Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 485
Filtrar
1.
Rev Alerg Mex ; 71(1): 60, 2024 Feb 01.
Artigo em Espanhol | MEDLINE | ID: mdl-38683078

RESUMO

OBJECTIVE: This study aimed to identify by in silico methods tropomyosin consensus B and T epitopes of shrimp species, house dust mites, insects, and nematodes associated with allergic diseases in tropical countries. METHODS: In silico analysis included tropomyosin from mites (Der p 10, Der f 10, Blo t 10), insects (Aed a 10, Per a 7, Bla g 7), shrimp (Lit v 1, Pen m 1, Pen a 1), and nematode (Asc l 3) all sequences were taken from the UniProt database. Linear IgE epitopes were predicted with AlgPred 2.0 and validated with BepiPred 3.0. MHC-II binding T cell epitopes were predicted using the IEDB server, which implements nine predictive methods (consensus method, combinatorial library, NN-align-2.3, NN- align-2.2, SMM-align, Sturniolo, NetMHCIIpan 3.1, and NetMHCIIpan 3.2) these predictions focused on 10 HLA-DR and 2 HLA-DQ alleles associated with allergic diseases. Subsequently, consensus B and T epitopes present in all species were identified. RESULTS: We identified 12 sequences that behaved as IgE-epitopes and B-cell epitopes, three of them: 160RKYDEVARKLAMVEA174, 192ELEEELRVVGNNLKSLEVSEEKAN215, 251KEVDRLEDELV261 were consensus in all species. Eleven peptides (T-epitopes) showed strong binding (percentile rank ≤ 2.0) to HLA-DRB1*0301, *0402, *0411, *0701, *1101, *1401, HLA-DQA1*03:01/DQB1*03:02, and HLA- DQA1*05:01/DQB1*02:01. Only two T-epitopes were consensus in all species: 167RKLAMVEADLERAEERAEt GEsKIVELEEELRV199, and 218EEeY KQQIKT LTaKLKEAEARAEFAERSV246. Subsequently, we identified 2 B and T epitope sequences and reached a consensus between species 167RKLAMVEA174 and 192ELEEELRV199. CONCLUSIONS: These data describe three sequences that may explain the IgE cross-reactivity between the analyzed species. In addition, the consensus B and T epitopes can be used for further in vitro investigations and may help to design multiple-epitope protein-based immunotherapy for tropomyosin-related allergic diseases.


OBJETIVO: Este estudio tuvo como objetivo identificar mediante métodos in silico epítopes B y T consenso de tropomiosina de especies de camarón, ácaros del polvo doméstico, insectos y nematodos asociados a enfermedades alérgicas en países tropicales. MÉTODOS: El análisis in silico incluyó tropomiosina de ácaros (Der p 10, Der f 10, Blo t 10), insectos (Aed a 10, Per a 7, Bla g 7), camarones (Lit v 1, Pen m 1, Pen a 1), y nematodo (Asc l 3). Todas las secuencias se tomaron de la base de datos UniProt. Los epítopes IgE lineales se predijeron con AlgPred 2.0 y se validaron con BepiPred 3.0. Los epítopes de células T de unión a MHC-II se predijeron utilizando el servidor IEDB, que implementa nueve métodos predictivos (método de consenso, biblioteca combinatoria, NN-align-2.3, NN-align-2.2, SMM-align, Sturniolo, NetMHCIIpan 3.1 y NetMHCIIpan 3.2). Estas predicciones se centraron en diez alelos HLA-DR y 2 HLA-DQ asociados con enfermedades alérgicas. Posteriormente, se identificaron epítopes consenso B y T presentes en todas las especies. RESULTADOS: Se identificaron 12 secuencias que se comportaron como epítopes de IgE y, también, como epítopes de células B. Tres de ellas: 160RKYDEVARKLAMVEA174, 192ELEEELRVVGNNLKSLEVSEEKAN213 y 251KEVDRLEDELV261, fueron consenso en todas las especies. Once péptidos mostraron una fuerte unión (rango percentil ≤ 2,0) a HLA-DRB1*0301, *0402, *0411, *0701, *1101, *1401 y a HLA HLA-DQA1*03:01/DQB1*03:02, o HLA-DQA1*05:01/DQB1*02:01. Solo se encontraron dos secuencias: 167RKLAMVEADLERAEERAEtGEsKIVELEEELRV199 con fuerte afinidad por HLA-DQA1*03:01/DQB1*03:02, y HLA-DQA1*05:01/DQB1*02:01. Se identificaron dos secuencias que son epítopos B y T, y son consenso entre especies: 167RKLAMVEA174 y 192ELEEELRV199. CONCLUSIONES: Estos datos describen tres secuencias que pueden explicar la reactividad cruzada de IgE entre las especies analizadas. Además, los epítopos B y T consenso se pueden usar para investigaciones in vitro adicionales, y pueden ayudar a diseñar inmunoterapia basada en proteínas de múltiepítopes para enfermedades alérgicas relacionadas con la tropomiosina.


