Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 1982, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029751

RESUMO

People with schizophrenia exhibit deficits in inhibitory neurons and cognition. The timing of maternal immune activation (MIA) may present distinct schizophrenia-like phenotypes in progeny. We investigated whether early gestation [gestational day (GD) 10] or late gestation (GD19) MIA, via viral mimetic polyI:C, produces deficits in inhibitory neuron indices (GAD1, PVALB, SST, SSTR2 mRNAs) within cortical, striatal, and hippocampal subregions of male adult rat offspring. In situ hybridisation revealed that polyI:C offspring had: (1) SST mRNA reductions in the cingulate cortex and nucleus accumbens shell, regardless of MIA timing; (2) SSTR2 mRNA reductions in the cortex and striatum of GD19, but not GD10, MIA; (3) no alterations in cortical or striatal GAD1 mRNA of polyI:C offspring, but an expected reduction of PVALB mRNA in the infralimbic cortex, and; (4) no alterations in inhibitory markers in hippocampus. Maternal IL-6 response negatively correlated with adult offspring SST mRNA in cortex and striatum, but not hippocampus. These results show lasting inhibitory-related deficits in cortex and striatum in adult offspring from MIA. SST downregulation in specific cortical and striatal subregions, with additional deficits in somatostatin-related signalling through SSTR2, may contribute to some of the adult behavioural changes resulting from MIA and its timing.


Assuntos
Inibição Neural/imunologia , Complicações Infecciosas na Gravidez/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Esquizofrenia/imunologia , Animais , Comportamento Animal , Biomarcadores/análise , Biomarcadores/metabolismo , Córtex Cerebral/patologia , Corpo Estriado/patologia , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Feminino , Glutamato Descarboxilase/análise , Glutamato Descarboxilase/metabolismo , Hipocampo/patologia , Humanos , Interleucina-6/análise , Interleucina-6/metabolismo , Interneurônios/imunologia , Interneurônios/metabolismo , Interneurônios/patologia , Masculino , Poli I-C/imunologia , Gravidez , Ratos , Receptores de Somatostatina/análise , Receptores de Somatostatina/metabolismo , Esquizofrenia/patologia , Fatores Sexuais , Transdução de Sinais/imunologia , Somatostatina/análise , Somatostatina/metabolismo , Fatores de Tempo
2.
Brain ; 142(11): 3398-3410, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31591639

RESUMO

Chloride-permeable glycine receptors have an important role in fast inhibitory neurotransmission in the spinal cord and brainstem. Human immunoglobulin G (IgG) autoantibodies to glycine receptors are found in a substantial proportion of patients with progressive encephalomyelitis with rigidity and myoclonus, and less frequently in other variants of stiff person syndrome. Demonstrating a pathogenic role of glycine receptor autoantibodies would help justify the use of immunomodulatory therapies and provide insight into the mechanisms involved. Here, purified IgGs from four patients with progressive encephalomyelitis with rigidity and myoclonus or stiff person syndrome, and glycine receptor autoantibodies, were observed to disrupt profoundly glycinergic neurotransmission. In whole-cell patch clamp recordings from cultured rat spinal motor neurons, glycinergic synaptic currents were almost completely abolished following incubation in patient IgGs. Most human autoantibodies targeting other CNS neurotransmitter receptors, such as N-methyl-d-aspartate (NMDA) receptors, affect whole cell currents only after several hours incubation and this effect has been shown to be the result of antibody-mediated crosslinking and internalization of receptors. By contrast, we observed substantial reductions in glycinergic currents with all four patient IgG preparations with 15 min of exposure to patient IgGs. Moreover, monovalent Fab fragments generated from the purified IgG of three of four patients also profoundly reduced glycinergic currents compared with control Fab-IgG. We conclude that human glycine receptor autoantibodies disrupt glycinergic neurotransmission, and also suggest that the pathogenic mechanisms include direct antagonistic actions on glycine receptors.


Assuntos
Autoanticorpos/imunologia , Autoanticorpos/farmacologia , Inibição Neural/efeitos dos fármacos , Inibição Neural/imunologia , Receptores de Glicina/antagonistas & inibidores , Transmissão Sináptica/imunologia , Idoso , Animais , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Imunoglobulina G/genética , Masculino , Pessoa de Meia-Idade , Neurônios Motores/efeitos dos fármacos , Técnicas de Patch-Clamp , Gravidez , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia , Rigidez Muscular Espasmódica/imunologia , Sinapses/efeitos dos fármacos
3.
Eur Neuropsychopharmacol ; 28(12): 1405-1417, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30257799

