Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.930
Filtrar
2.
PLoS One ; 19(5): e0300862, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38739614

RESUMO

Influenza A viruses of the H2 subtype represent a zoonotic and pandemic threat to humans due to a lack of widespread specific immunity. Although A(H2) viruses that circulate in wild bird reservoirs are distinct from the 1957 pandemic A(H2N2) viruses, there is concern that they could impact animal and public health. There is limited information on AIVs in Latin America, and next to nothing about H2 subtypes in Brazil. In the present study, we report the occurrence and genomic sequences of two influenza A viruses isolated from wild-caught white-rumped sandpipers (Calidris fuscicollis). One virus, identified as A(H2N1), was isolated from a bird captured in Restinga de Jurubatiba National Park (PNRJ, Rio de Janeiro), while the other, identified as A(H2N2), was isolated from a bird captured in Lagoa do Peixe National Park (PNLP, Rio Grande do Sul). DNA sequencing and phylogenetic analysis of the obtained sequences revealed that each virus belonged to distinct subtypes. Furthermore, the phylogenetic analysis indicated that the genomic sequence of the A(H2N1) virus isolated from PNRJ was most closely related to other A(H2N1) viruses isolated from North American birds. On the other hand, the A(H2N2) virus genome recovered from the PNLP-captured bird exhibited a more diverse origin, with some sequences closely related to viruses from Iceland and North America, and others showing similarity to virus sequences recovered from birds in South America. Viral genes of diverse origins were identified in one of the viruses, indicating local reassortment. This suggests that the extreme South of Brazil may serve as an environment conducive to reassortment between avian influenza virus lineages from North and South America, potentially contributing to an increase in overall viral diversity.


Assuntos
Charadriiformes , Vírus da Influenza A , Influenza Aviária , Filogenia , Vírus Reordenados , Animais , Brasil , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Charadriiformes/virologia , Genoma Viral , Aves/virologia
3.
Prev Vet Med ; 227: 106206, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696942

RESUMO

The highly pathogenic Avian Influenza virus (HPAIV) H5N1 has caused a global outbreak affecting both wild and domestic animals, predominantly avian species. To date, cases of the HPAIV H5 Clade 2.3.4.4b in penguins have exclusively been reported in African Penguins. In Chile, the virus was confirmed in pelicans in December 2022 and subsequently spread across the country, affecting several species, including Humboldt penguins. This study aims to provide an overview of the incidents involving stranded and deceased Humboldt penguins and establish a connection between these events and HPAIV H5N1. Historical data about strandings between 2009 and 2023 was collected, and samples from suspected cases in 2023 were obtained to confirm the presence of HPAIV H5N1. Between January and August 2023, 2,788 cases of stranded and deceased penguins were recorded. Out of these, a total of 2,712 penguins deceased, evidencing a significative increase in mortality starting in early 2023 coinciding with the introduction and spreading of HPAIV H5N1 in the country. Thirty-seven events were categorized as mass mortality events, with the number of deceased penguins varying from 11 to 98. Most cases (97 %) were observed in the North of Chile. One hundred and eighty-one specimens were subjected to HPAIV diagnosis, four of which tested positive for HPAIV H5N1. Spatial analysis validates the correlation between mass mortality events and outbreaks of HPAIV in Chile. However, the limited rate of HPAIV H5N1 detection, which can be attributed to the type and quality of the samples, requiring further exploration.


Assuntos
Surtos de Doenças , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Spheniscidae , Animais , Spheniscidae/virologia , Chile/epidemiologia , Surtos de Doenças/veterinária , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Aviária/mortalidade
4.
Sci Rep ; 14(1): 10285, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704404

RESUMO

High pathogenicity avian influenza (HPAI) poses a significant threat to both domestic and wild birds globally. The avian influenza virus, known for environmental contamination and subsequent oral infection in birds, necessitates careful consideration of alternative introduction routes during HPAI outbreaks. This study focuses on blowflies (genus Calliphora), in particular Calliphora nigribarbis, attracted to decaying animals and feces, which migrate to lowland areas of Japan from northern or mountainous regions in early winter, coinciding with HPAI season. Our investigation aims to delineate the role of blowflies as HPAI vectors by conducting a virus prevalence survey in a wild bird HPAI-enzootic area. In December 2022, 648 Calliphora nigribarbis were collected. Influenza virus RT-PCR testing identified 14 virus-positive samples (2.2% prevalence), with the highest occurrence observed near the crane colony (14.9%). Subtyping revealed the presence of H5N1 and HxN1 in some samples. Subsequent collections in December 2023 identified one HPAI virus-positive specimen from 608 collected flies in total, underscoring the potential involvement of blowflies in HPAI transmission. Our observations suggest C. nigribarbis may acquire the HPAI virus from deceased wild birds directly or from fecal materials from infected birds, highlighting the need to add blowflies as a target of HPAI vector control.


