Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 327
Filtrar
1.
Biochemistry (Mosc) ; 87(9): 871-889, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36180983

RESUMO

Design and synthesis of conjugates consisting of the macrolide antibiotic desmycosin and fragments of the antibacterial peptide oncocin were performed in attempt to develop new antimicrobial compounds. New compounds were shown to bind to the E. coli 70S ribosomes, to inhibit bacterial protein synthesis in vitro, as well as to suppress bacterial growth. The conjugates of N-terminal hexa- and tripeptide fragments of oncocin and 3,2',4''-triacetyldesmycosin were found to be active against some strains of macrolide-resistant bacteria. By simulating molecular dynamics of the complexes of these compounds with the wild-type bacterial ribosomes and with ribosomes, containing A2059G 23S RNA mutation, the specific structural features of their interactions were revealed.


Assuntos
Peptídeos Antimicrobianos , Escherichia coli , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Macrolídeos/análise , Macrolídeos/metabolismo , Inibidores da Síntese de Proteínas/química , RNA/metabolismo , Ribossomos/química , Tilosina/análogos & derivados
3.
Nat Struct Mol Biol ; 29(2): 152-161, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35165455

RESUMO

Ribosome-targeting antibiotics serve as powerful antimicrobials and as tools for studying the ribosome, the catalytic peptidyl transferase center (PTC) of which is targeted by many drugs. The classic PTC-acting antibiotic chloramphenicol (CHL) and the newest clinically significant linezolid (LZD) were considered indiscriminate inhibitors of protein synthesis that cause ribosome stalling at every codon of every gene being translated. However, recent discoveries have shown that CHL and LZD preferentially arrest translation when the ribosome needs to polymerize particular amino acid sequences. The molecular mechanisms that underlie the context-specific action of ribosome inhibitors are unknown. Here we present high-resolution structures of ribosomal complexes, with or without CHL, carrying specific nascent peptides that support or negate the drug action. Our data suggest that the penultimate residue of the nascent peptide directly modulates antibiotic affinity to the ribosome by either establishing specific interactions with the drug or by obstructing its proper placement in the binding site.


Assuntos
Cloranfenicol/química , Cloranfenicol/farmacologia , Peptidil Transferases/antagonistas & inibidores , Antibacterianos/química , Antibacterianos/farmacologia , Sítios de Ligação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Cinética , Modelos Moleculares , Conformação Proteica , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/farmacologia , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Eletricidade Estática , Thermus thermophilus/efeitos dos fármacos , Thermus thermophilus/metabolismo
4.
Eur J Med Chem ; 226: 113856, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34547506

RESUMO

Retinol-binding protein 4 (RBP4) is a serum protein that transports Vitamin A. RBP4 is correlated with numerous diseases and metabolic syndromes, including insulin resistance in type 2 diabetes, cardiovascular diseases, obesity, and macular degeneration. Recently, RBP4 antagonists and protein synthesis inhibitors are under development to regulate the effect of RBP4. Several RBP4 antagonists, especially BPN-14136, have demonstrated promising safety profiles and potential therapeutic benefits in animal studies. Two RBP4 antagonists, specifically tinlarebant (Belite Bio) and STG-001 (Stargazer) are currently undergoing clinical trials. Some antidiabetic drugs and nutraceuticals have been reported to reduce RBP4 expression, but more clinical data is needed to evaluate their therapeutical benefits. As regulating RBP4 levels or its activities would benefit a wide range of patients, further research is highly recommended to develop clinically useful RBP4 antagonists or protein synthesis inhibitors.


