Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
1.
Cells ; 13(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38727296

RESUMO

Derangement of the epidermal barrier lipids and dysregulated immune responses are key pathogenic features of atopic dermatitis (AD). The Th2-type cytokines interleukin IL-4 and IL-13 play a prominent role in AD by activating the Janus Kinase/Signal Transduction and Activator of Transcription (JAK/STAT) intracellular signaling axis. This study aimed to investigate the role of JAK/STAT in the lipid perturbations induced by Th2 signaling in 3D epidermal equivalents. Tofacitinib, a low-molecular-mass JAK inhibitor, was used to screen for JAK/STAT-mediated deregulation of lipid metabolism. Th2 cytokines decreased the expression of elongases 1, 3, and 4 and serine-palmitoyl-transferase and increased that of sphingolipid delta(4)-desaturase and carbonic anhydrase 2. Th2 cytokines inhibited the synthesis of palmitoleic acid and caused depletion of triglycerides, in association with altered phosphatidylcholine profiles and fatty acid (FA) metabolism. Overall, the ceramide profiles were minimally affected. Except for most sphingolipids and very-long-chain FAs, the effects of Th2 on lipid pathways were reversed by co-treatment with tofacitinib. An increase in the mRNA levels of CPT1A and ACAT1, reduced by tofacitinib, suggests that Th2 cytokines promote FA beta-oxidation. In conclusion, pharmacological inhibition of JAK/STAT activation prevents the lipid disruption caused by the halted homeostasis of FA metabolism.


Assuntos
Citocinas , Janus Quinases , Metabolismo dos Lipídeos , Fatores de Transcrição STAT , Células Th2 , Humanos , Células Th2/metabolismo , Células Th2/efeitos dos fármacos , Fatores de Transcrição STAT/metabolismo , Janus Quinases/metabolismo , Citocinas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Epiderme/metabolismo , Epiderme/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Piperidinas/farmacologia , Pirimidinas/farmacologia , Inibidores de Janus Quinases/farmacologia , Interleucina-4/metabolismo , Ácidos Graxos/metabolismo
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731900

RESUMO

Psoriasis is a highly prevalent dermatological disease associated with an increased systemic inflammatory response. In addition, joint involvement is also present in around 20% of patients. Therefore, treatment modalities used in this condition should be simultaneously effective at improving skin manifestations, reducing inflammation, and addressing psoriatic arthritis when present. Twenty years ago, the introduction of biologic treatments for psoriasis was a turning point in the management of this condition, offering an effective and reasonably safe option for patients whose disease could not be adequately controlled with conventional therapies. At the moment, Janus Kinase inhibitors (JAKis) are a new class of promising molecules in the management of psoriasis. They are orally administered and can show benefits in patients who failed biologic therapy. We conducted a scoping review in order to identify randomized-controlled trials that investigated different JAKis in patients with plaque psoriasis and psoriatic arthritis, with an emphasis on molecules that have been approved by the European Medicines Agency and the Food and Drug Administration. The added value of this study is that it collected information about JAKis approved for two different indications, plaque psoriasis and psoriatic arthritis, in order to provide an integrated understanding of the range of effects that JAKis have on the whole spectrum of psoriasis manifestations.


Assuntos
Inibidores de Janus Quinases , Janus Quinases , Psoríase , Fatores de Transcrição STAT , Transdução de Sinais , Humanos , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Inibidores de Janus Quinases/uso terapêutico , Inibidores de Janus Quinases/farmacologia , Janus Quinases/metabolismo , Janus Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição STAT/metabolismo , Artrite Psoriásica/tratamento farmacológico , Artrite Psoriásica/metabolismo
3.
J Am Chem Soc ; 146(19): 13317-13325, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700457