Assuntos
Aves , Influenza Aviária , Animais , Japão/epidemiologia , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Aves/virologia , Insetos Vetores/virologia , Calliphoridae , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/genética , Fezes/virologia
5.
Nat Commun ; 15(1): 3494, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693163

RESUMO

H9N2 avian influenza viruses (AIVs) are a major concern for the poultry sector and human health in countries where this subtype is endemic. By fitting a model simulating H9N2 AIV transmission to data from a field experiment, we characterise the epidemiology of the virus in a live bird market in Bangladesh. Many supplied birds arrive already exposed to H9N2 AIVs, resulting in many broiler chickens entering the market as infected, and many indigenous backyard chickens entering with pre-existing immunity. Most susceptible chickens become infected within one day spent at the market, owing to high levels of viral transmission within market and short latent periods, as brief as 5.3 hours. Although H9N2 AIV transmission can be substantially reduced under moderate levels of cleaning and disinfection, effective risk mitigation also requires a range of additional interventions targeting markets and other nodes along the poultry production and distribution network.


Assuntos
Galinhas , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Vírus da Influenza A Subtipo H9N2/imunologia , Influenza Aviária/transmissão , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Galinhas/virologia , Bangladesh/epidemiologia , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Modelos Biológicos
7.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695722

RESUMO

High-pathogenicity avian influenza viruses (HPAIVs) of the goose/Guangdong lineage are enzootically circulating in wild bird populations worldwide. This increases the risk of entry into poultry production and spill-over to mammalian species, including humans. Better understanding of the ecological and epizootiological networks of these viruses is essential to optimize mitigation measures. Based on full genome sequences of 26 HPAIV samples from Iceland, which were collected between spring and autumn 2022, as well as 1 sample from the 2023 summer period, we show that 3 different genotypes of HPAIV H5N1 clade 2.3.4.4b were circulating within the wild bird population in Iceland in 2022. Furthermore, in 2023 we observed a novel introduction of HPAIV H5N5 of the same clade to Iceland. The data support the role of Iceland as an utmost northwestern distribution area in Europe that might act also as a potential bridging point for intercontinental spread of HPAIV across the North Atlantic.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Filogenia , Islândia/epidemiologia , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Genótipo , Animais Selvagens/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Genoma Viral , Aves/virologia
11.
Arch Virol ; 169(5): 111, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664271

RESUMO

India has reported highly pathogenic avian influenza (HPAI) H5N1 virus outbreaks since 2006, with the first human case reported in 2021. These included viruses belonging to the clades 2.2, 2.2.2, 2.2.2.1, 2.3.2.1a, and 2.3.2.1c. There are currently no data on the gene pool of HPAI H5N1 viruses in India. Molecular clock and phylogeography analysis of the HA and NA genes; and phylogenetic analysis of the internal genes of H5N1 viruses from India were carried out. Sequences reported from 2006 to 2015; and sequences from 2021 that were available in online databases were used in the analysis. Five separate introductions of H5N1 viruses into India were observed, via Indonesia or Korea (2002), Bangladesh (2009), Bhutan (2010), and China (2013, 2018) (clades 2.2, 2.2.2, 2.2.2.1, 2.3.2.1a, 2.3.2.1c, and 2.3.4.4b). Phylogenetic analysis revealed eight reassortant genotypes. The H5N1 virus isolated from the human case showed a unique reassortant genotype. Amino acid markers associated with adaptation to mammals were also present. This is the first report of the spatio-temporal origins and gene pool analysis of H5N1 viruses from India, highlighting the need for increased molecular surveillance.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Influenza Humana , Filogenia , Filogeografia , Índia/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Humanos , Influenza Humana/virologia , Influenza Humana/epidemiologia , Genótipo , Vírus Reordenados/genética , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Neuraminidase/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Aves/virologia , Surtos de Doenças
12.
Commun Biol ; 7(1): 476, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637646

RESUMO

Since late 2021, highly pathogenic avian influenza (HPAI) viruses of A/goose/Guangdong/1/1996 (H5N1) lineage have caused widespread mortality in wild birds and poultry in the United States. Concomitant with the spread of HPAI viruses in birds are increasing numbers of mammalian infections, including wild and captive mesocarnivores and carnivores with central nervous system involvement. Here we report HPAI, A(H5N1) of clade 2.3.4.4b, in a common bottlenose dolphin (Tursiops truncatus) from Florida, United States. Pathological findings include neuronal necrosis and inflammation of the brain and meninges, and quantitative real time RT-PCR reveal the brain carried the highest viral load. Virus isolated from the brain contains a S246N neuraminidase substitution which leads to reduced inhibition by neuraminidase inhibitor oseltamivir. The increased prevalence of A(H5N1) viruses in atypical avian hosts and its cross-species transmission into mammalian species highlights the public health importance of continued disease surveillance and biosecurity protocols.