Assuntos
Ácidos Carboxílicos/farmacologia , Desenvolvimento de Medicamentos , Inibidores da Síntese de Proteínas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Proteínas Plasmáticas de Ligação ao Retinol/antagonistas & inibidores , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/química , Humanos , Inibidores da Síntese de Proteínas/síntese química , Inibidores da Síntese de Proteínas/química , Pirimidinas/síntese química , Pirimidinas/química , Pirróis/síntese química , Pirróis/química , Proteínas Plasmáticas de Ligação ao Retinol/biossíntese
5.
Org Lett ; 23(17): 6967-6971, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34388000

RESUMO

A cryptic trans-acyltransferase polyketide synthase biosynthetic gene cluster sdl (80 kb) from Streptomyces sp. B59 was cloned and transferred into a heterologous host Streptomyces albus J1074, resulting in a class of polycyclic macrolide shuangdaolides A-D (1-4) and dumulmycin (5). Heterologous expression and gene inactivation experiments allowed the identification of two biosynthetic intermediates, 6 and 7, suggesting an unusual multidomain SDR oxidoreductase SdlR in charge of the formation of a rare 2-hydroxycyclopentenone moiety in this class of compounds.


Assuntos
Antibacterianos/biossíntese , Macrolídeos/química , Policetídeo Sintases/química , Inibidores da Síntese de Proteínas/química , Streptomyces/química , Antibacterianos/química , Macrolídeos/metabolismo , Estrutura Molecular , Família Multigênica , Policetídeo Sintases/metabolismo , Inibidores da Síntese de Proteínas/metabolismo
6.
Org Lett ; 23(18): 7106-7111, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34436915

RESUMO

Saccharothriolides A-F are 10-membered microbial macrolides proposed to be generated from their precursors presaccharothriolides X-Z. Previously, we isolated presaccharothriolide X, and its unique natural prodrug-like properties have intrigued us. However, the other congeners were not detected. Herein, we detected presaccharothriolide Z using our highly sensitive labeling reagent. Moreover, chemical synthesis of presaccharothriolide Z, the first total synthesis of saccharothriolide-class macrolides, was achieved, and the structure and biological activity of presaccharothriolide Z were determined.


Assuntos
Actinomycetales/química , Antibacterianos/síntese química , Macrolídeos/síntese química , Inibidores da Síntese de Proteínas/química , Antibacterianos/química , Antibacterianos/farmacologia , Macrolídeos/química , Macrolídeos/farmacologia , Estrutura Molecular
7.
Nat Commun ; 12(1): 4466, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294725

RESUMO

Macrolides and ketolides comprise a family of clinically important antibiotics that inhibit protein synthesis by binding within the exit tunnel of the bacterial ribosome. While these antibiotics are known to interrupt translation at specific sequence motifs, with ketolides predominantly stalling at Arg/Lys-X-Arg/Lys motifs and macrolides displaying a broader specificity, a structural basis for their context-specific action has been lacking. Here, we present structures of ribosomes arrested during the synthesis of an Arg-Leu-Arg sequence by the macrolide erythromycin (ERY) and the ketolide telithromycin (TEL). Together with deep mutagenesis and molecular dynamics simulations, the structures reveal how ERY and TEL interplay with the Arg-Leu-Arg motif to induce translational arrest and illuminate the basis for the less stringent sequence-specific action of ERY over TEL. Because programmed stalling at the Arg/Lys-X-Arg/Lys motifs is used to activate expression of antibiotic resistance genes, our study also provides important insights for future development of improved macrolide antibiotics.


Assuntos
Antibacterianos/farmacologia , Cetolídeos/farmacologia , Macrolídeos/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Antibacterianos/química , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Sítios de Ligação/genética , Microscopia Crioeletrônica , Resistência Microbiana a Medicamentos/genética , Eritromicina/química , Eritromicina/farmacologia , Genes Bacterianos , Cetolídeos/química , Cetolídeos/farmacocinética , Macrolídeos/química , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Insercional , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/química , Ribossomos/efeitos dos fármacos
8.
Nucleic Acids Res ; 49(13): 7665-7679, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34157102