RESUMO

We describe the synthesis and biological testing of ruthenium-bipyridine ruxolitinib (RuBiRuxo), a photoreleasable form of ruxolitinib, a JAK inhibitor used as an antitumoral agent in cutaneous T-cell lymphomas (CTCL). This novel caged compound is synthesized efficiently, is stable in aqueous solution at room temperature, and is photoreleased rapidly by visible light. Irradiation of RuBiRuxo reduces cell proliferation and induces apoptosis in a light- and time-dependent manner in a CTCL cell line. This effect is specific and is mediated by a decreased phosphorylation of STAT proteins. Our results demonstrate the potential of ruthenium-based photocompounds and light-based therapeutic approaches for the potential treatment of cutaneous lymphomas and other pathologies.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Nitrilas , Pirazóis , Pirimidinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Nitrilas/química , Nitrilas/farmacologia , Nitrilas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Apoptose/efeitos dos fármacos , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Linhagem Celular Tumoral , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/química , Inibidores de Janus Quinases/síntese química , Rutênio/química , Rutênio/farmacologia , Luz , Estrutura Molecular , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo
4.
Int J Rheum Dis ; 27(5): e15164, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38706209

RESUMO

BACKGROUND: JAK inhibitors are well known for the treatment of rheumatoid arthritis (RA), but whether they can be used to treat pulmonary fibrosis, a common extra-articular disease of RA, remains to be clarified. METHODS: A jak2 inhibitor, CEP33779 (CEP), was administered to a rat model of RA-associated interstitial lung disease to observe the degree of improvement in both joint swelling and pulmonary fibrosis. HFL1 cells were stimulated with TGF-ß1 to observe the expression of p-JAK2. Then, different concentrations of related gene inhibitors (JAK2, TGFß-R1/2, and p-STAT3) or silencers (STAT3, JAK2) were administered to HFL1 cells, and the expression levels of related proteins were detected to explore the underlying mechanisms of action. RESULTS: CEP not only reduced the degree of joint swelling and inflammation in rats but also improved lung function, inhibited the pro-inflammatory factors IL-1ß and IL-6, reduced lung inflammation and collagen deposition, and alleviated lung fibrosis. CEP decreased the expression levels of TGFß-R2, p-SMAD, p-STAT3, and ECM proteins in rat lung tissues. TGF-ß1 induced HFL1 cells to highly express p-JAK2, with the most pronounced expression at 48 h. The levels of p-STAT3, p-SMAD3, and ECM-related proteins were significantly reduced after inhibition of either JAK2 or STAT3. CONCLUSION: JAK2 inhibitors may be an important and novel immunotherapeutic drug that can improve RA symptoms while also delaying or blocking the development of associated pulmonary fibrotic disease. The mechanism may be related to the downregulation of p-STAT3 protein via inhibition of the JAK2/STAT signaling pathway, which affects the phosphorylation of SMAD3.


Assuntos
Modelos Animais de Doenças , Regulação para Baixo , Isoquinolinas , Janus Quinase 2 , Pulmão , Fibrose Pulmonar , Piridinas , Pirróis , Transdução de Sinais , Proteína Smad3 , Animais , Proteína Smad3/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 2/antagonistas & inibidores , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/enzimologia , Masculino , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Humanos , Ratos Sprague-Dawley , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Linhagem Celular , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Experimental/enzimologia , Anti-Inflamatórios/farmacologia , Ratos
5.
Birth Defects Res ; 116(5): e2345, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38716582

