with 0.15 g/Kg or 0.2 g/Kg ß-mannanase (ME_100+ß-M_0.15, ME_100+ß-M_0.2, ME_200+ß-M_0.15, and ME_200+ß-M_0.2). The productive performance, egg quality, intestinal morphology, inflammatory response, mRNA expression related to the Nuclear factor kappa B (NF-κB) and AMPK pathway, and cecum microbiome were evaluated in this study. ME-reduced diets negatively impacted the productive performance of laying hens. However, supplementation with ß-mannanase improved FCR, decreased ADFI, and restored average egg weight to the level of the CON group. ME-reduced diets increased the levels of interleukin-1ß (IL-1ß) and IL-6 while decreasing the levels of IL-4 and IL-10 in the jejunum of laying hens. However, dietary ß-mannanase supplementation improved jejunum morphology, reduced pro-inflammatory cytokine concentrations, and increased levels of anti-inflammatory factors in laying hens fed with ME-reduced diets. The mRNA levels of IL-6, IFN-γ, TLR4, MyD88, and NF-κB in the jejunum of ME-reduced diets were significantly higher than that in CON, dietary ß-mannanase supplementation decreased these genes expression in laying hens fed with ME-reduced diets. Moreover, dietary ß-mannanase supplementation also decreased the mRNA levels of AMPKα and AMPKγ, and increased the abundance of mTOR in the jejunum of laying hens fed with ME-reduced diets. Cecum microbiota analysis revealed that dietary ß-mannanase increased the abundance of various beneficial bacteria (e.g., g_Pseudoflavonifractor, g_Butyricicoccus, and f_Lactobacillaceae) in laying hens fed with ME-reduced diets. In conclusion, dietary ß-mannanase supplementation could improve the productive performance of laying hens fed with a ME-reduced diet by improving intestinal morphology, alleviating intestinal inflammation, changing energy metabolism-related signaling pathways, and increasing cecum-beneficial microbiota.


Assuntos
Microbiota , beta-Manosidase , Animais , Feminino , Galinhas/fisiologia , Interleucina-6 , NF-kappa B , Dieta/veterinária , Ceco , Metabolismo Energético , Ração Animal/análise , Suplementos Nutricionais/análise , Inflamação/veterinária , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...