RESUMO

Deciphering translation is of paramount importance for the understanding of many diseases, and antibiotics played a pivotal role in this endeavour. Blasticidin S (BlaS) targets translation by binding to the peptidyl transferase center of the large ribosomal subunit. Using biochemical, structural and cellular approaches, we show here that BlaS inhibits both translation elongation and termination in Mammalia. Bound to mammalian terminating ribosomes, BlaS distorts the 3'CCA tail of the P-site tRNA to a larger extent than previously reported for bacterial ribosomes, thus delaying both, peptide bond formation and peptidyl-tRNA hydrolysis. While BlaS does not inhibit stop codon recognition by the eukaryotic release factor 1 (eRF1), it interferes with eRF1's accommodation into the peptidyl transferase center and subsequent peptide release. In human cells, BlaS inhibits nonsense-mediated mRNA decay and, at subinhibitory concentrations, modulates translation dynamics at premature termination codons leading to enhanced protein production.


Assuntos
Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Terminação Traducional da Cadeia Peptídica/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Microscopia Crioeletrônica , Células HeLa , Humanos , Degradação do RNAm Mediada por Códon sem Sentido/efeitos dos fármacos , Nucleosídeos/química , Nucleosídeos/farmacologia , Fatores de Terminação de Peptídeos/metabolismo , Peptídeos/metabolismo , Inibidores da Síntese de Proteínas/química , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/metabolismo
9.
Nucleic Acids Res ; 49(12): 6880-6892, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34125898

RESUMO

How aminoglycoside antibiotics limit bacterial growth and viability is not clearly understood. Here we employ fast kinetics to reveal the molecular mechanism of action of a clinically used, new-generation, semisynthetic aminoglycoside Arbekacin (ABK), which is designed to avoid enzyme-mediated deactivation common to other aminoglycosides. Our results portray complete picture of ABK inhibition of bacterial translation with precise quantitative characterizations. We find that ABK inhibits different steps of translation in nanomolar to micromolar concentrations by imparting pleotropic effects. ABK binding stalls elongating ribosomes to a state, which is unfavorable for EF-G binding. This prolongs individual translocation step from ∼50 ms to at least 2 s; the mean time of translocation increases inversely with EF-G concentration. ABK also inhibits translation termination by obstructing RF1/RF2 binding to the ribosome. Furthermore, ABK decreases accuracy of mRNA decoding (UUC vs. CUC) by ∼80 000 fold, causing aberrant protein production. Importantly, translocation and termination events cannot be completely stopped even with high ABK concentration. Extrapolating our kinetic model of ABK action, we postulate that aminoglycosides impose bacteriostatic effect mainly by inhibiting translocation, while they become bactericidal in combination with decoding errors.


Assuntos
Antibacterianos/farmacologia , Dibecacina/análogos & derivados , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Ribossomos/efeitos dos fármacos , Antibacterianos/química , Dibecacina/química , Dibecacina/farmacologia , Cinética , Fator G para Elongação de Peptídeos/antagonistas & inibidores , Fatores de Terminação de Peptídeos/antagonistas & inibidores , Peptídeos/metabolismo , Inibidores da Síntese de Proteínas/química , RNA Mensageiro/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/metabolismo
10.
Nat Commun ; 12(1): 2803, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990576

RESUMO

Macrolide antibiotics bind in the nascent peptide exit tunnel of the bacterial ribosome and prevent polymerization of specific amino acid sequences, selectively inhibiting translation of a subset of proteins. Because preventing translation of individual proteins could be beneficial for the treatment of human diseases, we asked whether macrolides, if bound to the eukaryotic ribosome, would retain their context- and protein-specific action. By introducing a single mutation in rRNA, we rendered yeast Saccharomyces cerevisiae cells sensitive to macrolides. Cryo-EM structural analysis showed that the macrolide telithromycin binds in the tunnel of the engineered eukaryotic ribosome. Genome-wide analysis of cellular translation and biochemical studies demonstrated that the drug inhibits eukaryotic translation by preferentially stalling ribosomes at distinct sequence motifs. Context-specific action markedly depends on the macrolide structure. Eliminating macrolide-arrest motifs from a protein renders its translation macrolide-tolerant. Our data illuminate the prospects of adapting macrolides for protein-selective translation inhibition in eukaryotic cells.