RESUMO

BACKGROUND: Abrocitinib is a Janus kinase (JAK) 1 selective inhibitor approved for the treatment of atopic dermatitis. Female reproductive tissues were unaffected in general toxicity studies, but an initial female rat fertility study resulted in adverse effects at all doses evaluated. A second rat fertility study was conducted to evaluate lower doses and potential for recovery. METHODS: This second study had 4 groups of 20 females each administered abrocitinib (0, 3, 10, or 70 mg/kg/day) 2 weeks prior to cohabitation through gestation day (GD) 7. In addition, 2 groups of 20 rats (0 or 70 mg/kg/day) were dosed for 3 weeks followed by a 4-week recovery period before mating. All mated females were evaluated on GD 14. RESULTS: No effects were observed at ≤10 mg/kg/day. At 70 mg/kg/day (29x human exposure), decreased pregnancy rate, implantation sites, and viable embryos were observed. All these effects reversed 4 weeks after the last dose. CONCLUSIONS: Based on these data and literature on the potential role of JAK signaling in implantation, we hypothesize that these effects may be related to JAK1 inhibition and, generally, that peri-implantation effects such as these, in the absence of cycling or microscopic changes in nonpregnant female reproductive tissues, are anticipated to be reversible.


Assuntos
Fertilidade , Janus Quinase 1 , Pirimidinas , Sulfonamidas , Feminino , Animais , Gravidez , Ratos , Fertilidade/efeitos dos fármacos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Ratos Sprague-Dawley , Implantação do Embrião/efeitos dos fármacos , Inibidores de Janus Quinases/farmacologia , Taxa de Gravidez
6.
J Cardiovasc Pharmacol Ther ; 29: 10742484241248046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656132

RESUMO

Atherosclerosis is now widely considered to be a chronic inflammatory disease, with increasing evidence suggesting that lipid alone is not the main factor contributing to its development. Rather, atherosclerotic plaques contain a significant amount of inflammatory cells, characterized by the accumulation of monocytes and lymphocytes on the vessel wall. This suggests that inflammation may play a crucial role in the occurrence and progression of atherosclerosis. As research deepens, other pathological factors have also been found to influence the development of the disease. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway is a recently discovered target of inflammation that has gained attention in recent years. Numerous studies have provided evidence for the causal role of this pathway in atherosclerosis, and its downstream signaling factors play a significant role in this process. This brief review aims to explore the crucial role of the JAK/STAT pathway and its representative downstream signaling factors in the development of atherosclerosis. It provides a new theoretical basis for clinically affecting the development of atherosclerosis by interfering with the JAK/STAT signaling pathway.


Assuntos
Aterosclerose , Janus Quinases , Fatores de Transcrição STAT , Transdução de Sinais , Humanos , Aterosclerose/metabolismo , Aterosclerose/tratamento farmacológico , Fatores de Transcrição STAT/metabolismo , Janus Quinases/metabolismo , Animais , Inibidores de Janus Quinases/uso terapêutico , Inibidores de Janus Quinases/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Mediadores da Inflamação/metabolismo
7.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675621

RESUMO

Allogeneic hematopoietic cell transplantation (allo-HCT) is a highly effective, well-established treatment for patients with various hematologic malignancies and non-malignant diseases. The therapeutic benefits of allo-HCT are mediated by alloreactive T cells in donor grafts. However, there is a significant risk of graft-versus-host disease (GvHD), in which the donor T cells recognize recipient cells as foreign and attack healthy organs in addition to malignancies. We previously demonstrated that targeting JAK1/JAK2, mediators of interferon-gamma receptor (IFNGR) and IL-6 receptor signaling, in donor T cells using baricitinib and ruxolitinib results in a significant reduction in GvHD after allo-HCT. Furthermore, we showed that balanced inhibition of JAK1/JAK2 while sparing JAK3 is important for the optimal prevention of GvHD. Thus, we have generated novel JAK1/JAK2 inhibitors, termed WU derivatives, by modifying baricitinib. Our results show that WU derivatives have the potential to mitigate GvHD by upregulating regulatory T cells and immune reconstitution while reducing the frequencies of antigen-presenting cells (APCs) and CD80 expression on these APCs in our preclinical mouse model of allo-HCT. In addition, WU derivatives effectively downregulated CXCR3 and T-bet in primary murine T cells. In summary, we have generated novel JAK inhibitors that could serve as alternatives to baricitinib or ruxolitinib.


