Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.631
Filtrar
1.
J Enzyme Inhib Med Chem ; 39(1): 2335927, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38606915

RESUMO

A novel series of hydantoins incorporating phthalimides has been synthesised by condensation of activated phthalimides with 1-aminohydantoin and investigated for their inhibitory activity against a panel of human (h) carbonic anhydrase (CA, EC 4.2.1.1): the cytosolic isoforms hCA I, hCA II, and hCA VII, secreted isoform hCA VI, and the transmembrane hCA IX, by a stopped-flow CO2 hydrase assay. Although all newly developed compounds were totally inactive on hCA I and mainly ineffective towards hCA II, they generally exhibited moderate repressing effects on hCA VI, VII, and IX with KIs values in the submicromolar to micromolar ranges. The salts 3a and 3b, followed by derivative 5, displayed the best inhibitory activity of all the evaluated compounds and their binding mode was proposed in silico. These compounds can also be considered interesting starting points for the development of novel pharmacophores for this class of enzyme inhibitors.


Assuntos
Anidrases Carbônicas , Hidantoínas , Humanos , Anidrases Carbônicas/metabolismo , Anidrase Carbônica IX , Relação Estrutura-Atividade , Anidrase Carbônica I , Anidrase Carbônica II , Isoformas de Proteínas/metabolismo , Ftalimidas/farmacologia , Hidantoínas/farmacologia , Inibidores da Anidrase Carbônica/química , Estrutura Molecular
2.
J Inorg Biochem ; 256: 112547, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38581802

RESUMO

Transition metal ions are structural and catalytic cofactors of many proteins including human carbonic anhydrase (CA), a Zn-dependent hydrolase. Sulfonamide inhibitors of CA recognize and form a coordination bond with the Zn ion located in the active site of the enzyme. The Zn ion may be removed or substituted with other metal ions. Such CA protein retains the structure and could serve as a tool to study metal ion role in the recognition and binding affinity of inhibitor molecules. We measured the affinities of selected divalent transition metal ions, including Mn, Fe, Co, Ni, Cu, Cd, Hg, and Zn to metal-free CA isozymes CA I, CA II, and CAIX by fluorescence-based thermal shift assay, prepared metal-substituted CAs, and determined binding of diverse sulfonamide compounds. Sulfonamide inhibitor binding to metal substituted CA followed a U-shape pH dependence. The binding was dissected to contributing binding-linked reactions and the intrinsic binding reaction affinity was calculated. This value is independent of pH and protonation reactions that occur simultaneously upon binding native CA and as demonstrated here, to metal substituted CA. Sulfonamide inhibitor binding to cancer-associated isozyme CAIX diminished in the order: Zn > Co > Hg > Cu > Cd > Mn > Ni. Energetic contribution of the inhibitor-metal coordination bond was determined for all above metals. The understanding of the principles of metal influence on ligand affinity and selectivity should help design new drugs targeting metalloenzymes.


Assuntos
Anidrase Carbônica IX , Inibidores da Anidrase Carbônica , Sulfonamidas , Sulfonamidas/química , Inibidores da Anidrase Carbônica/química , Humanos , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/química , Ligação Proteica , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/química , Concentração de Íons de Hidrogênio
3.
Int J Biol Macromol ; 268(Pt 1): 131548, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642682

RESUMO

The coumarin is one of the most promising classes of non-classical carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. In continuation of our ongoing work on search of coumarin based selective carbonic anhydrase inhibitors, a new series of 6-aminocoumarin based 16 novel analogues of coumarin incorporating thiazole (4a-p) have been synthesized and studied for their hCA inhibitory activity against a panel of human carbonic anhydrases (hCAs). Most of these newly synthesized compounds exhibited interesting inhibition constants in the nanomolar range. Among the tested compounds, the compounds 4f having 4-methoxy substitution exhibited activity at 90.9 nM against hCA XII isoform. It is noteworthy to see that all compounds were specifically and selectively active against isoforms hCA IX and hCA XII, with Ki under 1000 nM range. It is anticipated that these newly synthesized coumarin-thiazole hybrids (4a-p) may emerge as potential leads candidates against hCA IX and hCA XII as selective inhibitors compared to hCA I and hCA II.