Assuntos
Antibacterianos/farmacologia , Macrolídeos/farmacologia , Ribossomos/efeitos dos fármacos , Antibacterianos/química , Sítios de Ligação , Microscopia Crioeletrônica , Células Eucarióticas/efeitos dos fármacos , Células Eucarióticas/metabolismo , Humanos , Macrolídeos/química , Modelos Moleculares , Mutação , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/farmacologia , RNA Fúngico/genética , RNA Ribossômico/genética , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Relação Estrutura-Atividade
11.
Nat Commun ; 12(1): 1799, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741965

RESUMO

Bacterial ribosome rescue pathways that remove ribosomes stalled on mRNAs during translation have been proposed as novel antibiotic targets because they are essential in bacteria and are not conserved in humans. We previously reported the discovery of a family of acylaminooxadiazoles that selectively inhibit trans-translation, the main ribosome rescue pathway in bacteria. Here, we report optimization of the pharmacokinetic and antibiotic properties of the acylaminooxadiazoles, producing MBX-4132, which clears multiple-drug resistant Neisseria gonorrhoeae infection in mice after a single oral dose. Single particle cryogenic-EM studies of non-stop ribosomes show that acylaminooxadiazoles bind to a unique site near the peptidyl-transfer center and significantly alter the conformation of ribosomal protein bL27, suggesting a novel mechanism for specific inhibition of trans-translation by these molecules. These results show that trans-translation is a viable therapeutic target and reveal a new conformation within the bacterial ribosome that may be critical for ribosome rescue pathways.


Assuntos
Neisseria gonorrhoeae/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Ribossomos/efeitos dos fármacos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Células CACO-2 , Feminino , Gonorreia/microbiologia , Gonorreia/prevenção & controle , Humanos , Camundongos , Neisseria gonorrhoeae/genética , Biossíntese de Proteínas/genética , Inibidores da Síntese de Proteínas/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
12.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33674389

RESUMO

Apidaecin (Api), an unmodified 18-amino-acid-long proline-rich antibacterial peptide produced by bees, has been recently described as a specific inhibitor of translation termination. It invades the nascent peptide exit tunnel of the postrelease ribosome and traps the release factors preventing their recycling. Api binds in the exit tunnel in an extended conformation that matches the placement of a nascent polypeptide and establishes multiple contacts with ribosomal RNA (rRNA) and ribosomal proteins. Which of these interactions are critical for Api's activity is unknown. We addressed this problem by analyzing the activity of all possible single-amino-acid substitutions of the Api variants synthesized in the bacterial cell. By conditionally expressing the engineered api gene, we generated Api directly in the bacterial cytosol, thereby bypassing the need for importing the peptide from the medium. The endogenously expressed Api, as well as its N-terminally truncated mutants, retained the antibacterial properties and the mechanism of action of the native peptide. Taking advantage of the Api expression system and next-generation sequencing, we mapped in one experiment all the single-amino-acid substitutions that preserve or alleviate the on-target activity of the Api mutants. Analysis of the inactivating mutations made it possible to define the pharmacophore of Api involved in critical interactions with the ribosome, transfer RNA (tRNA), and release factors. We also identified the Api segment that tolerates a variety of amino acid substitutions; alterations in this segment could be used to improve the pharmacological properties of the antibacterial peptide.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Escherichia coli , Terminação Traducional da Cadeia Peptídica/efeitos dos fármacos , Inibidores da Síntese de Proteínas , Substituição de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Abelhas , Escherichia coli/genética , Escherichia coli/metabolismo , Mutação de Sentido Incorreto , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/farmacologia , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
13.
Biochemistry (Mosc) ; 85(11): 1389-1421, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33280581