Assuntos
Modelos Animais de Doenças , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Janus Quinase 2 , Pirazóis , Transplante Homólogo , Animais , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/tratamento farmacológico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Camundongos , Janus Quinase 2/metabolismo , Janus Quinase 2/antagonistas & inibidores , Pirazóis/farmacologia , Purinas/farmacologia , Inibidores de Janus Quinases/farmacologia , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Sulfonamidas/farmacologia , Azetidinas/farmacologia , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/metabolismo
8.
Phys Chem Chem Phys ; 26(17): 13420-13431, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647171

RESUMO

Autoimmune inflammatory diseases, such as rheumatoid arthritis (RA) and ulcerative colitis, are associated with an uncontrolled production of cytokines leading to the pronounced inflammatory response of these disorders. Their therapy is currently focused on the inhibition of cytokine receptors, such as the Janus kinase (JAK) protein family. Tofacitinib and peficitinib are JAK inhibitors that have been recently approved to treat rheumatoid arthritis. In this study, an in-depth analysis was carried out through quantum biochemistry to understand the interactions involved in the complexes formed by JAK1 and tofacitinib or peficitinib. Computational analyses provided new insights into the binding mechanisms between tofacitinib or peficitinib and JAK1. The essential amino acid residues that support the complex are also identified and reported. Additionally, we report new interactions, such as van der Waals; hydrogen bonds; and alkyl, pi-alkyl, and pi-sulfur forces, that stabilize the complexes. The computational results revealed that peficitinib presents a similar affinity to JAK1 compared to tofacitinib based on their interaction energies.


Assuntos
Adamantano/análogos & derivados , Janus Quinase 1 , Niacinamida , Niacinamida/análogos & derivados , Piperidinas , Pirimidinas , Pirimidinas/química , Pirimidinas/farmacologia , Piperidinas/química , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Niacinamida/química , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Janus Quinase 1/química , Humanos , Teoria Quântica , Doenças Autoimunes/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ligação de Hidrogênio , Inibidores de Janus Quinases/química , Inibidores de Janus Quinases/uso terapêutico , Inibidores de Janus Quinases/farmacologia , Adamantano/química , Pirróis/química , Pirróis/farmacologia , Simulação de Acoplamento Molecular
9.
Cell Mol Life Sci ; 81(1): 152, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528207

RESUMO

Monocyte-derived macrophages play a key pathogenic role in inflammatory diseases. In the case of rheumatoid arthritis (RA), the presence of specific synovial tissue-infiltrating macrophage subsets is associated with either active disease or inflammation resolution. JAK inhibitors (JAKi) are the first targeted synthetic disease-modifying antirheumatic drugs (tsDMARD) approved for treatment of RA with comparable efficacy to biologics. However, the effects of JAKi on macrophage specification and differentiation are currently unknown. We have analyzed the transcriptional and functional effects of JAKi on human peripheral blood monocyte subsets from RA patients and on the differentiation of monocyte-derived macrophages promoted by granulocyte-macrophage colony-stimulating factor (GM-CSF), a factor that drives the development and pathogenesis of RA. We now report that JAKi Upadacitinib restores the balance of peripheral blood monocyte subsets in RA patients and skewed macrophages towards the acquisition of an anti-inflammatory transcriptional and functional profile in a dose-dependent manner. Upadacitinib-treated macrophages showed a strong positive enrichment of the genes that define synovial macrophages associated to homeostasis/inflammation resolution. Specifically, Upadacitinib-treated macrophages exhibited significantly elevated expression of MAFB and MAFB-regulated genes, elevated inhibitory phosphorylation of GSK3ß, and higher phagocytic activity and showed an anti-inflammatory cytokine profile upon activation by pathogenic stimuli. These outcomes were also shared by macrophages exposed to other JAKi (baricitinib, tofacitinib), but not in the presence of the TYK2 inhibitor deucravacitinib. As a whole, our results indicate that JAKi promote macrophage re-programming towards the acquisition of a more anti-inflammatory/pro-resolution profile, an effect that correlates with the ability of JAKi to enhance MAFB expression.