Assuntos
Anidrase Carbônica IX , Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Cumarínicos , Desenho de Fármacos , Tiazóis , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Humanos , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/síntese química , Tiazóis/química , Tiazóis/farmacologia , Tiazóis/síntese química , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/metabolismo , Anidrases Carbônicas/metabolismo , Relação Estrutura-Atividade , Antígenos de Neoplasias/metabolismo
5.
J Med Chem ; 67(9): 7406-7430, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38642371

RESUMO

A dual-targeting approach is predicted to yield better cancer therapy outcomes. Consequently, a series of coumarin-based thiazoles (5a-h, 6, and 7a-e) were designed and constructed as potential carbonic anhydrase (CA) and VEGFR-2 suppressors. The inhibitory actions of the target compounds were assessed against CA isoforms IX and VEGFR-2. The assay results showed that coumarin-based thiazoles 5a, 5d, and 5e can effectively inhibit both targets. 5a, 5d, and 5e cytotoxic effects were tested on pancreatic, breast, and prostate cancer cells (PANC1, MCF7, and PC3). Further mechanistic investigation disclosed the ability of 5e to interrupt the PANC1 cell progression in the S stage by triggering the apoptotic cascade, as seen by increased levels of caspases 3, 9, and BAX, alongside the Bcl-2 decline. Moreover, the in vivo efficacy of compound 5e as an antitumor agent was evaluated. Also, molecular docking and dynamics displayed distinctive interactions between 5e and CA IX and VEGFR-2 binding pockets.


Assuntos
Antineoplásicos , Anidrase Carbônica IX , Inibidores da Anidrase Carbônica , Cumarínicos , Simulação de Acoplamento Molecular , Tiazóis , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/síntese química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/metabolismo , Tiazóis/química , Tiazóis/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Animais , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Camundongos , Cristalografia por Raios X , Apoptose/efeitos dos fármacos , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Masculino , Antígenos de Neoplasias/metabolismo
6.
Int J Biol Macromol ; 267(Pt 1): 131268, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580011

RESUMO

Human carbonic anhydrases (hCAs) play a central role in various physiological processes in the human body. HCAs catalyze the reversible hydration of CO2 into HCO3-, and hence maintains the fluid and pH balance. Overexpression of CA II is associated with diseases, such as glaucoma, and epilepsy. Therefore, CAs are important clinical targets and inhibition of different isoforms, especially hCA II is used in treatment of glaucoma, altitude sickness, and epilepsy. Therapeutically used CA inhibitors (CAI) are sulfonamide-based, such as acetazolamide, dichlorphenamide, methazolamide, ethoxzolamide, etc. However, they exhibit several undesirable effects such as numbness, tingling of extremities, malaise, metallic taste, fatigue, renal calculi, and metabolic acidosis. Therefore, there is an urgent need to identify safe and effective inhibitors of the hCAs. In this study, different phenyl boronic acids 1-5 were evaluated against bovine (bCA II) and hCA II. Among all, compound 1 (4-acetylphenyl boronic acid) was found to be active against bCAII and hCA II with IC50 values of 246 ± 0.48 and 281.40 ± 2.8 µM, respectively, while the remaining compounds were found in-active. Compound 1 was identified as competitive inhibitor of hCA II enzyme (Ki = 283.7 ± 0.002 µM). Additionally, compound 1 was found to be non-toxic against BJ Human fibroblast cell line. The X-ray crystal structure for hCA II in-complex with compound 1 was evaluated to a resolution of 2.6 Å. In fact, this the first structural analysis of a phenyl boron-based inhibitor bound to hCA II, allowing an additional structure-activity analysis of the compounds. Compound 1 was found to be directly bound in the active site of hCA II by interacting with His94, His119, and Thr199 residues. In addition, a bond of 3.11 Å between the zinc ion and coordinated boron atom of the boronic acid moiety of compound 1 was also observed, contributing to binding affinity of compound 1 for hCA II. PDB ID: 8IGF.


Assuntos
Ácidos Borônicos , Anidrase Carbônica II , Inibidores da Anidrase Carbônica , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Humanos , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/química , Anidrase Carbônica II/metabolismo , Cristalografia por Raios X , Cristalização , Animais , Bovinos , Modelos Moleculares , Relação Estrutura-Atividade
7.
Int J Biol Macromol ; 267(Pt 1): 131489, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608980