RESUMO

There is strong evidence that immune activation from prenatal infection increases the risk for offspring to develop schizophrenia. The endocannabinoid (eCB) system has been implicated in the pathophysiology of schizophrenia while models of cortical dysfunction postulate an imbalance between neuronal excitation and inhibition in the disorder. The current study examined the impact of prenatal immune activation on eCB-mediated inhibitory mechanisms. We compared two forms of eCB-related plasticity of evoked inhibitory postsynaptic currents, namely depolarization-induced suppression of inhibition (DSI) and metabotropic glutamate receptor-induced long term depression (mGluR-iLTD), in both the dorsal and ventral hippocampus between adolescent offspring from rat dams that received either saline or bacterial lipopolysaccharide (LPS) during pregnancy. Compared to prenatal saline offspring, prenatal LPS offspring displayed prolonged DSI and stronger mGluR-iLTD in the dorsal and ventral hippocampus, respectively. The sensitivity of mGluR-iLTD to the CB1 receptor antagonist AM251 was also lower in the dorsal hippocampus of prenatal LPS compared to prenatal saline offspring. Testing whether changes in eCB receptor signaling or levels could contribute to these changes in inhibitory transmission, we found region specific increases in 2-arachidonoylglycerol-stimulated signaling and in basal and mGluR-induced levels of anandamide in prenatal LPS offspring when compared to prenatal saline offspring. Our findings indicate that prenatal immune activation can lead to long-term changes in eCB-related plasticity of hippocampal inhibitory synaptic transmission in adolescent rat offspring. Perturbation of the eCB system resulting from prenatal immune activation could represent a mechanism linking early life immune events to the development of psychopathology in adolescence.


Assuntos
Endocanabinoides/metabolismo , Hipocampo/crescimento & desenvolvimento , Hipocampo/imunologia , Inibição Neural/imunologia , Plasticidade Neuronal/imunologia , Complicações Infecciosas na Gravidez/imunologia , Animais , Modelos Animais de Doenças , Escherichia coli , Feminino , Lipopolissacarídeos , Masculino , Neuroimunomodulação/fisiologia , Gravidez , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/metabolismo , Maturidade Sexual , Transmissão Sináptica/imunologia , Técnicas de Cultura de Tecidos
4.
Brain Behav Immun ; 45: 60-70, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25449671

RESUMO

Schizophrenia is associated with deficits in the hippocampus, a brain area important for learning and memory. The dentate gyrus (DG) of the hippocampus develops both before and after birth. To study the relative contribution of mature and adult-born DG granule cells to disease etiology, we compared both cell populations in a mouse model of psychiatric illness resulting from maternal immune activation. Polyriboinosinic-polyribocytidilic acid (PolyIC, 5mg/kg) or saline was given on gestation day 15 to pregnant female C57Bl/6 mice. Male offspring (n=105), was administered systemic bromodeoxyuridine (BrdU, 50mg/kg) (n=52) or intracerebral retroviral injection into the DG (n=53), to label dividing cells at one month of age. Two months later behavioral tests were performed to evaluate disease phenotype. Immunohistochemistry and whole-cell patch clamping were used to assess morphological and physiological characteristics of DG cells. Three-month-old PolyIC exposed male offspring exhibited deficient pre-pulse inhibition, spatial maze performance and motor coordination, as well as increased depression-like behavior. Histological analysis showed reduced DG volume and parvalbumin positive interneuron number. Both mature and new hippocampal neurons showed modifications in intrinsic properties such as increased input resistance and lower current threshold, and decreased action potential number. Reduced GABAergic inhibitory transmission was observed only in mature DG neurons. Differential impairments in mature DG cells and adult-born new neurons may have implications for behavioral deficits associated with maternal immune activation.


Assuntos
Cognição/fisiologia , Giro Denteado/imunologia , Indutores de Interferon/farmacologia , Atividade Motora/imunologia , Neurônios/imunologia , Poli I-C/farmacologia , Complicações Infecciosas na Gravidez/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Inibição Pré-Pulso/imunologia , Animais , Cognição/efeitos dos fármacos , Giro Denteado/citologia , Giro Denteado/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Inibição Neural/imunologia , Neurogênese/efeitos dos fármacos , Neurogênese/imunologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Gravidez , Complicações Infecciosas na Gravidez/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Inibição Pré-Pulso/efeitos dos fármacos , Esquizofrenia/imunologia , Esquizofrenia/fisiopatologia , Filtro Sensorial/efeitos dos fármacos , Filtro Sensorial/imunologia
5.
Transl Psychiatry ; 4: e418, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25072323