Assuntos
Artrite Reumatoide , Inibidores de Janus Quinases , Humanos , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/metabolismo , Inibidores de Janus Quinases/uso terapêutico , Macrófagos/metabolismo , Artrite Reumatoide/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/metabolismo , Fator de Transcrição MafB/genética , Fator de Transcrição MafB/metabolismo
10.
Eur Rev Med Pharmacol Sci ; 28(5): 1864-1872, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38497869

RESUMO

Vasculitis is the inflammation of blood vessels caused by autoimmunity and/or autoinflammation, and its etiology and pathogenesis remain largely unknown. The Janus kinase (JAK) and Signal transduction Transcription Activator (STAT) signal transduction pathways are a group of molecules involved in the major pathways by which many cytokines exert and integrate their functions, and their dysregulation has been implicated in the pathogenesis of a variety of autoimmune diseases. However, current data supporting the role of the JAK/STAT pathway in the development of vasculitis is limited. In terms of treatment, glucocorticoids and immunosuppressants have been the standard therapy. However, because of the huge burden of treatment side effects, people have long waited for new treatment options. JAK inhibitors reduce the production of multiple cytokines and inhibit inflammation by targeting the JAK/STAT pathway, and have the advantage of rapidly acting in oral formulations, reducing glucocorticoid dependence and associated adverse events, especially in refractory cases. Therefore, JAK inhibitors are expected to be a promising drug for the treatment of vasculitis.


Assuntos
Doenças Autoimunes , Inibidores de Janus Quinases , Vasculite , Humanos , Janus Quinases , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Fatores de Transcrição STAT , Transdução de Sinais , Vasculite/tratamento farmacológico , Inflamação/tratamento farmacológico , Citocinas , Glucocorticoides/uso terapêutico , Fatores de Transcrição
11.
Antimicrob Agents Chemother ; 68(4): e0135023, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470034

RESUMO

Influenza remains a significant threat to public health. In severe cases, excessive inflammation can lead to severe pneumonia or acute respiratory distress syndrome, contributing to patient morbidity and mortality. While antivirals can be effective if administered early, current anti-inflammatory drugs have limited success in treating severe cases. Therefore, discovering new anti-inflammatory agents to inhibit influenza-related inflammatory diseases is crucial. Herein, we screened a drug library with known targets using a human monocyte U937 infected with the influenza virus to identify novel anti-inflammatory agents. We also evaluated the anti-inflammatory effects of the hit compounds in an influenza mouse model. Our research revealed that JAK inhibitors exhibited a higher hit rate and more potent inhibition effect than inhibitors targeting other drug targets in vitro. Of the 22 JAK inhibitors tested, 15 exhibited robust anti-inflammatory activity against influenza virus infection in vitro. Subsequently, we evaluated the efficacy of 10 JAK inhibitors using an influenza mouse model and observed that seven provided protection ranging from 40% to 70% against lethal influenza virus infection. We selected oclacitinib as a representative compound for an extensive study to further investigate the in vivo therapeutic potential of JAK inhibitors for severe influenza-associated inflammation. Our results revealed that oclacitinib effectively suppressed neutrophil and macrophage infiltration, reduced pro-inflammatory cytokine production, and ultimately mitigated lung injury in mice infected with lethal influenza virus without impacting viral titer. These findings suggest that JAK inhibitors can modulate immune responses to influenza virus infection and may serve as potential treatments for influenza.IMPORTANCEAntivirals exhibit limited efficacy in treating severe influenza when not administered promptly during the infection. Current steroidal and nonsteroidal anti-inflammatory drugs demonstrate restricted effectiveness against severe influenza or are associated with significant side effects. Therefore, there is an urgent need for novel anti-inflammatory agents that possess high potency and minimal adverse reactions. In this study, 15 JAK inhibitors were identified through a screening process based on their anti-inflammatory activity against influenza virus infection in vitro. Remarkably, 7 of the 10 selected inhibitors exhibited protective effects against lethal influenza virus infection in mice, thereby highlighting the potential therapeutic value of JAK inhibitors for treating influenza.