RESUMO

This paper describes the in vitro inhibition potential of bisoxadiazole-substituted sulfonamide derivatives (6a-t) against bovine carbonic anhydrase (bCA) after they were designed through computational analyses and evaluated the predicted interaction via molecular docking. First, in silico ADMET predictions and physicochemical property analysis of the compounds provided insights into solubility and permeability, then density functional theory (DFT) calculations were performed to analyse their ionization energies, nucleophilicity, in vitro electron affinity, dipole moments and molecular interactions under vacuum and dimethyl sulfoxide (DMSO) conditions. After calculating the theoretical inhibition constants, IC50 values determined from enzymatic inhibition were found between 12.93 and 45.77 µM. Molecular docking evaluation revealed favorable hydrogen bonding and π-interactions of the compounds within the bCA active site. The experimentally most active compound, 6p, exhibited the strongest inhibitory activity with a theoretical inhibition constant value of 9.41 nM and H-bonds with Gln91, Thr198, and Trp4 residues and His63 Pi-cation interactions with His63 residues. Overall, the study reveals promising bCA blocking potential for the synthesized derivatives, similar to acetazolamide.


Assuntos
Inibidores da Anidrase Carbônica , Simulação de Acoplamento Molecular , Oxidiazóis , Sulfonamidas , Bovinos , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Animais , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Oxidiazóis/química , Oxidiazóis/síntese química , Oxidiazóis/farmacologia , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Ligação de Hidrogênio , Relação Estrutura-Atividade , Domínio Catalítico
8.
Eur J Med Chem ; 271: 116434, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38653067

RESUMO

Diabetes mellitus is a chronic metabolic disorder characterized by improper expression/function of a number of key enzymes that can be regarded as targets for anti-diabetic drug design. Herein, we report the design, synthesis, and biological assessment of two series of thiazolidinone-based sulfonamides 4a-l and 5a-c as multitarget directed ligands (MTDLs) with potential anti-diabetic activity through targeting the enzymes: α-glucosidase and human carbonic anhydrase (hCA) II. The synthesized sulfonamides were evaluated for their inhibitory activity against α-glucosidase where most of the compounds showed good to potent activities. Compounds 4d and 4e showed potent inhibitory activities (IC50 = 0.440 and 0.3456 µM), comparable with that of the positive control (acarbose; IC50 = 0.420 µM). All the synthesized derivatives were also tested for their inhibitory activities against hCA I, II, IX, and XII. They exhibited different levels of inhibition against these isoforms. Compound 4d outstood as the most potent one against hCA II with Ki equals to 7.0 nM, more potent than the reference standard (acetazolamide; Ki = 12.0 nM). In silico studies for the most active compounds within the active sites of α-glucosidase and hCA II revealed good binding modes that can explain their biological activities. MM-GBSA refinements and molecular dynamic simulations were performed on the top-ranking docking pose of the most potent compound 4d to confirm the formation of stable complex with both targets. Compound 4d was screened for its in vivo antihyperglycemic efficacy by using the oral glucose tolerance test. Compound 4d decreased blood glucose level to 217 mg/dl, better than the standard acarbose (234 mg/dl). Hence, this revealed its synergistic mode of action on post prandial hyperglycemia and hepatic gluconeogenesis. Thus, these benzenesulfonamide thiazolidinone hybrids could be considered as promising multi-target candidates for the treatment of type II diabetes mellitus.


Assuntos
Benzenossulfonamidas , Anidrase Carbônica II , Inibidores da Anidrase Carbônica , Diabetes Mellitus Tipo 2 , Inibidores de Glicosídeo Hidrolases , Hipoglicemiantes , Sulfonamidas , Tiazolidinas , alfa-Glucosidases , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , alfa-Glucosidases/metabolismo , Humanos , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/síntese química , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/síntese química , Relação Estrutura-Atividade , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Animais , Ligantes , Tiazolidinas/química , Tiazolidinas/farmacologia , Tiazolidinas/síntese química , Estrutura Molecular , Ratos , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Diabetes Mellitus Experimental/tratamento farmacológico , Masculino , Ratos Wistar
9.
J Biochem Mol Toxicol ; 38(4): e23704, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588035

RESUMO

A series of novel pyrazole-dicarboxamides were synthesized from pyrazole-3,4-dicarboxylic acid chloride and various primary and secondary sulfonamides. The structures of the new compounds were confirmed by FT-IR, 1H-NMR, 13C-NMR, and HRMS. Then the inhibition effects of newly synthesized molecules on human erythrocyte hCA I and hCA II isoenzymes were investigated. Ki values of the compounds were in the range of 0.024-0.496 µM for hCA I and 0.006-5.441 µM for hCA II. Compounds 7a and 7i showed nanomolar level of inhibition of hCA II, and these compounds exhibited high selectivity for this isoenzyme. Molecular docking studies were performed between the most active compounds 7a, 7b, 7i, and the reference inhibitor AAZ and the hCAI and hCAII to investigate the binding mechanisms between the compounds and the isozymes. These compounds showed better interactions than the AAZ. ADMET and drug-likeness analyses for the compounds have shown that the compounds can be used pharmacologically in living organisms.