RESUMO

A failure of integrative processes within the brain, mediated via altered GABAergic inhibition, may underlie several features of schizophrenia. The present study examined, therefore, whether maternal immune activation (MIA), a risk factor for schizophrenia, altered inhibitory markers in the hippocampus and medial prefrontal cortex (mPFC), while also altering electroencephalogram (EEG) coherence between these regions. Pregnant rats were treated with saline or polyinosinic:polycytidylic acid mid-gestation. EEG depth recordings were made from the dorsal and ventral hippocampus and mPFC of male adult offspring. Glutamic decarboxylase (GAD67) levels were separately assayed in these regions using western blot. GAD67 expression was also assessed within parvalbumin-positive cells in the dorsal and ventral hippocampus using immunofluorescence alongside stereological analysis of parvalbumin-positive cell numbers. EEG coherence was reduced between the dorsal hippocampus and mPFC, but not the ventral hippocampus and mPFC, in MIA animals. Western blot and immunofluorescence analyses revealed that GAD67 expression within parvalbumin-positive cells was also reduced in the dorsal hippocampus relative to ventral hippocampus in MIA animals when compared with controls. This reduction was observed in the absence of parvalbumin-positive neuronal loss. Overall, MIA produced a selective reduction in EEG coherence between the dorsal hippocampus and mPFC that was paralleled by a similarly specific reduction in GAD67 within parvalbumin-positive cells of the dorsal hippocampus. These results suggest a link between altered inhibitory mechanisms and synchrony and, therefore point to potential mechanisms via which a disruption in neurodevelopmental processes might lead to pathophysiology associated with schizophrenia.


Assuntos
Modelos Animais de Doenças , Sincronização de Fases em Eletroencefalografia/genética , Sincronização de Fases em Eletroencefalografia/imunologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Inibição Neural/genética , Inibição Neural/imunologia , Neurônios/imunologia , Neurônios/fisiologia , Córtex Pré-Frontal/imunologia , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/imunologia , Esquizofrenia/genética , Esquizofrenia/imunologia , Animais , Mapeamento Encefálico , Sincronização de Fases em Eletroencefalografia/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipocampo/imunologia , Hipocampo/fisiopatologia , Humanos , Interneurônios/metabolismo , Masculino , Microscopia de Fluorescência , Inibição Neural/fisiologia , Parvalbuminas/metabolismo , Poli I-C/imunologia , Córtex Pré-Frontal/fisiopatologia , Gravidez , Ratos , Ratos Sprague-Dawley , Fatores de Risco , Esquizofrenia/fisiopatologia
6.
Brain Behav Immun ; 33: 102-11, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23770090

RESUMO

Anxiety-like responses to stress are accompanied by elevation of brain cytokine-mRNAs. Because cytokines microinjected into central-amygdala (CeA) substitute for stress in a behavioral paradigm, the possibility was raised that cytokines increased by stress influence behavior by affecting CeA-neural activity. Previously, cytokines increased firing-rate of CeA-neurons comparable to that induced by corticotropin-releasing factor (CRF). In this investigation, tumor-necrosis-factor-α (TNFα) increased amplitude, but not frequency of mEPSCs from CeA-neurons. Additionally, TNFα decreased the threshold for triggering action potentials from CeA-neurons without altering membrane-properties during current-clamp recording. Glutamate-receptor-antagonist blockade of mEPSCs and the TNFα-induced reduction in firing threshold implicated glutamate in these changes. A phosphatidyl-inositol-3-kinase-antagonist prevented the TNFα-induced increased in amplitude of mEPSCs, documenting a TNFα intracellular influence. Additionally, TNFα increased frequency, but not amplitude of mIPSCs. CRF-receptor-antagonists were found to prevent the TNFα-induced increase in mIPSC-frequency, without altering the TNFα-induced amplitude increase in mEPSCs or the reduced threshold for action-potentials by TNFα. To clarify how TNFα was increasing CRF-release in the presence of tetrodotoxin, the possibility tested was whether preventing glial-activation would prevent this elevated mIPSC-frequency blocked by CRF-receptor antagonists. Minocycline, which blocks glial activation, prevented the TNFα-induced increase in mIPSC-frequency - a finding consistent with glia contributing to the CRF-involvement in this TNFα action. To fully understand the means by which a CRF1-receptor-antagonist and minocycline prevent TNFα from increasing mIPSC-frequency will require further clarification. Nonetheless, these data provide convincing evidence that release of TNFα by stress could alter neural activity of CeA-neurons by influencing GABA-and glutamate function.


Assuntos
Tonsila do Cerebelo/imunologia , Potenciais Pós-Sinápticos Excitadores/imunologia , Células-Tronco Pluripotentes Induzidas/imunologia , Inibição Neural/imunologia , Neurônios/imunologia , Estresse Fisiológico/imunologia , Transmissão Sináptica/imunologia , Fator de Necrose Tumoral alfa/fisiologia , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/metabolismo , Animais , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
7.
Brain Behav Immun ; 33: 7-13, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23510989