Assuntos
Golfinho Nariz-de-Garrafa , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Florida/epidemiologia , Neuraminidase , Vírus da Influenza A/fisiologia , Aves
13.
Emerg Microbes Infect ; 13(1): 2341142, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38581279

RESUMO

H6N6 avian influenza viruses (AIVs) have been widely detected in wild birds, poultry, and even mammals. Recently, H6N6 viruses were reported to be involved in the generation of H5 and H7 subtype viruses. To investigate the emergence, evolutionary pattern, and potential for an epidemic of H6N6 viruses, the complete genomes of 198 H6N6 viruses were analyzed, including 168 H6N6 viruses deposited in the NCBI and GISAID databases from inception to January 2019 and 30 isolates collected from China between November 2014 and January 2019. Using phylogenetic analysis, the 198 strains of H6N6 viruses were identified as 98 genotypes. Molecular clock analysis indicated that the evolution of H6N6 viruses in China was constant and not interrupted by selective pressure. Notably, the laboratory isolates reassorted with six subtype viruses: H6N2, H5N6, H7N9, H5N2, H4N2, and H6N8, resulting in nine novel H6N6 reassortment events. These results suggested that H6N6 viruses can act as an intermediary in the evolution of H5N6, H6N6, and H7N9 viruses. Animal experiments demonstrated that the 10 representative H6N6 viruses showed low pathogenicity in chickens and were capable of infecting mice without prior adaptation. Our findings suggest that H6N6 viruses play an important role in the evolution of AIVs, and it is necessary to continuously monitor and evaluate the potential epidemic of the H6N6 subtype viruses.


Assuntos
Galinhas , Evolução Molecular , Genoma Viral , Vírus da Influenza A , Influenza Aviária , Filogenia , Vírus Reordenados , Animais , China/epidemiologia , Vírus Reordenados/genética , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Camundongos , Galinhas/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Genótipo , Humanos
15.
Zhonghua Liu Xing Bing Xue Za Zhi ; 45(4): 574-578, 2024 Apr 10.
Artigo em Chinês | MEDLINE | ID: mdl-38678355

RESUMO

Objective: To identify a novel reassortant H3N2 avian influenza virus using nanopore sequencing technology and analyze its genetic characteristics. Methods: The positive samples of the H3N2 avian influenza virus, collected from the external environment in the farmers' market of Guangzhou, were cultured in chicken embryos. The whole genome was sequenced by targeted amplification and nanopore sequencing technology. The genetic characteristics were analyzed using bioinformatics software. Results: The phylogenetic trees showed that each gene fragment of the strain belonged to the Eurasian evolutionary branch, and the host source was of avian origin. The HA gene was closely related to the origin of the H3N6 virus. The NA gene was closely related to the H3N2 avian influenza virus from 2017 to 2020. The PB1 gene was closely related to the H5N6 avian influenza virus in Guangxi Zhuang Autonomous Region and Fujian Province from 2016 to 2022 and was not related to the PB1 gene of the H5N6 avian influenza epidemic strain in Guangzhou. The other internal gene fragments had complex sources with significant genetic diversity. Molecular characteristics indicated that the strain exhibited the molecular characteristics of a typical low pathogenic avian influenza virus and tended to bind to the receptors of avian origin. On important protein sites related to biological characteristics, this strain had mutations of PB2-L89V, PB1-L473V, NP-A184K, M1-N30D/T215A, and NS1-P42S/N205S. Conclusions: This study identified a novel reassortant H3N2 avian influenza virus by nanopore sequencing, with the PB1 gene derived from the H5N6 avian influenza virus. The virus had a low ability to spread across species, but further exploration was needed to determine whether its pathogenicity to the host was affected.