Assuntos
Anidrase Carbônica I , Inibidores da Anidrase Carbônica , Humanos , Inibidores da Anidrase Carbônica/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Anidrase Carbônica II , Espectroscopia de Infravermelho com Transformada de Fourier , Pirazóis/química , Sulfonamidas/química , Isoenzimas , Sulfanilamida
10.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542320

RESUMO

In this study, we designed two series of novel anthraquinone-based benzenesulfonamide derivatives and their analogues as potential carbonic anhydrase inhibitors (CAIs) and evaluated their inhibitory activities against off-target human carbonic anhydrase II (hCA II) isoform and tumor-associated human carbonic anhydrase IX (hCA IX) isoform. Most of these compounds exhibited good inhibitory activities against hCA II and IX. The compounds that exhibited the best hCA inhibition were further studied against the MDA-MB-231, MCF-7, and HepG2 cell lines under hypoxic and normoxic conditions. Additionally, the compounds exhibiting the best antitumor activity were subjected to apoptosis and mitochondrial membrane potential assays, which revealed a significant increase in the percentage of apoptotic cells and a notable decrease in cell viability. Molecular docking studies were performed to demonstrate the presence of numerous hydrogen bonds and hydrophobic interactions between the compounds and the active site of hCA. Absorption, distribution, metabolism, excretion (ADME) predictions showed that all of the compounds had good pharmacokinetic and physicochemical properties.


Assuntos
Benzenossulfonamidas , Inibidores da Anidrase Carbônica , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Anidrase Carbônica/química , Simulação de Acoplamento Molecular , Sulfonamidas/química , Anidrase Carbônica IX/metabolismo , Isoformas de Proteínas/metabolismo , Antraquinonas/farmacologia
11.
J Comput Chem ; 45(18): 1530-1539, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38491535

RESUMO

Inhibiting the enzymes carbonic anhydrase I (CA I) and carbonic anhydrase II (CA II) presents a potential avenue for addressing nervous system ailments such as glaucoma and Alzheimer's disease. Our study explored harnessing explainable artificial intelligence (XAI) to unveil the molecular traits inherent in CA I and CA II inhibitors. The PubChem molecular fingerprints of these inhibitors, sourced from the ChEMBL database, were subjected to detailed XAI analysis. The study encompassed training 10 regression models using IC50 values, and their efficacy was gauged using metrics including R2, RMSE, and time taken. The Decision Tree Regressor algorithm emerged as the optimal performer (R2: 0.93, RMSE: 0.43, time-taken: 0.07). Furthermore, the PFI method unveiled key molecular features for CA I inhibitors, notably PubChemFP432 (C(O)N) and PubChemFP6978 (C(O)O). The SHAP analysis highlighted the significance of attributes like PubChemFP539 (C(O)NCC), PubChemFP601 (C(O)OCC), and PubChemFP432 (C(O)N) in CA I inhibitiotable n. Likewise, features for CA II inhibitors encompassed PubChemFP528(C(O)OCCN), PubChemFP791 (C(O)OCCC), PubChemFP696 (C(O)OCCCC), PubChemFP335 (C(O)NCCN), PubChemFP580 (C(O)NCCCN), and PubChemFP180 (C(O)NCCC), identified through SHAP analysis. The sulfonamide group (S), aromatic ring (A), and hydrogen bonding group (H) exert a substantial impact on CA I and CA II enzyme activities and IC50 values through the XAI approach. These insights into the CA I and CA II inhibitors are poised to guide future drug discovery efforts, serving as a beacon for innovative therapeutic interventions.