RESUMO

Adult hippocampal neurogenesis is modulated by a number of intrinsic and extrinsic factors including local signalling molecules, exercise, aging and inflammation. Inflammation is also a major contributor to several hippocampal-associated disorders. Interleukin-1beta (IL-1ß) is the most predominant pro-inflammatory cytokine in the brain, and an increase in its concentration is known to decrease the proliferation of both embryonic and adult hippocampal neural precursor cells (NPCs). Recent research has focused on the role of nuclear receptors as intrinsic regulators of neurogenesis, and it is now established that the orphan nuclear receptor TLX is crucial in maintaining the NPC pool in neurogenic brain regions. To better understand the involvement of TLX in IL-1ß-mediated effects on hippocampal NPC proliferation, we examined hippocampal NPC proliferation and TLX expression in response to IL-1ß treatment in an adult rat hippocampal neurosphere culture system. We demonstrate that IL-1ß reduced the proliferation of hippocampal NPCs and TLX expression in a dose and time-dependent manner and that co-treatment with IL-1ß receptor antagonist or IL-1 receptor siRNA prevented these effects. We also report a dose-dependent effect of IL-1ß on the composition of cell phenotypes in the culture and on expression of TLX in these cells. This study thus provides evidence of an involvement of TLX in IL-1ß-induced changes in adult hippocampal neurogenesis, and offers mechanistic insight into disorders in which neuroinflammation and alterations in neurogenesis are characteristic features.


Assuntos
Proliferação de Células , Giro Denteado/imunologia , Interleucina-1beta/fisiologia , Inibição Neural/imunologia , Células-Tronco Neurais/imunologia , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Senescência Celular/genética , Senescência Celular/fisiologia , Giro Denteado/citologia , Giro Denteado/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Células-Tronco Neurais/citologia , Neurogênese/imunologia , Ratos
8.
J Neuroimmunol ; 255(1-2): 45-53, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23194644

RESUMO

Transcriptomic and proteomic analyses of multiple sclerosis (MS) lesions indicate alterations in the gamma-aminobutyric acid (GABA) inhibitory system, suggesting its involvement in the disease process. To further elucidate the role of GABA in central nervous system (CNS) inflammation in vivo, the chronic myelin oligodendrocyte glycoprotein (MOG)(35-55) experimental autoimmune encephalomyelitis (EAE) model was used. Daily GABA injections (200mg/kg) from day 3 onwards significantly augmented disease severity, which was associated with increased CNS mRNA expression levels of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6. GABA-treated mice showed enhanced MOG-dependent proliferation and were skewed towards a T helper 1 phenotype. Moreover, in vitro, the lipopolysaccharide (LPS)-induced increase in interleukin (IL)-6 production by macrophages was enhanced at low GABA concentrations (0.03-0.3mM). In sharp contrast to exogenous GABA administration, endogenous GABA increment by systemic treatment with the GABA-transaminase inhibitor vigabatrin (250mg/kg) had prophylactic as well as therapeutic potential in EAE. Together, these results indicate an immune amplifying role of GABA in neuroinflammatory diseases like MS.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Inibição Neural/efeitos dos fármacos , Inibição Neural/imunologia , Ácido gama-Aminobutírico/administração & dosagem , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Feminino , GABAérgicos/administração & dosagem , GABAérgicos/uso terapêutico , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Neuroimunomodulação/efeitos dos fármacos , Neuroimunomodulação/imunologia , Índice de Gravidade de Doença , Ácido gama-Aminobutírico/fisiologia , Ácido gama-Aminobutírico/uso terapêutico
9.
Exp Neurol ; 237(1): 8-17, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22721768

RESUMO

Complement proteins C1q and C3 play a critical role in synaptic elimination during development. Axotomy of spinal motoneurons triggers removal of synaptic terminals from the cell surface of motoneurons by largely unknown mechanisms. We therefore hypothesized that the complement system is involved also in synaptic stripping of injured motoneurons. In the sciatic motor pool of wild type (WT) mice, the immunoreactivity (IR) for both C1q and C3 was increased after sciatic nerve transection (SNT). Mice deficient in C3 (C3(-/-)) showed a reduced loss of synaptic terminals from injured motoneurons at one week after SNT, as assessed by immunoreactivity for synaptic markers and electron microscopy. In particular, the removal of putative inhibitory terminals, immunopositive for vesicular inhibitory amino acid transporter (VIAAT) and ultrastructurally identified as type F synapses, was reduced in C3(-/-) mice. In contrast, lesion-induced removal of nerve terminals in C1q(-/-) mice appeared similar to WT mice. Growth associated protein (GAP)-43 mRNA expression in lesioned motoneurons increased much more in C3(-/-) compared to WT mice after SNT. After sciatic nerve crush (SNC), the C3(-/-) mice showed a faster functional recovery, assessed as grip strength, compared to WT mice. No differences were detected regarding nerve inflammation at the site of injury or pattern of muscle reinnervation. These data indicate that a non-classical pathway of complement activation is involved in axotomy-induced adult synapse removal, and that its inhibition promotes functional recovery.