Assuntos
Vírus da Influenza A Subtipo H3N2 , Influenza Aviária , Sequenciamento por Nanoporos , Filogenia , Vírus Reordenados , Animais , Vírus Reordenados/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Genoma Viral , Embrião de Galinha , Galinhas/virologia , Proteínas Virais/genética , Variação Genética
16.
Arch Virol ; 169(5): 99, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625394

RESUMO

H9N2 avian influenza viruses (AIVs) affect both poultry and humans on a global level, and they are especially prevalent in Egypt. In this study, we sequenced the entire genome of AIV H9N2 isolated from chickens in Egypt in 2021, using next-generation sequencing (NGS) technology. Phylogenetic analysis of the resulting sequences showed that the studied strain was generally monophyletic and grouped within the G1 sublineage of the Eurasian lineage. Four segments (polymerase basic 2 [PB2], polymerase basic 1 [PB1], polymerase acidic [PA], and non-structural [NS]) were related to Egyptian genotype II, while the nucleoprotein (NP), neuraminidase (NA), matrix (M), and haemagglutinin (HA) segments were related to Egyptian genotype I. Molecular analysis revealed that HA protein contained amino acid residues (191H and 234L) that suggested a predilection for attaching to human-like receptors. The antigenic sites of HA had two nonsynonymous mutations: V194I at antigenic site A and M40K at antigenic site B. Furthermore, the R403W and S372A mutations, which have been observed in H3N2 and H2N2 strains that caused human pandemics, were found in the NA protein of the detected strain. The internal proteins contained virulence markers: 504V in the PB2 protein, 622G, 436Y, 207K, and 677T in the PB1 protein, 127V, 550L, and 672L in PA protein, and 64F and 69P in the M protein. These results show that the detected strain had undergone intrasubtype reassortment. Furthermore, it contains changes in the viral proteins that make it more likely to be virulent, raising a question about the tendency of AIV H9N2 to become highly pathogenic in the future for both poultry and humans.


Assuntos
Antígenos de Grupos Sanguíneos , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Humanos , Aves Domésticas , Vírus da Influenza A Subtipo H9N2/genética , Egito/epidemiologia , Galinhas , Fazendas , Vírus da Influenza A Subtipo H3N2 , Influenza Aviária/epidemiologia , Filogenia
18.
J Vet Sci ; 25(2): e20, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38568822

RESUMO

BACKGROUND: Avian influenza (AI) is a contagious disease that causes illness and death in poultry and humans. High pathogenicity AI (HPAI) H5N6 outbreaks commonly occur in Quang Ninh province bordering China. In June 2021, the first HPAI H5N8 outbreak occurred at a Quang Ninh chicken farm. OBJECTIVES: This study examined the risk factors associated with HPAI H5N6 and H5N8 outbreaks in Quang Ninh. METHODS: A retrospective case-control study was conducted in Quang Ninh from Nov 2021 to Jan 2022. The cases were households with susceptible poultry with two or more clinical signs and tested positive by real-time reverse transcription polymerase chain reaction. The controls were households in the same village as the cases but did not show clinical symptoms of the disease. Logistic regression models were constructed to assess the risk factors associated with HPAI outbreaks at the household level. RESULTS: There were 38 cases with H5N6 clade 2.3.4.4h viruses (n = 35) and H5N8 clade 2.3.4.4b viruses (n = 3). Compared to the 112 controls, raising poultry in uncovered or partially covered ponds (odds ratio [OR], 7.52; 95% confidence interval [CI], 1.44-39.27), poultry traders visiting the farm (OR, 8.66; 95% CI, 2.7-27.69), farms with 50-2,000 birds (OR, 3.00; 95% CI, 1.06-8-51), and farms with ≥ 2,000 birds (OR, 11.35; 95% CI, 3.07-41.94) were significantly associated with HPAI outbreaks. CONCLUSIONS: Combining biosecurity measures, such as restricting visitor entry and vaccination in farms with more than 50 birds, can enhance the control and prevention of HPAI in Quang Ninh and its spread across borders.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Doenças das Aves Domésticas , Animais , Humanos , Influenza Aviária/epidemiologia , Estudos Retrospectivos , Estudos de Casos e Controles , Vietnã/epidemiologia , Surtos de Doenças/veterinária , Surtos de Doenças/prevenção & controle , Aves Domésticas , Galinhas
19.
Viruses ; 16(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38675910