Assuntos
Inteligência Artificial , Anidrase Carbônica II , Anidrase Carbônica I , Inibidores da Anidrase Carbônica , Desenho de Fármacos , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/metabolismo , Anidrase Carbônica II/química , Anidrase Carbônica I/antagonistas & inibidores , Anidrase Carbônica I/metabolismo , Humanos , Estrutura Molecular
12.
Chem Biol Drug Des ; 103(3): e14494, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38490810

RESUMO

A series of synthesized sulfonyl thiourea derivatives (7a-o) of substituted 2-amino-4,6-diarylpyrimidines (4a-o) exhibited the remarkable inhibitory activity against some the human carbonic anhydrases (hCAs), including hCA I, II, IX, and XII isoforms. The inhibitory efficacy of synthesized sulfonyl thiourea derivatives were experimentally validated by in vitro enzymatic assays. 7a (KI = 46.14 nM), 7j (KI = 48.92 nM), and 7m (KI = 62.59 nM) (for isoform hCA I); 7f (KI = 42.72 nM), 7i (KI = 40.98 nM), and 7j (KI = 33.40 nM) (for isoform hCA II); 7j (KI = 228.5 nM), 7m (KI = 195.4 nM), and 7n (KI = 210.1 nM) (for isoform hCA IX); 7l (KI = 116.9 nM), 7m (KI = 118.8 nM), and 7n (KI = 147.2 nM) (for isoform hCA XII) in comparison with KI values of 452.1, 327.3, 437.2, and 338.9 nM, respectively, of the standard drug AAZ. These compounds also had significantly more potent inhibitory action against cytosolic isoform hCA I and tumor-associated isoforms hCA IX and hCA XII. Furthermore, the potential inhibitory compounds were subjected to in silico screening for molecular docking and molecular dynamics simulations. The results of in vitro and in silico studies revealed that compounds 7a, 7j, and 7m were the most promising derivatives in this series due to their significant effects on studied hCA I, II, IX, and XII isoforms, respectively. The results showed that the sulfonyl thiourea moiety was accommodated deeply in the active site and interacted with the zinc ion in the receptors.


Assuntos
Anidrase Carbônica I , Inibidores da Anidrase Carbônica , Humanos , Anidrase Carbônica I/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Isoenzimas/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Pirimidinas/química , Pirimidinas/farmacologia
13.
ChemMedChem ; 19(10): e202400004, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38356418

RESUMO

A new series of tetrasubstituted imidazole carrying sulfonamide as zinc-anchoring group has been designed. The structures of the synthesized derivatives 5 a-l have been confirmed by spectroscopic analysis. These compounds incorporate an ethylenic spacer between the benzenesulfonamide and the rest of the trisubstituted imidazole moiety and were tested as inhibitors of carbonic anhydrases and for in-vitro cytotoxicity. Most of them act as effective inhibitors of the tumor-linked CA isoforms IX and XII, in nanomolar range. Also, different compounds have shown selectivity in comparable with the standard acetazolamide. Our IBS 5 d, 5 g, and 5 l (with Ki: 10.1, 19.4, 19.8 nM against hCA IX and 47, 45, 20 nM against hCA IX) showed the best inhibitory profile. In-vitro screening of all derivatives against a full sixty-cell-lined from NCI at a single dose of 10 µM offered growth inhibition of up to 45 %. Compound 5 b has been identified with the most potent cytotoxic activity and broad spectrum. Docking studies have also been implemented and were also in accordance with the biological outcomes. Our SAR analysis has interestingly proposed efficient tumor-related hCAs IX/XII suppression.


Assuntos
Antígenos de Neoplasias , Benzenossulfonamidas , Anidrase Carbônica IX , Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Imidazóis , Sulfonamidas , Humanos , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/metabolismo , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/síntese química , Relação Estrutura-Atividade , Anidrases Carbônicas/metabolismo , Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga
14.
Chem Asian J ; 19(8): e202400067, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38334332

RESUMO

The inhibitory effects of veralipride, a benzamide-class antipsychotic acting as dopamine D2 receptors antagonist incorporates a primary sulfonamide moiety and was investigated for its interactions with carbonic anhydrase (CA) isoforms. In vitro profiling using the stopped-flow technique revealed that veralipride exhibited potent inhibitory activity across all tested hCA isoforms, with exception of hCA III. Comparative analysis with standard inhibitors, acetazolamide (AAZ), and sulpiride, provided insights for understanding the relative efficacy of veralipride as CA inhibitor. The study reports the X-ray crystal structure analysis of the veralipride adduct with three human (h) isoforms, hCA I, II, and CA XII mimic, allowing the understanding of the molecular interactions rationalizing its inhibitory effects against each isoform. These findings contribute to our understanding of veralipride pharmacological properties and for the design of structural analogs endowed with polypharmacological properties.