Assuntos
Complemento C1q/deficiência , Complemento C3/deficiência , Neurônios Motores/patologia , Terminações Pré-Sinápticas/patologia , Sinapses/patologia , Animais , Axotomia/métodos , Complemento C1q/genética , Complemento C1q/fisiologia , Complemento C3/genética , Complemento C3/fisiologia , Regulação da Expressão Gênica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios Motores/imunologia , Inibição Neural/imunologia , Terminações Pré-Sinápticas/imunologia , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/cirurgia , Sinapses/imunologia
10.
J Comp Neurol ; 520(12): 2657-75, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22323214

RESUMO

The CD200/CD200R inhibitory immune ligand-receptor system regulates microglial activation/quiescence in adult brain. Here, we investigated CD200/CD200R at different stages of postnatal development, when microglial maturation takes place. We characterized the spatiotemporal, cellular, and quantitative expression pattern of CD200 and CD200R in the developing and adult C57/BL6 mice brain by immunofluorescent labeling and Western blotting. CD200 expression increased from postnatal day 1 (P1) to P5-P7, when maximum levels were found, and decreased to adulthood. CD200 was located surrounding neuronal bodies, and very prominently in cortical layer I, where CD200(+) structures included glial fibrillary acidic protein (GFAP)(+) astrocytes until P7. In the hippocampus, CD200 was mainly observed in the hippocampal fissure, where GFAP(+) /CD200(+) astrocytes were also found until P7. CD200(+) endothelium was seen in the hippocampal fissure and cortical blood vessels, notably from P14, showing maximum vascular CD200 in adults. CD200R(+) cells were a population of ameboid/pseudopodic Iba1(+) microglia/macrophages observed at all ages, but significantly decreasing with increasing age. CD200R(+) /Iba1(+) macrophages were prominent in the pial meninges and ventricle lining, mainly at P1-P5. CD200R(+) /Iba1(+) perivascular macrophages were observed in cortical and hippocampal fissure blood vessels, showing maximum density at P7, but being prominent until adulthood. CD200R(+) /Iba1(+) ameboid microglia in the cingulum at P1-P5 were the only CD200R(+) cells in the nervous tissue. In conclusion, the main sites of CD200/CD200R interaction seem to include the molecular layer and pial surface in neonates and blood vessels from P7 until adulthood, highlighting the possible role of the CD200/CD200R system in microglial development and renewal.


Assuntos
Antígenos CD/metabolismo , Química Encefálica/imunologia , Glicoproteínas de Membrana/metabolismo , Inibição Neural/imunologia , Envelhecimento/genética , Envelhecimento/imunologia , Animais , Animais Recém-Nascidos , Especificidade de Anticorpos/genética , Reações Antígeno-Anticorpo/genética , Antígenos CD/imunologia , Química Encefálica/genética , Feminino , Hipocampo/irrigação sanguínea , Hipocampo/crescimento & desenvolvimento , Hipocampo/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/imunologia , Microglia/metabolismo , Neocórtex/irrigação sanguínea , Neocórtex/crescimento & desenvolvimento , Neocórtex/imunologia , Inibição Neural/genética , Neurogênese/genética , Neurogênese/imunologia
11.
J Neurosci ; 32(1): 35-45, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22219268

RESUMO

Functional neuroimaging studies have implicated the prefrontal cortex (PFCTX) in descending modulation of pain and the placebo effect. This study was performed to elucidate comprehensive PFCTX gene expression in an animal model of persistent trigeminal pain. Adult male C57BL/6J mice received facial carrageenan injection and showed sustained increase in nociceptive responses. Microarray analyses of differentially expressed genes in the PFCTX at 3 d after injection showed "immune system process" as the dominant ontology term and increased mRNA expression of S100a8, S100a9, Lcn2, Il2rg, Fcgr1, Fcgr2b, C1qb, Ptprc, Ccl12, and Cd52 were verified by RT-PCR. Upregulation of S100A8, S100A9, and lipocalin 2 (LCN2) were confirmed by Western blots, and cells in the PFCTX were double immunolabeled with MPO, indicating they were neutrophils. Analyses of blood of facial carrageenan-injected mice also showed increased mRNA expression of these markers, suggesting transmigration of activated neutrophils into the brain. Other immune-related genes, Il2rg, Fcgr2b, C1qb, Ptprc, and Ccl12 were upregulated in the PFCTX but not blood. Approximately 70% of S100A9-positive cells in the PFCTX of carrageenan-injected mice were located in capillaries adherent to endothelial cells, whereas 30% were within the brain parenchyma. Carrageenan-injected mice showed significantly reduced nociceptive responses after injection of C terminus of murine S100A9 protein in the lateral ventricles and PFCTX but not somatosensory barrel cortex. Together, these findings demonstrate activation of immune-related genes in the PFCTX during inflammatory pain and highlight an exciting role of neutrophils in linking peripheral inflammation with immune activation of the PFCTX and antinociception.