Assuntos
Simulação por Computador , Reações Cruzadas , Epitopos de Linfócito B , Epitopos de Linfócito T , Hipersensibilidade , Tropomiosina , Animais , Sequência Consenso , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Insetos/imunologia , Penaeidae/imunologia , Pyroglyphidae/imunologia , Tropomiosina/imunologia , Tropomiosina/genética , Hipersensibilidade/imunologia , Ácaros/imunologia , Crustáceos/imunologia , Nematoides/imunologia
2.
J Comp Physiol B ; 194(2): 105-119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573502

RESUMO

The innate immune system, a cornerstone for organismal resilience against environmental and microbial insults, is highly conserved across the evolutionary spectrum, underpinning its pivotal role in maintaining homeostasis and ensuring survival. This review explores the evolutionary parallels between mammalian and insect innate immune systems, illuminating how investigations into these disparate immune landscapes have been reciprocally enlightening. We further delve into how advancements in mammalian immunology have enriched our understanding of insect immune responses, highlighting the intertwined evolutionary narratives and the shared molecular lexicon of immunity across these organisms. Therefore, this review posits a holistic understanding of innate immune mechanisms, including immunometabolism, autophagy and cell death. The examination of how emerging insights into mammalian and vertebrate immunity inform our understanding of insect immune responses and their implications for vector-borne disease transmission showcases the imperative for a nuanced comprehension of innate immunity's evolutionary tale. This understanding is quintessential for harnessing innate immune mechanisms' potential in devising innovative disease mitigation strategies and promoting organismal health across the animal kingdom.


Assuntos
Evolução Biológica , Imunidade Inata , Insetos , Mamíferos , Animais , Insetos/imunologia , Mamíferos/imunologia , Autofagia/imunologia
3.
Inmunología (1987) ; 41(3): 9-19, JULIO-SEPTIEMBRE 2022. ilus, graf
Artigo em Espanhol | IBECS | ID: ibc-212868

RESUMO

En los últimos años se ha producido un aumento de toma de conciencia sobre la importancia económica y social de los insectos. Aunque algunos pueden ser perjudiciales ocasionando problemas desalud púbica o pérdidas económicas relacionadas con las plagas en cultivos, muchos son esencialesen procesos como la polinización, además de tener aplicaciones como la producción de biomasa o suuso como agentes de control biológico. Todos estos factores han contribuido a que se produzca unaumento del número de estudios relacionados con el sistema inmune de los insectos, lo cual ha ayudado a conocer el funcionamiento de estos animales. Se han observado similitudes con el sistema inmune de los mamíferos, además de descubrir la denominada sensibilización del sistema inmune (máscomúnmente conocida por su terminología inglesa “immune priming”), lo que ha provocado que serompa con la asunción de simplicidad que tradicionalmente se les ha asociado. Todo esto ha permitidola optimización de muchas aplicaciones importantes. (AU)


Assuntos
Alergia e Imunologia/tendências , Insetos/imunologia
4.
Int J Biol Macromol ; 191: 277-287, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34543628

RESUMO

The innate immune response of insects provides a robust line of defense against pathogenic microbes and eukaryotic parasites. It consists of two types of overlapping immune responses, named humoral and cellular, which share protective molecules and regulatory mechanisms that closely coordinate to prevent the spread and replication of pathogens within the compromised insect hemocoel. The major feature of the humoral part of the insect immune system involves the production and secretion of antimicrobial peptides from the fat body, which is considered analogous to adipose tissue and liver in vertebrates. Previous research has identified and characterized the nature of antimicrobial peptides that are directed against various targets during the different stages of infection. Here we review this information focusing mostly on the diversity and mode of action of these host defense components, and their critical contribution to maintaining host homeostasis. Extending this knowledge is paramount for understanding the evolution of innate immune function and the physiological balance required to provide sufficient protection to the host against external enemies while avoiding overactivation signaling events that would severely undermine physiological stability.