Assuntos
Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Humanos , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Cristalografia por Raios X , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/química , Antagonistas dos Receptores de Dopamina D2/farmacologia , Antagonistas dos Receptores de Dopamina D2/química , Antagonistas dos Receptores de Dopamina D2/síntese química , Benzamidas/química , Benzamidas/farmacologia , Benzamidas/síntese química , Receptores de Dopamina D2/metabolismo , Estrutura Molecular , Modelos Moleculares , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Relação Estrutura-Atividade
15.
Bioorg Chem ; 144: 107154, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309003

RESUMO

Novel 1,2,3-triazole benzenesulfonamide derivatives were designed as inhibitors for the tumor- related hCA IX and XII isoforms. Most of the synthesized compounds showed good inhibitory activity against hCA IX and hCA XII isoforms. Compounds 4d, 5h and 6b, exhibited remarkable activity as hCA IX inhibitors, with Ki values in the range of 0.03 to 0.06 µM, more potent than AAZ. Additionally, compounds 5b and 6d, efficiently inhibited hCA XII isoform, with Ki value of 0.02 µM, respectively, similar to AAZ. Further investigation for those potent derivatives against MCF-7, Hep-3B and WI-38 cell lines was achieved. Compounds 4d and 6d exerted dual cytotoxic activity against MCF-7 and Hep-3B cell lines, with IC50 values of 3.35 & 2.12 µM against MCF-7 cell line and 1.72 & 1.56 µM against Hep-3B cell line, with high SI values ranged from 8.92 to 17.38 on both of the cell lines. Besides, they showed a high safety profile against normal human cell line, WI-38. Moreover, compound 5h had better cytotoxic effect on MCF-7 than the reference, DOX, with IC50 value of 4.02 µM. While, compounds 5b and 6b showed higher activity against Hep-3B if compared to the reference drug, 5-FU. From ADME study, compounds 4d, 5b, 6b and 6d obeyed Lipinski's rule of five, and they might be orally active derivatives, while, compound 5h exerted less oral bioavailability than the reference standard acetazolamide. Molecular docking and MDS studies predicted the binding mode and the stability of the target compounds inside hCA IX and hCA XII active sites, especially for compounds 5b and 6b.


Assuntos
Antineoplásicos , Anidrases Carbônicas , Humanos , Anidrase Carbônica IX , Benzenossulfonamidas , Anidrases Carbônicas/metabolismo , Simulação de Acoplamento Molecular , Triazóis/farmacologia , Triazóis/química , Relação Estrutura-Atividade , Sulfonamidas/química , Inibidores da Anidrase Carbônica/química , Antineoplásicos/química , Isoformas de Proteínas/metabolismo , Estrutura Molecular
16.
ChemMedChem ; 19(9): e202300680, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38323458

RESUMO

This study examines efficiency of a newly synthesized sulfonamide derivative 2-bromo-N-(4-sulfamoylphenyl)propanamide (MMH-1) on the inhibition of Carbonic Anhydrase IX (CA IX), which is overexpressed in many solid tumors including breast cancer. The inhibitory potential of MMH-1 compound against its four major isoforms, including cytosolic isoforms hCA I and II, as well as tumor-associated membrane-bound isoforms hCA IX and XII, was evaluated. To this context, the cytotoxic effect of MMH-1 on cancer and normal cells was tested and found to selectively affect MDA-MB-231 cells. MMH-1 reduced cell proliferation by holding cells in the G0/G1 phase (72 %) and slowed the cells' wound healing capacity. MMH-1 inhibited CA IX under both hypoxic and normoxic conditions and altered the morphology of triple negative breast cancer cells. In MDA-MB-231 cells, inhibition of CA IX was accompanied by a decrease in extracellular pH acidity (7.2), disruption of mitochondrial membrane integrity (80 %), an increase in reactive oxygen levels (25 %), and the triggering of apoptosis (40 %). In addition, the caspase cascade (CASP-3, -8, -9) was activated in MDA-MB-231 cells, triggering both the extrinsic and intrinsic apoptotic pathways. The expression of pro-apoptotic regulatory proteins (Bad, Bax, Bid, Bim, Cyt-c, Fas, FasL, TNF-a, TNF-R1, HTRA, SMAC, Casp-3, -8, P21, P27, and P53) was increased, while the expression of anti-apoptotic proteins, apoptosis inhibitor proteins (IAPs), and heat shock proteins (HSPs) (Bcl-2, Bcl-w, cIAP-2, HSP27, HSP60, HSP70, Survivin, Livin, and XIAP) was decreased. These results propose that the MMH-1 compound could triggers apoptosis in MDA-MB-231 cells via the pH/MMP/ROS pathway through the inhibition of CA IX. This compound is thought to have high potential and promising anticancer properties in the treatment of aggressive tumors.