RESUMO

Eukaryotic ribosome and cap-dependent translation are attractive targets in the antitumor, antiviral, anti-inflammatory, and antiparasitic therapies. Currently, a broad array of small-molecule drugs is known that specifically inhibit protein synthesis in eukaryotic cells. Many of them are well-studied ribosome-targeting antibiotics that block translocation, the peptidyl transferase center or the polypeptide exit tunnel, modulate the binding of translation machinery components to the ribosome, and induce miscoding, premature termination or stop codon readthrough. Such inhibitors are widely used as anticancer, anthelmintic and antifungal agents in medicine, as well as fungicides in agriculture. Chemicals that affect the accuracy of stop codon recognition are promising drugs for the nonsense suppression therapy of hereditary diseases and restoration of tumor suppressor function in cancer cells. Other compounds inhibit aminoacyl-tRNA synthetases, translation factors, and components of translation-associated signaling pathways, including mTOR kinase. Some of them have antidepressant, immunosuppressive and geroprotective properties. Translation inhibitors are also used in research for gene expression analysis by ribosome profiling, as well as in cell culture techniques. In this article, we review well-studied and less known inhibitors of eukaryotic protein synthesis (with the exception of mitochondrial and plastid translation) classified by their targets and briefly describe the action mechanisms of these compounds. We also present a continuously updated database (http://eupsic.belozersky.msu.ru) that currently contains information on 370 inhibitors of eukaryotic protein synthesis.


Assuntos
Antibacterianos , Células Eucarióticas/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas , Antibacterianos/química , Antibacterianos/uso terapêutico , Humanos , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/uso terapêutico
14.
Org Lett ; 22(17): 6709-6713, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32808790

RESUMO

A novel family of four potent antimalarial macrolides, strasseriolides A-D (1-4), has been isolated from cultures of Strasseria geniculata CF-247251, a fungal strain obtained from plant tissues. The structures of these compounds, including their absolute configurations, were elucidated by HRMS, NMR spectroscopy, and X-ray single-crystal diffraction. The four compounds gave respective IC50 values of 9.810, 0.013, 0.123, and 0.128 µM against Plasmodium falciparum 3D7 parasites with no significant cytotoxicity against the HepG2 cell line.


Assuntos
Antibacterianos/farmacologia , Antimaláricos/farmacologia , Macrolídeos/farmacologia , Inibidores da Síntese de Proteínas/análise , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antimaláricos/química , Antimaláricos/isolamento & purificação , Ascomicetos , Fungos , Macrolídeos/química , Macrolídeos/isolamento & purificação , Estrutura Molecular , Inibidores da Síntese de Proteínas/química
16.
J Biol Chem ; 295(29): 9855-9867, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32430400

RESUMO

Fluorizoline (FLZ) binds to prohibitin-1 and -2 (PHB1/2), which are pleiotropic scaffold proteins known to affect signaling pathways involved in several intracellular processes. However, it is not yet clear how FLZ exerts its effect. Here, we show that exposure of three different human cancer cell lines to FLZ increases the phosphorylation of key translation factors, particularly of initiation factor 2 (eIF2) and elongation factor 2 (eEF2), modifications that inhibit their activities. FLZ also impaired signaling through mTOR complex 1, which also regulates the translational machinery, e.g. through the eIF4E-binding protein 4E-BP1. In line with these findings, FLZ potently inhibited protein synthesis. We noted that the first phase of this inhibition involves very rapid eEF2 phosphorylation, which is catalyzed by a dedicated Ca2+-dependent protein kinase, eEF2 kinase (eEF2K). We also demonstrate that FLZ induces a swift and marked rise in intracellular Ca2+ levels, likely explaining the effects on eEF2. Disruption of normal Ca2+ homeostasis can also induce endoplasmic reticulum stress, and our results suggest that induction of this stress response contributes to the increased phosphorylation of eIF2, likely because of activation of the eIF2-modifying kinase PKR-like endoplasmic reticulum kinase (PERK). We show that FLZ induces cancer cell death and that this effect involves contributions from the phosphorylation of both eEF2 and eIF2. Our findings provide important new insights into the biological effects of FLZ and thus the roles of PHBs, specifically in regulating Ca2+ levels, cellular protein synthesis, and cell survival.