Assuntos
Doenças Transmissíveis , Influenza Humana , Inibidores de Janus Quinases , Infecções por Orthomyxoviridae , Orthomyxoviridae , Pirimidinas , Sulfonamidas , Humanos , Animais , Camundongos , Influenza Humana/tratamento farmacológico , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Citocinas , Infecções por Orthomyxoviridae/tratamento farmacológico , Inflamação/tratamento farmacológico , Doenças Transmissíveis/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Antivirais/uso terapêutico , Antivirais/farmacologia , Pulmão
12.
Immunol Rev ; 322(1): 311-328, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306168

RESUMO

Inborn errors of immunity (IEIs) encompass a diverse spectrum of genetic disorders that disrupt the intricate mechanisms of the immune system, leading to a variety of clinical manifestations. Traditionally associated with an increased susceptibility to recurrent infections, IEIs have unveiled a broader clinical landscape, encompassing immune dysregulation disorders characterized by autoimmunity, severe allergy, lymphoproliferation, and even malignancy. This review delves into the intricate interplay between IEIs and the JAK-STAT signaling pathway, a critical regulator of immune homeostasis. Mutations within this pathway can lead to a wide array of clinical presentations, even within the same gene. This heterogeneity poses a significant challenge, necessitating individually tailored therapeutic approaches to effectively manage the diverse manifestations of these disorders. Additionally, JAK-STAT pathway defects can lead to simultaneous susceptibility to both infection and immune dysregulation. JAK inhibitors, with their ability to suppress JAK-STAT signaling, have emerged as powerful tools in controlling immune dysregulation. However, questions remain regarding the optimal selection and dosing regimens for each specific condition. Hematopoietic stem cell transplantation (HSCT) holds promise as a curative therapy for many JAK-STAT pathway disorders, but this procedure carries significant risks. The use of JAK inhibitors as a bridge to HSCT has been proposed as a potential strategy to mitigate these risks.


Assuntos
Doenças do Sistema Imunitário , Inibidores de Janus Quinases , Humanos , Transdução de Sinais , Inibidores de Janus Quinases/uso terapêutico , Inibidores de Janus Quinases/farmacologia , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo
13.
Rev Med Suisse ; 20(859): 241-246, 2024 Jan 31.
Artigo em Francês | MEDLINE | ID: mdl-38299954

RESUMO

Janus kinase inhibitors (JAKi) are small molecules which prevent the phosphorylation of JAKs, thereby blocking the intracellular phosphorylation cascade required for the transcription of several cytokines. In addition to approved indications that have been extensively studied, including atopic dermatitis, alopecia areata, vitiligo and psoriasis, JAKi are also proposed off-label, included topically, in several dermatological conditions where standard treatments are often disappointing, such as hidradenitis suppurativa (HS), extensive morphea, cutaneous sarcoidosis and lichen planus. On the other hand, the wide mechanism of action on cytokine blockade implies a safety profile that requires a case-by-case assessment of the risk/benefit ratio before their introduction.


Les inhibiteurs de Janus kinases (JAKi) sont de petites molécules empêchant la phosphorylation des JAK et bloquant ainsi la cascade de phosphorylation intracellulaire nécessaire à la transcription de plusieurs cytokines. Au-delà des indications approuvées ayant fait sujets de larges études, dont la dermatite atopique, la pelade, le vitiligo et le psoriasis, les JAKi sont aussi proposés off-label y compris en formulation topique dans plusieurs pathologies dermatologiques où les traitements habituellement utilisés sont souvent décevants : maladie de Verneuil, morphées étendues, sarcoïdose cutanée, lichen plan. En revanche, le mécanisme d'action assez large sur le blocage cytokinique implique un profil de sécurité nécessitant une évaluation cas pour cas du ratio risques/bénéfices avant leur introduction.