Assuntos
Antígenos de Neoplasias , Antineoplásicos , Apoptose , Anidrase Carbônica IX , Inibidores da Anidrase Carbônica , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Sulfonamidas , Humanos , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfonamidas/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Antígenos de Neoplasias/metabolismo , Apoptose/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga
17.
Bioorg Chem ; 145: 107168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354500

RESUMO

Being aware of the need to develop more efficient therapies against cancer, herein we disclose an innovative approach for the design of selective antiproliferative agents. We have accomplished the conjugation of a coumarin fragment with lipophilic cations (triphenylphosphonium salts, guanidinium) for providing mitochondriotropic agents that simultaneously target also carbonic anhydrases IX and XII, involved in the development and progression of cancer. The new compounds prepared herein turned out to be strong inhibitors of carbonic anhydrases IX and XII of human origin (low-to-mid nM range), also endowed with high selectivity, exhibiting negligible activity towards cytosolic CA isoforms. Key interactions with the enzyme were analysed using docking and molecular dynamics simulations. Regarding their in vitro antiproliferative activities, an increase of the tether length connecting both pharmacophores led to a clear improvement in potency, reaching the submicromolar range for the lead compounds, and an outstanding selectivity towards tumour cell lines (S.I. up to >357). Cytotoxic effects were also analysed on MDR cell lines under hypoxic and normoxic conditions. Chemoresistance exhibited by phosphonium salts, and not by guanidines, against MDR cells was based on the fact that the former were found to be substrates of P-glycoprotein (P-gp), the pump responsible for extruding foreign chemicals; this situation was reversed by administrating tariquidar, a third generation P-gp inhibitor. Moreover, phosphonium salts provoked a profound depolarization of mitochondria membranes from tumour cells, thus probably compromising their oxidative metabolism. To gain insight into the mode of action of title compounds, continuous live cell microscopy was employed; interestingly, this technique revealed two different antiproliferative mechanisms for both families of mitocans. Whereas phosphonium salts had a cytostatic effect, blocking cell division, guanidines led to cell death via apoptosis.


Assuntos
Antineoplásicos , Anidrases Carbônicas , Compostos Organofosforados , Humanos , Anidrases Carbônicas/metabolismo , Sais , Relação Estrutura-Atividade , Antígenos de Neoplasias/metabolismo , Antineoplásicos/química , Cumarínicos/química , Guanidinas , Inibidores da Anidrase Carbônica/química , Estrutura Molecular
18.
Phys Chem Chem Phys ; 26(11): 8767-8774, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38420672

RESUMO

Carbonic anhydrase IX (CA IX) is a subtype of the human carbonic anhydrase (hCA) family and exhibits high expression in various solid tumors, rendering it a promising target for tumor therapy. Currently, marketed carbonic anhydrase inhibitors (CAIs) are primarily composed of sulfonamides derivatives, which may have impeded their potential for further expansion. Therefore, we have developed a structure-based virtual screening approach to explore novel CAIs exhibiting distinctive structures and anti-tumor potential in the FDA database. In vitro experiments demonstrated that 3-pyridinemethanol (0.42 µM), procodazole (8.35 µM) and pamidronic acid (8.51 µM) exhibited inhibitory effects on CA IX activity. The binding stability and interaction mode between the CA IX and the hit compounds are further investigated through molecular dynamics simulations and binding free energy calculations. Furthermore, the ADME/Tox prediction results indicated that these compounds exhibited favorable pharmacological properties and minimal toxic side effects. Our study successfully applied computational strategies to discover three non-sulfonamide inhibitors of carbonic anhydrase IX (CA IX) that demonstrate inhibitory activity in vitro. These findings have significant implications for the development of CA IX inhibitors and anti-tumor drugs, contributing to their progress in the field.