Assuntos
Dor Crônica/imunologia , Perfilação da Expressão Gênica/métodos , Inibição Neural/imunologia , Infiltração de Neutrófilos/imunologia , Córtex Pré-Frontal/imunologia , Animais , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Dor Crônica/genética , Dor Crônica/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural/genética , Infiltração de Neutrófilos/genética , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo
12.
J Neurosci ; 31(20): 7259-63, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21593310

RESUMO

Synthetic amyloid-ß protein (Aß) oligomers bind with high affinity to cellular prion protein (PrP(C)), but the role of this interaction in mediating the disruption of synaptic plasticity by such soluble Aß in vitro is controversial. Here we report that intracerebroventricular injection of Aß-containing aqueous extracts of Alzheimer's disease (AD) brain robustly inhibits long-term potentiation (LTP) without significantly affecting baseline excitatory synaptic transmission in the rat hippocampus in vivo. Moreover, the disruption of LTP was abrogated by immunodepletion of Aß. Importantly, intracerebroventricular administration of antigen-binding antibody fragment D13, directed to a putative Aß-binding site on PrP(C), prevented the inhibition of LTP by AD brain-derived Aß. In contrast, R1, a Fab directed to the C terminus of PrP(C), a region not implicated in binding of Aß, did not significantly affect the Aß-mediated inhibition of LTP. These data support the pathophysiological significance of SDS-stable Aß dimer and the role of PrP(C) in mediating synaptic plasticity disruption by soluble Aß.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/administração & dosagem , Hipocampo/patologia , Potenciação de Longa Duração/fisiologia , Inibição Neural/imunologia , Fragmentos de Peptídeos/administração & dosagem , Proteínas PrPC/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Feminino , Hipocampo/metabolismo , Humanos , Injeções Intraventriculares , Masculino , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas PrPC/imunologia , Ratos , Ratos Wistar
13.
J Immunol ; 186(7): 4443-54, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21335487

RESUMO

The role of the ß2 adrenergic receptor (ß2AR) in the regulation of chronic neurodegenerative inflammation within the CNS is poorly understood. The purpose of this study was to determine neuroprotective effects of long-acting ß2AR agonists such as salmeterol in rodent models of Parkinson's disease. Results showed salmeterol exerted potent neuroprotection against both LPS and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenylpyridinium-induced dopaminergic neurotoxicity both in primary neuron-glia cultures (at subnanomolar concentrations) and in mice (1-10 µg/kg/day doses). Further studies demonstrated that salmeterol-mediated neuroprotection is not a direct effect on neurons; instead, it is mediated through the inhibition of LPS-induced microglial activation. Salmeterol significantly inhibited LPS-induced production of microglial proinflammatory neurotoxic mediators, such as TNF-α, superoxide, and NO, as well as the inhibition of TAK1-mediated phosphorylation of MAPK and p65 NF-κB. The anti-inflammatory effects of salmeterol required ß2AR expression in microglia but were not mediated through the conventional G protein-coupled receptor/cAMP pathway. Rather, salmeterol failed to induce microglial cAMP production, could not be reversed by either protein kinase A inhibitors or an exchange protein directly activated by cAMP agonist, and was dependent on ß-arrestin2 expression. Taken together, our results demonstrate that administration of extremely low doses of salmeterol exhibit potent neuroprotective effects by inhibiting microglial cell activation through a ß2AR/ß-arrestin2-dependent but cAMP/protein kinase A-independent pathway.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Dopamina/toxicidade , Microglia/imunologia , Inibição Neural/imunologia , Fármacos Neuroprotetores/uso terapêutico , Transdução de Sinais/imunologia , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura , Dopamina/biossíntese , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/uso terapêutico , Mediadores da Inflamação/toxicidade , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/patologia , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Fármacos Neuroprotetores/metabolismo , Doença de Parkinson/imunologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Ratos , Ratos Endogâmicos F344 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
14.
J Neuroimmunol ; 233(1-2): 54-64, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21186063

RESUMO

Normal aging processes, as well as, psychological stress affect the immune system; each can act alone, or interact with each other, to cause dysregulation of immune function substantially altering physical and mental health. The sympathetic nervous system (SNS), a major mediator of stress effects on immune function, is significantly affected by normal aging process, and stress can affect aging of the SNS. Previously, we have shown age-associated changes in sympathetic noradrenergic (NA) innervation of lymphoid organs in male rodents that affect immune regulation. The purpose of this study was to investigate sympathetic innervation of lymphoid organs and associated alterations in immune responses in young and aging female Fischer 344 (F344) rats. Histofluorescence and immunocytochemistry for NA innervation, and neurochemistry for norepinephrine (NE) levels were performed in the thymus, spleen, and mesenteric lymph nodes (MLN) isolated from 3-month-old young (normal estrous cycle), 8- to 9-month-old (onset of irregular estrous cycling), and 24-25 month, and 30-31 month female F344 rats (acyclic) at diestrus based on vaginal smears. Age-related alterations in natural killer (NK) cell activity, interleukin-2 (IL-2) and interferon-γ (IFN-γ) production, T and B lymphocyte proliferation were examined in splenocytes. Sympathetic NA innervation and NE levels increased with aging in the thymus, declined in spleen and MLN, and was accompanied by significant reductions in NK cell activity, IL-2 and IFN-γ production, and T and B cell proliferation in old female rats. In 8-9 mo rats, NE levels in the hilar region of the spleen and IFN-γ production were unaltered, while NE levels in the end region of the spleen and IL-2 production were reduced. Collectively, these results suggest that aging is characterized by significant alterations in sympathetic NA innervation in the thymus, spleen, and MLN associated with immunosuppression, and that there is a marked shift in NA activity and immune reactivity occurring during middle-aged female rats.