Assuntos
Peptídeos Antimicrobianos/química , Proteínas de Insetos/química , Animais , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos/genética , Insetos/imunologia
5.
J Invertebr Pathol ; 185: 107656, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34464656

RESUMO

It may seem that the most important issues related to insect immunity have already been described. However, novel phenomena observed in recent years shed new light on the understanding of the immune response in insects.The adaptive abilities of insects helped them to populate all ecological land niches.One important adaptive ability of insects that facilitates their success is the plasticity of their immune system. Although they only have innate immune mechanisms, insects can increase their resistance after the first encounter with the pathogen. In recent years, this phenomenon,namedimmunepriming, has become a "hot topic" in immunobiology.Priming can occur within or across generations. In the first case, the resistance of a given individual can increase after surviving a previous infection. Transstadial immune priming occurs when infection takes place at one of the initial developmental stages and increased resistance is observed at the pupal or imago stages. Priming across generations (transgenerationalimmune priming, TGIP) relies on the increased resistance of the offspring when one or both parents are infected during their lifetime.Despite the attention that immune priming has received, basic questions remain to be answered, such as regulation of immune priming at the molecular level. Research indicates that pathogen recognition receptors (PRRs) can be involved in the priming phenomenon. Recent studies have highlighted the special role of microRNAs and epigenetics, which can influence expression of genes that can be transmitted through generations although they are not encoded in the nucleotide sequence. Considerable amounts of research are required to fully understand the mechanisms that regulate priming phenomena. The aim of our work is to analyse thoroughly the most important information on immune priming in insects and help raise pertinent questions such that a greater understanding of this phenomenon can be obtained in the future.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Insetos/imunologia , Animais , Terminologia como Assunto
6.
Dev Comp Immunol ; 124: 104205, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34260954

RESUMO

Parents invest in their offspring by preparing them for defense against pathogens and parasites that only the parents have encountered, a phenomenon known as transgenerational immune priming (TGIP). The priming effect can be passed maternally or paternally to the next generation, thus increasing the survival of offspring exposed to the same pathogen. The scope of the resulting immune response can be narrow (primarily targeting the triggering pathogen) or much more general, depending on the underlying mechanism. Maternal TGIP is often narrowly focused because the major mechanism is the transfer of microbes or fragments thereof, encountered by mothers at the larval stage, to the developing eggs along with the uptake of lipophorins and vitellogenins. This induces the expression of zygotic defense genes, including those encoding antimicrobial peptides (AMPs), comparable to the defenses observed in the larvae and adults. Maternal TGIP does not appear to involve the direct vertical transmission of immunity-related effectors such as AMPs (or the corresponding mRNAs) to the eggs. Parental investment in offspring is also mediated by epigenetic mechanisms such as DNA methylation, histone acetylation and microRNA expression, which can be imprinted on the gametes by either parent without changes in the DNA sequence. Epigenetic inheritance is the only known mechanism of paternal TGIP, and results in a more general fortification of the immune response. This review considers the mechanistic basis of TGIP, its role in evolutionary processes such as the establishment of resistance against pathogens, and the impact of pathogens and parasites on the epigenetic machinery of host insects.


Assuntos
Imunidade Inata/imunologia , Insetos/imunologia , Acetilação , Animais , Evolução Biológica , Metilação de DNA , Resistência à Doença/genética , Resistência à Doença/imunologia , Epigênese Genética/imunologia , Histonas/metabolismo , Imunidade Inata/genética , Imunidade Materno-Adquirida/genética , Imunidade Materno-Adquirida/imunologia , Insetos/genética , MicroRNAs/genética , MicroRNAs/imunologia , Herança Paterna/genética , Herança Paterna/imunologia
7.
Mol Biotechnol ; 63(11): 1068-1080, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34228257