Assuntos
Anidrases Carbônicas , Neoplasias , Humanos , Anidrase Carbônica IX/química , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Relação Estrutura-Atividade , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/uso terapêutico , Neoplasias/tratamento farmacológico , Sulfonamidas/química , Sulfanilamida , Estrutura Molecular
19.
Steroids ; 205: 109381, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325751

RESUMO

This investigation delves into the inhibitory capabilities of a specific set of triterpenoic acids on diverse isoforms of human carbonic anhydrase (hCA). Oleanolic acid (1), maslinic acid (2), betulinic acid (3), platanic acid (4), and asiatic acid (5) were chosen as representative triterpenoids for evaluation. The synthesis involved acetylation of parent triterpenoic acids 1-5, followed by sequential reactions with oxalyl chloride and benzylamine, de-acetylation of the amides, and subsequent treatment with sodium hydride and sulfamoyl chloride, leading to the formation of final compounds 21-25. Inhibition assays against hCAs I, II, VA, and IX demonstrated noteworthy outcomes. A derivative of betulinic acid, compound 23, exhibited a Ki value of 88.1 nM for hCA VA, and a derivative of asiatic acid, compound 25, displayed an even lower Ki value of 36.2 nM for the same isoform. Notably, the latter compound displayed enhanced inhibitory activity against hCA VA when compared to the benchmark compound acetazolamide (AAZ), which had a Ki value of 63.0 nM. Thus, this compound surpasses the inhibitory potency and isoform selectivity of the standard compound acetazolamide (AAZ). In conclusion, the research offers insights into the inhibitory potential of selected triterpenoic acids across diverse hCA isoforms, emphasizing the pivotal role of structural attributes in determining isoform-specific inhibitory activity. The identification of compound 25 as a robust and selective hCA VA inhibitor prompts further exploration of its therapeutic applications.


Assuntos
Acetazolamida , Anidrases Carbônicas , Triterpenos Pentacíclicos , Humanos , Acetazolamida/farmacologia , Ácido Betulínico , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Estrutura Molecular , Ácido Oleanólico/química , Ácido Oleanólico/metabolismo , Isoformas de Proteínas , Relação Estrutura-Atividade
20.
Bioorg Chem ; 145: 107192, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382393

RESUMO

To investigate the intrinsic relation between carbonic anhydrase inhibition and anticancer activity, we have prepared four sets of diaryl urea molecules and tested for the inhibition of hCA-IX and XII on two breast cancer cell lines. Among 21 compounds, compound J2 (with -SO2NH2 group) and J16 (without -SO2NH2 group) showed the best activity under normoxic and hypoxic conditions. The IC50 values of J16 for MDA-MB-231 and MCF-7 cells, under normoxic condition were 6.3 and 3.7 µM respectively, which are 1.9/3.3 and 15.8 times better than U-4-Nitro and SLC-0111 respectively. Whereas, under the hypoxic condition the corresponding values were 12.4 and 1.1 µM (MDA-MB-231 and MCF-7 cells respectively), which are equal/8 times better than U-4-Nitro. Whereas, J2 showed better IC50 value than U-4-Nitro (6.3 µM) under normoxic condition for both MDA-MB-231 and MCF-7 cells (1.9/2.7 times). Compound J2 inhibits the activity of hCA-IX and XII in nanomolar concentration [Ki values 4.09 and 9.10 nM respectively with selectivity ratio of 1.8 and 0.8 with hCA-II]. The crystal structure and modelling studies demonstrates that the inhibition of CAs arises due to the blocking of the CO2 coordination site of zinc in its catalytic domain. However, J16 was found to be unable to inhibit the activity of hCAs (Ki > 89000 nM). qPCR and western blot analysis showed a significant reduction (1.5 to 20 fold) of the transcription and expression of HIF1A, CA9 and CA12 genes in presence of J2 and J16. Both J2 and J16 found to reduce accumulation of HIF-1α protein by inhibiting the chaperone activity of hHSP70 with IC50 values of 19.4 and 15.3 µM respectively. Perturbation of the hCA-IX and XII activity by binding at active site or by reduced expression or by both leads to the decrease of intracellular pH, which resulted in concomitant increase of reactive oxygen species by 2.6/2.0 (MCF-7) and 2.9/1.8 (MDA-MB-231) fold for J2/J16. Increased cyclin D1 expression in presence of J2 and J16 was presumed to be indirectly responsible for the apoptosis of the cancer cells. Expression of the other apoptosis markers Bcl-2, Bim, caspase 9 and caspase 3 substantiated the apoptosis mechanism. However, decreased transcription/expression of HIF1A/HIF-1α and hCA-IX/XII also implies the inhibition of the extracellular signal-regulated kinase pathway by J2 and J16.


Assuntos
Neoplasias da Mama , Ureia , Humanos , Feminino , Anidrase Carbônica IX , Relação Estrutura-Atividade , Ureia/farmacologia , Neoplasias da Mama/tratamento farmacológico , Antígenos de Neoplasias/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/química , Inibidores da Anidrase Carbônica/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...