RESUMO

Influenza A viruses (IAVs) pose a serious threat to global health. On the one hand, these viruses cause seasonal flu outbreaks in humans. On the other hand, they are a zoonotic infection that has the potential to cause a pandemic. The most important natural reservoir of IAVs are waterfowl. In this study, we investigated the occurrence of IAV in birds in the Republic of Buryatia (region in Russia). In 2020, a total of 3018 fecal samples were collected from wild migratory birds near Lake Baikal. Of these samples, 11 were found to be positive for the H13N8 subtype and whole-genome sequencing was performed on them. All samples contained the same virus with the designation A/Unknown/Buryatia/Arangatui-1/2020. To our knowledge, virus A/Unknown/Buryatia/Arangatui-1/2020 is the first representative of the H13N8 subtype collected on the territory of Russia, the sequence of which is available in the GenBank database. An analysis of reassortments based on the genome sequences of other known viruses has shown that A/Unknown/Buryatia/Arangatui-1/2020 arose as a result of reassortment. In addition, a reassortment most likely occurred several decades ago between the ancestors of the viruses recently collected in China, the Netherlands, the United States and Chile. The presence of such reassortment emphasizes the ongoing evolution of the H13N8 viruses distributed in Europe, North and East Asia, North and South America and Australia. This study underscores the importance of the continued surveillance and research of less-studied influenza subtypes.


Assuntos
Aves , Genoma Viral , Vírus da Influenza A , Influenza Aviária , Filogenia , Vírus Reordenados , Sequenciamento Completo do Genoma , Animais , Vírus Reordenados/genética , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Federação Russa/epidemiologia , Aves/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Fezes/virologia , Animais Selvagens/virologia
20.
Viruses ; 16(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675939

RESUMO

The flyways of many different wild waterfowl pass through the Caspian Sea region. The western coast of the middle Caspian Sea is an area with many wetlands, where wintering grounds with large concentrations of birds are located. It is known that wild waterfowl are a natural reservoir of the influenza A virus. In the mid-2000s, in the north of this region, the mass deaths of swans, gulls, and pelicans from high pathogenicity avian influenza virus (HPAIV) were noted. At present, there is still little known about the presence of avian influenza virus (AIVs) and different avian paramyxoviruses (APMVs) in the region's waterfowl bird populations. Here, we report the results of monitoring these viruses in the wild waterfowl of the western coast of the middle Caspian Sea from 2017 to 2020. Samples from 1438 individuals of 26 bird species of 7 orders were collected, from which 21 strains of AIV were isolated, amounting to a 1.46% isolation rate of the total number of samples analyzed (none of these birds exhibited external signs of disease). The following subtypes were determined and whole-genome nucleotide sequences of the isolated strains were obtained: H1N1 (n = 2), H3N8 (n = 8), H4N6 (n = 2), H7N3 (n = 2), H8N4 (n = 1), H10N5 (n = 1), and H12N5 (n = 1). No high pathogenicity influenza virus H5 subtype was detected. Phylogenetic analysis of AIV genomes did not reveal any specific pattern for viruses in the Caspian Sea region, showing that all segments belong to the Eurasian clades of classic avian-like influenza viruses. We also did not find the amino acid substitutions in the polymerase complex (PA, PB1, and PB2) that are critical for the increase in virulence or adaptation to mammals. In total, 23 hemagglutinating viruses not related to influenza A virus were also isolated, of which 15 belonged to avian paramyxoviruses. We were able to sequence 12 avian paramyxoviruses of three species, as follows: Newcastle disease virus (n = 4); Avian paramyxovirus 4 (n = 5); and Avian paramyxovirus 6 (n = 3). In the Russian Federation, the Newcastle disease virus of the VII.1.1 sub-genotype was first isolated from a wild bird (common pheasant) in the Caspian Sea region. The five avian paramyxovirus 4 isolates obtained belonged to the common clade in Genotype I, whereas phylogenetic analysis of three isolates of Avian paramyxovirus 6 showed that two isolates, isolated in 2017, belonged to Genotype I and that an isolate identified in 2020 belonged to Genotype II. The continued regular monitoring of AIVs and APMVs, the obtaining of data on the biological properties of isolated strains, and the accumulation of information on virus host species will allow for the adequate planning of epidemiological measures, suggest the most likely routes of spread of the virus, and assist in the prediction of the introduction of the viruses in the western coastal region of the middle Caspian Sea.


Assuntos
Animais Selvagens , Avulavirus , Aves , Vírus da Influenza A , Influenza Aviária , Filogenia , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Aves/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/patogenicidade , Animais Selvagens/virologia , Avulavirus/genética , Avulavirus/classificação , Avulavirus/isolamento & purificação , Avulavirus/patogenicidade , Genoma Viral , Infecções por Avulavirus/veterinária , Infecções por Avulavirus/virologia , Infecções por Avulavirus/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...