Assuntos
Envelhecimento/imunologia , Tecido Linfoide/imunologia , Tecido Linfoide/inervação , Inibição Neural/imunologia , Norepinefrina/fisiologia , Fibras Simpáticas Pós-Ganglionares/patologia , Envelhecimento/patologia , Animais , Modelos Animais de Doenças , Feminino , Tecido Linfoide/patologia , Mesentério/imunologia , Mesentério/inervação , Ratos , Ratos Endogâmicos F344 , Baço/imunologia , Baço/inervação , Baço/patologia , Fibras Simpáticas Pós-Ganglionares/citologia
15.
Brain ; 133(11): 3166-80, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20884644

RESUMO

Synaptic inhibition is a central factor in the fine tuning of neuronal activity in the central nervous system. Symptoms consistent with reduced inhibition such as stiffness, spasms and anxiety occur in paraneoplastic stiff person syndrome with autoantibodies against the intracellular synaptic protein amphiphysin. Here we show that intrathecal application of purified anti-amphiphysin immunoglobulin G antibodies induces stiff person syndrome-like symptoms in rats, including stiffness and muscle spasms. Using in vivo recordings of Hoffmann reflexes and dorsal root potentials, we identified reduced presynaptic GABAergic inhibition as an underlying mechanism. Anti-amphiphysin immunoglobulin G was internalized into neurons by an epitope-specific mechanism and colocalized in vivo with presynaptic vesicular proteins, as shown by stimulation emission depletion microscopy. Neurons from amphiphysin deficient mice that did not internalize the immunoglobulin provided additional evidence of the specificity in antibody uptake. GABAergic synapses appeared more vulnerable than glutamatergic synapses to defective endocytosis induced by anti-amphiphysin immunoglobulin G, as shown by increased clustering of the endocytic protein AP180 and by defective loading of FM 1-43, a styryl dye used to label cell membranes. Incubation of cultured neurons with anti-amphiphysin immunoglobulin G reduced basal and stimulated release of γ-aminobutyric acid substantially more than that of glutamate. By whole-cell patch-clamp analysis of GABAergic inhibitory transmission in hippocampus granule cells we showed a faster, activity-dependent decrease of the amplitude of evoked inhibitory postsynaptic currents in brain slices treated with antibodies against amphiphysin. We suggest that these findings may explain the pathophysiology of the core signs of stiff person syndrome at the molecular level and show that autoantibodies can alter the function of inhibitory synapses in vivo upon binding to an intraneuronal key protein by disturbing vesicular endocytosis.


Assuntos
Autoanticorpos/uso terapêutico , Proteínas do Tecido Nervoso/imunologia , Inibição Neural/imunologia , Rigidez Muscular Espasmódica/imunologia , Rigidez Muscular Espasmódica/terapia , Ácido gama-Aminobutírico/metabolismo , Idoso , Animais , Autoanticorpos/administração & dosagem , Autoanticorpos/fisiologia , Células Cultivadas , Endocitose/imunologia , Feminino , Humanos , Imunização Passiva/métodos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/fisiologia , Imunoglobulina G/uso terapêutico , Potenciais Pós-Sinápticos Inibidores/fisiologia , Injeções Espinhais , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Ratos , Ratos Endogâmicos Lew , Rigidez Muscular Espasmódica/patologia , Ácido gama-Aminobutírico/deficiência
16.
J Neuroimmunol ; 224(1-2): 85-92, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20570369

RESUMO

We characterized the role of adenosine receptor (AR) subtypes in the modulation of glutamatergic neurotransmission by the chemokine fractalkine (CX3CL1) in mouse hippocampal CA1 neurons. CX(3)CL1 causes a reversible depression of excitatory postsynaptic current (EPSC), which is abolished by the A(3)R antagonist MRS1523, but not by A(1)R (DPCPX) or A(2A)R (SCH58261) antagonists. Consistently, CX3CL1-induced EPSC depression is absent in slices from A(3)R(-/-) but not A(1)R(-/-) or A(2A)R(-/-) mice. Further, A(3)R stimulation causes similar EPSC depression. In cultured neurons, CX3CL1-induced depression of AMPA current shows A(1)R-A(3)R pharmacology. We conclude that glutamatergic depression induced by released adenosine requires the stimulation of different ARs.