Assuntos
Alopecia em Áreas , Dermatite Atópica , Dermatologia , Inibidores de Janus Quinases , Humanos , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Alopecia em Áreas/tratamento farmacológico , Citocinas
15.
Adv Healthc Mater ; 13(12): e2303256, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38207170

RESUMO

Janus kinase (JAK) inhibitors are approved for many dermatologic disorders, but their use is limited by systemic toxicities including serious cardiovascular events and malignancy. To overcome these limitations, injectable hydrogels are engineered for the local and sustained delivery of baricitinib, a representative JAK inhibitor. Hydrogels are formed via disulfide crosslinking of thiolated hyaluronic acid macromers. Dynamic thioimidate bonds are introduced between the thiolated hyaluronic acid and nitrile-containing baricitinib for drug tethering, which is confirmed with 1H and 13C nuclear magnetic resonance (NMR). Release of baricitinib is tunable over six weeks in vitro and active in inhibiting JAK signaling in a cell line containing a luciferase reporter reflecting interferon signaling. For in vivo activity, baricitinib hydrogels or controls are injected intradermally into an imiquimod-induced mouse model of psoriasis. Imiquimod increases epidermal thickness in mice, which is unaffected when treated with baricitinib or hydrogel alone. Treatment with baricitinib hydrogels suppresses the increased epidermal thickness in mice treated with imiquimod, suggesting that the sustained and local release of baricitinib is important for a therapeutic outcome. This study is the first to utilize a thioimidate chemistry to deliver JAK inhibitors to the skin through injectable hydrogels, which has translational potential for treating inflammatory disorders.


Assuntos
Azetidinas , Hidrogéis , Purinas , Pirazóis , Pele , Sulfonamidas , Animais , Hidrogéis/química , Purinas/química , Purinas/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/administração & dosagem , Camundongos , Pirazóis/química , Pirazóis/farmacologia , Azetidinas/química , Azetidinas/farmacologia , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Humanos , Psoríase/tratamento farmacológico , Psoríase/patologia , Psoríase/induzido quimicamente , Imiquimode/química , Imiquimode/farmacologia , Inibidores de Janus Quinases/química , Inibidores de Janus Quinases/farmacologia , Feminino
16.
Bioorg Chem ; 143: 107095, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211548

RESUMO

Cancer is indeed considered a hazardous and potentially life-threatening disorder. The JAK/STAT pathway is an important intracellular signaling cascade essential for many physiological functions, such as immune response, cell proliferation, and differentiation. Dysregulation of this pathway aids in the progression and development of cancer. The downstream JAK2/STAT3 signaling cascades are legitimate targets against which newer anticancer drugs can be developed to prevent and treat cancer. Understanding the mechanisms behind JAK2/STAT3 participation in cancer has paved the way for developing innovative targeted medicines with the potential to improve cancer treatment outcomes. This article provides information on the current scenario and recent advancements in the design and development of anticancer drugs targeting JAK2/STAT3, including structural analysis and SAR investigations of synthesized molecules. Numerous preclinical and clinical trials are ongoing on these inhibitors, which are highlighted to gain more insight into the broader development prospects of inhibitors of JAK2/STAT3.