Assuntos
Cálcio/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Neoplasias/biossíntese , Neoplasias/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Células A549 , Fator de Iniciação 2 em Eucariotos/metabolismo , Células HEK293 , Células HeLa , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fator 2 de Elongação de Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Proibitinas , Inibidores da Síntese de Proteínas/química , Proteínas Repressoras/metabolismo
17.
RNA ; 26(6): 715-723, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144191

RESUMO

Macrolides are one of the most successful and widely used classes of antibacterials, which kill or stop the growth of pathogenic bacteria by binding near the active site of the ribosome and interfering with protein synthesis. Dirithromycin is a derivative of the prototype macrolide erythromycin with additional hydrophobic side chain. In our recent study, we have discovered that the side chain of dirithromycin forms lone pair-π stacking interaction with the aromatic imidazole ring of the His69 residue in ribosomal protein uL4 of the Thermus thermophilus 70S ribosome. In the current work, we found that neither the presence of the side chain, nor the additional contact with the ribosome, improve the binding affinity of dirithromycin to the ribosome. Nevertheless, we found that dirithromycin is a more potent inhibitor of in vitro protein synthesis in comparison with its parent compound, erythromycin. Using high-resolution cryo-electron microscopy, we determined the structure of the dirithromycin bound to the translating Escherichia coli 70S ribosome, which suggests that the better inhibitory properties of the drug could be rationalized by the side chain of dirithromycin pointing into the lumen of the nascent peptide exit tunnel, where it can interfere with the normal passage of the growing polypeptide chain.


Assuntos
Antibacterianos/química , Eritromicina/análogos & derivados , Inibidores da Síntese de Proteínas/química , Ribossomos/química , Antibacterianos/farmacologia , Microscopia Crioeletrônica , Eritromicina/química , Eritromicina/farmacologia , Escherichia coli/genética , Modelos Moleculares , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , RNA Ribossômico 23S/química
18.
Structure ; 28(5): 528-539.e9, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32220302

RESUMO

Phenomycin is a bacterial mini-protein of 89 amino acids discovered more than 50 years ago with toxicity in the nanomolar regime toward mammalian cells. The protein inhibits the function of the eukaryotic ribosome in cell-free systems and appears to target translation initiation. Several fundamental questions concerning the cellular activity of phenomycin, however, have remained unanswered. In this paper, we have used morphological profiling to show that direct inhibition of translation underlies the toxicity of phenomycin in cells. We have performed studies of the cellular uptake mechanism of phenomycin, showing that endosomal escape is the toxicity-limiting step, and we have solved a solution phase high-resolution structure of the protein using NMR spectroscopy. Through bioinformatic as well as functional comparisons between phenomycin and two homologs, we have identified a peptide segment, which constitutes one of two loops in the structure that is critical for the toxicity of phenomycin.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/toxicidade , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Bacteriocinas/farmacocinética , Bacteriocinas/toxicidade , Linhagem Celular , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células MCF-7 , Camundongos , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/toxicidade , Relação Estrutura-Atividade
19.
Proc Natl Acad Sci U S A ; 117(3): 1457-1467, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31900363