Assuntos
Região CA1 Hipocampal/imunologia , Região CA1 Hipocampal/metabolismo , Quimiocina CX3CL1/fisiologia , Potenciais Pós-Sinápticos Excitadores/imunologia , Inibição Neural/imunologia , Receptores Purinérgicos P1/fisiologia , Transmissão Sináptica/imunologia , Antagonistas do Receptor A1 de Adenosina , Antagonistas do Receptor A2 de Adenosina , Antagonistas do Receptor A3 de Adenosina , Animais , Região CA1 Hipocampal/ultraestrutura , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibição Neural/genética , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/imunologia , Terminações Pré-Sinápticas/metabolismo , Receptor A1 de Adenosina/deficiência , Receptor A1 de Adenosina/fisiologia , Receptor A3 de Adenosina/deficiência , Receptor A3 de Adenosina/fisiologia , Receptores A2 de Adenosina/deficiência , Receptores A2 de Adenosina/fisiologia , Receptores Purinérgicos P1/deficiência , Receptores Purinérgicos P1/genética , Transmissão Sináptica/genética
17.
Neuroscience ; 164(3): 1210-23, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19748551

RESUMO

Serotonin (5-hydroxytryptamine; 5-HT) has an important role in mood regulation, and its dysfunction in the central nervous system (CNS) is associated with depression. Reports of mood and immune disorder co-morbidities indicate that immune-5-HT interactions may mediate depression present in immune compromised disease states including HIV/AIDS, multiple sclerosis, and Parkinson's disease. Chemokines, immune proteins that induce chemotaxis and cellular adhesion, and their G-protein coupled receptors distribute throughout the CNS, regulate neuronal patterning, and mediate neuropathology. The purpose of this study is to investigate the neuroanatomical and neurophysiological relationship between the chemokine fractalkine/CX3CL1 and its receptor CX3CR1 with 5-HT neurons in the rat midbrain raphe nuclei (RN). Immunohistochemistry was used to examine the colocalization of CX3CL1 or CX3CR1 with 5-HT in the RN, and whole-cell patch-clamp recordings in rat brain slices were used to determine the functional impact of CX3CL1 on 5-HT dorsal raphe nucleus (DRN) neurons. Greater than 70% of 5-HT neurons colocalize with CX3CL1 and CX3CR1 in the RN. CX3CL1 localizes as discrete puncta throughout the cytoplasm, whereas CX3CR1 concentrates to the perinuclear region of 5-HT neurons and exhibits microglial expression. CX3CL1 and CX3CR1 also colocalize with one another on individual RN cells. Electrophysiology studies indicate a CX3CL1-mediated enhancement of spontaneous inhibitory postsynaptic current (sIPSC) amplitude and dose-dependent increase of evoked IPSC (eIPSC) amplitude without affecting eIPSC paired-pulse ratio, a finding observed selectively in 5-HT neurons. CX3CL1's effect on eIPSC amplitude is blocked by pretreatment with an anti-CX3CL1 neutralizing antibody. Thus, CX3CL1 enhances postsynaptic GABA receptor number or sensitivity on 5-HT DRN neurons under conditions of both spontaneous and synaptically-evoked GABA release. CX3CL1 may indirectly inhibit 5-HT neurotransmission by increasing the sensitivity of 5-HT DRN neurons to GABA inputs. Therapies targeting CX3CL1 may treat serotonin related mood disorders, including depression experienced by patients with compromised immune systems.


Assuntos
Quimiocina CX3CL1/metabolismo , Mesencéfalo/metabolismo , Neurônios/metabolismo , Núcleos da Rafe/metabolismo , Serotonina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Quimiocina CX3CL1/farmacologia , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/imunologia , Transtorno Depressivo/fisiopatologia , Doenças do Sistema Imunitário/complicações , Doenças do Sistema Imunitário/fisiopatologia , Doenças do Sistema Imunitário/psicologia , Masculino , Mesencéfalo/citologia , Inibição Neural/efeitos dos fármacos , Inibição Neural/imunologia , Neurônios/efeitos dos fármacos , Núcleos da Rafe/citologia , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/imunologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
18.
J Neuroimmunol ; 215(1-2): 36-42, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19709758

RESUMO

We have examined how the chemokine fractalkine/CX(3)CL1 influences long-term potentiation (LTP) in CA1 mouse hippocampal slices. Field potentials (fEPSPs) were recorded upon electrical stimulation of Schaffer collaterals. It was found that application of CX(3)CL1 inhibits LTP when present during the critical induction period. LTP impairment (i) failed to occur in CX(3)CR1 deficient mice (CX(3)CR1(GFP/GFP)) and in the presence of okadaic acid (OA); (ii) required the activation of adenosine receptor 3 (A(3)R), since it was prevented in A(3)R-deficient mice or by MRS1523, a selective A(3)R antagonist. Together, these findings indicate that CX(3)CL1 inhibits hippocampal LTP through A(3)R activity.


Assuntos
Quimiocina CX3CL1/fisiologia , Hipocampo/imunologia , Potenciação de Longa Duração/imunologia , Receptor A3 de Adenosina/metabolismo , Animais , Hipocampo/metabolismo , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibição Neural/imunologia , Receptor A3 de Adenosina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...