Assuntos
Antineoplásicos , Inibidores de Janus Quinases , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Janus Quinase 2/antagonistas & inibidores , Inibidores de Janus Quinases/química , Inibidores de Janus Quinases/farmacologia , Janus Quinases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Transdução de Sinais , Fatores de Transcrição STAT/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Relação Estrutura-Atividade
17.
J Dermatol ; 51(2): 196-209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38087654

RESUMO

Alopecia areata (AA) affects individuals of all ages and is intractable in severe relapsing cases. Dermatologists and other healthcare providers should consider AA in the medical context and prioritize treatment. Several randomized controlled clinical studies on Janus kinase (JAK) inhibitors with different specificities for the treatment of AA are ongoing. These studies have encouraged us to appreciate the importance of a definitive diagnosis and accurate evaluation of AA before and during treatment. Following our previous review article in 2017, here we provide the second part of this two-review series on the recent progress in the multidisciplinary approaches to AA from more than 1800 articles published between July 2016 and December 2022. This review focuses on the evaluation, diagnosis, and treatment of AA. We also provide the latest information on the safety and efficacy of JAK inhibitors for the treatment of AA and describe their mechanisms of action.


Assuntos
Alopecia em Áreas , Inibidores de Janus Quinases , Humanos , Alopecia em Áreas/diagnóstico , Alopecia em Áreas/tratamento farmacológico , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Resultado do Tratamento
18.
Rheumatology (Oxford) ; 63(2): 298-308, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37624925

RESUMO

Janus kinases (JAKs) are a family of cytosolic tyrosine kinases that regulate cytokine signal transduction, including cytokines involved in a range of inflammatory diseases, such as RA, psoriasis, atopic dermatitis and IBD. Several small-molecule JAK inhibitors (JAKis) are now approved for the treatment of various immune-mediated inflammatory diseases. There are, however, key differences between these agents that could potentially translate into unique clinical profiles. Each JAKi has a unique chemical structure, resulting in a distinctive mode of binding within the catalytic cleft of the target JAK, and giving rise to distinct pharmacological characteristics. In addition, the available agents have differing selectivity for JAK isoforms, as well as off-target effects against non-JAKs. Other differences include effects on haematological parameters, DNA damage repair, reproductive toxicity and metabolism/elimination. Here we review the pharmacological profiles of the JAKis abrocitinib, baricitinib, filgotinib, peficitinib, tofacitinib and upadacitinib.


Assuntos
Antirreumáticos , Artrite Reumatoide , Inibidores de Janus Quinases , Psoríase , Humanos , Inibidores de Janus Quinases/uso terapêutico , Inibidores de Janus Quinases/farmacologia , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Janus Quinases/metabolismo , Psoríase/tratamento farmacológico
20.
Semin Arthritis Rheum ; 64S: 152327, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38007359

RESUMO

BACKGROUND: Cytokines are soluble factors that affect host defense and maintain immune homeostasis. Altered cytokine production leads to a dysfunctional immune responses and immune-related diseases. Cytokines bind to specific receptors and trigger various intracellular signaling cascades and targeting cytokines and/or their receptors has been effective in treating inflammatory diseases. OBJECTIVES: Type I and II cytokine receptors activate four Janus kinases (JAKs), namely JAK1, JAK2, JAK3 and TYK2 and targeting of these enzymes resulted in the development of successful drugs now referred as JAK inhibitors or JAKinibs. RESULTS: JAKinibs can be divided in three "generations." First-generation JAKinibs, molecules acting in an orthosteric manner, inhibit multiple JAKs and interfere with the biologic activity of many factors. With the idea of reducing side effects, second-generation JAKinibs, still orthosteric ATP competitors, have been developed with increased selectivity towards one or two JAKs. Third-generation JAKinibs have exploited our increased understanding of the structure and function of JAK domains and are allosteric inhibitors as they bind to specific residues in the pseudokinase domain. These third generation JAKInb indeed seems to possess a better safety profile. Notably, inhibition of cytokine activity in specific tissues could be more important than selective enzymatic blockade and for this reason, topical, inhaled, or as a non-absorbable JAKinibs are also being developed. CONCLUSIONS: While JAKinibs entered the clinical arena about ten years ago, our understanding of these drugs and their selectivity relative to their activity and safety is still incomplete. More research is therefore needed to achieve better usage of these class of drugs.


Assuntos
Inibidores de Janus Quinases , Humanos , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases/metabolismo , Citocinas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...