RESUMO

Many proteins are refractory to targeting because they lack small-molecule binding pockets. An alternative to drugging these proteins directly is to target the messenger (m)RNA that encodes them, thereby reducing protein levels. We describe such an approach for the difficult-to-target protein α-synuclein encoded by the SNCA gene. Multiplication of the SNCA gene locus causes dominantly inherited Parkinson's disease (PD), and α-synuclein protein aggregates in Lewy bodies and Lewy neurites in sporadic PD. Thus, reducing the expression of α-synuclein protein is expected to have therapeutic value. Fortuitously, the SNCA mRNA has a structured iron-responsive element (IRE) in its 5' untranslated region (5' UTR) that controls its translation. Using sequence-based design, we discovered small molecules that target the IRE structure and inhibit SNCA translation in cells, the most potent of which is named Synucleozid. Both in vitro and cellular profiling studies showed Synucleozid directly targets the α-synuclein mRNA 5' UTR at the designed site. Mechanistic studies revealed that Synucleozid reduces α-synuclein protein levels by decreasing the amount of SNCA mRNA loaded into polysomes, mechanistically providing a cytoprotective effect in cells. Proteome- and transcriptome-wide studies showed that the compound's selectivity makes Synucleozid suitable for further development. Importantly, transcriptome-wide analysis of mRNAs that encode intrinsically disordered proteins revealed that each has structured regions that could be targeted with small molecules. These findings demonstrate the potential for targeting undruggable proteins at the level of their coding mRNAs. This approach, as applied to SNCA, is a promising disease-modifying therapeutic strategy for PD and other α-synucleinopathies.


Assuntos
Proteínas Intrinsicamente Desordenadas/genética , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/metabolismo , Elementos de Resposta , alfa-Sinucleína/genética , Regiões 3' não Traduzidas , Animais , Linhagem Celular Tumoral , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Camundongos , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/química , RNA Mensageiro/química , RNA Mensageiro/genética , alfa-Sinucleína/metabolismo
20.
Phytomedicine ; 73: 152753, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30773353

RESUMO

BACKGROUND: Fungal pathogenesis continues to be a burden to healthcare structures in both developed and developing nations. The gradual and irreversible loss of efficacies of existing antifungal medicines as well as the emergence of drug-resistant strains have contributed largely to this scenario. There is therefore a pressing need for new drugs from diverse structural backgrounds with improved potencies and novel modes of action to fortify or replace contemporary antifungal schedules. AIM: Alkaloids of the plant family Amaryllidaceae exhibit good growth inhibitory activities against several fungal pathogens. This review focuses on the mechanistic aspects of these antifungal activities. It achieves this by highlighting the molecular targets as well as structural features of Amaryllidaceae constituents which serve to enhance such action. METHODS: During the information gathering stage extensive use was made of the three database platforms; Google Scholar, SciFinder and Scopus. In most instances articles were accessed directly from journals licensed to the University of KwaZulu-Natal. In the absence of such proprietary agreements the respective corresponding authors were approached directly for copies of papers. RESULTS: Although several classes of molecules from the Amaryllidaceae have been probed for their antifungal effects, it is the key constituents lycorine and narciclasine which have together afforded the most profound mechanistic insights. These may be summarized as follows: (i) effects on the fungal cell wall and cell membrane; (ii) effects on morphology such as budding and hyphal growth; (iii) effects on fungal organelles such as ribosomes; (iv) effects on macromolecules such as DNA, RNA and proteins and; (v) identification of the active sites for these constituents. CONCLUSION: The key feature in the antifungal effects of Amaryllidaceae alkaloids is the inhibition of protein synthesis. This involved the inhibition of peptide bond formation by binding to yeast ribosomes via the 60S subunit. Related effects involved the inhibition of both DNA and RNA synthesis. These adverse effects were reflected morphologically on both the fungal cell wall and cell membrane. Such observations should prove useful in the chemotherapeutic arena should efforts shift towards the development of a clinical candidate.


Assuntos
Amaryllidaceae/química , Antifúngicos/química , Antifúngicos/farmacologia , Alcaloides/química , Alcaloides/farmacologia , Alcaloides de Amaryllidaceae/farmacologia , Parede Celular/efeitos dos fármacos , Fenantridinas/farmacologia , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...