RESUMO

Rabies is an ancient zoonotic disease that still causes the death of over 59,000 people worldwide each year. The rabies lyssavirus encodes five proteins, including the envelope glycoprotein and the matrix protein. RVGP is the only protein exposed on the surface of viral particle, and it can induce immune response with neutralizing antibody formation. RVM has the ability to assist with production process of virus-like particles. VLPs were produced in recombinant baculovirus system. In this work, two recombinant baculoviruses carrying the RVGP and RVM genes were constructed. From the infection and coinfection assays, we standardized the best multiplicity of infection and the best harvest time. Cell supernatants were collected, concentrated, and purified by sucrose gradient. Each step was used for protein detection through immunoassays. Sucrose gradient analysis enabled to verify the separation of VLPs from rBV. Through the negative contrast technique, we visualized structures resembling rabies VLPs produced in insect cells and rBV in the different fractions of the sucrose gradient. Using ELISA to measure total RVGP, the recovery efficiency of VLPs at each stage of the purification process was verified. Thus, these results encourage further studies to confirm whether rabies VLPs are a promising candidate for a veterinary rabies vaccine.


Assuntos
Baculoviridae/genética , Insetos/metabolismo , Vacina Antirrábica/biossíntese , Vírus da Raiva/metabolismo , Raiva/virologia , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Animais , Baculoviridae/isolamento & purificação , Baculoviridae/metabolismo , Células Cultivadas , Humanos , Insetos/imunologia , Insetos/virologia , Vacina Antirrábica/genética , Vacina Antirrábica/imunologia , Vacina Antirrábica/isolamento & purificação , Vírus da Raiva/imunologia , Vírus da Raiva/isolamento & purificação , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação
8.
Immunology ; 164(3): 401-432, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34233014

RESUMO

The host defence of insects includes a combination of cellular and humoral responses. The cellular arm of the insect innate immune system includes mechanisms that are directly mediated by haemocytes (e.g., phagocytosis, nodulation and encapsulation). In addition, melanization accompanying coagulation, clot formation and wound healing, nodulation and encapsulation processes leads to the formation of cytotoxic redox-cycling melanin precursors and reactive oxygen and nitrogen species. However, demarcation between cellular and humoral immune reactions as two distinct categories is not straightforward. This is because many humoral factors affect haemocyte functions and haemocytes themselves are an important source of many humoral molecules. There is also a considerable overlap between cellular and humoral immune functions that span from recognition of foreign intruders to clot formation. Here, we review these immune reactions starting with the cellular mechanisms that limit haemolymph loss and participate in wound healing and clot formation and advancing to cellular functions that are critical in restricting pathogen movement and replication. This information is important because it highlights that insect cellular immunity is controlled by a multilayered system, different components of which are activated by different pathogens or during the different stages of the infection.


Assuntos
Hemócitos/imunologia , Hemolinfa/imunologia , Imunidade Celular , Insetos/imunologia , Animais , Coagulação Sanguínea/imunologia , Hemócitos/metabolismo , Hemolinfa/citologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Humoral , Insetos/microbiologia , Cicatrização/imunologia
9.
Genes (Basel) ; 12(5)2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068032

RESUMO

The insect innate immune system is under strong selection pressure to evolve resistance to pathogenic infections [...].


Assuntos
Evolução Molecular , Imunidade Inata , Insetos/genética , Animais , Interações Hospedeiro-Parasita , Insetos/imunologia , Insetos/parasitologia
10.
Dev Comp Immunol ; 122: 104116, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33991532

RESUMO

Protection against viral infection in hosts concerns diverse cellular and molecular mechanisms, among which RNA interference (RNAi) response is a vital one. Small interfering RNAs (siRNAs), microRNAs (miRNAs) and PIWI interacting RNAs (piRNAs) are primary categories of small RNAs involved in RNAi response, playing significant roles in restraining viral invasion. However, during a long-term coevolution, viruses have gained the ability to evade, avoid, or suppress antiviral immunity to ensure efficient replication and transmission. Baculoviruses are enveloped, insect-pathogenic viruses with double-stranded circular DNA genomes, which encode suppressors of siRNA pathway and miRNAs targeting immune-related genes to mask the antiviral activity of their hosts. This review summarized recent findings for the RNAi-based antiviral immunity in insects as well as the strategies that baculoviruses exploit to break the shield of host siRNA pathway, and hijack cellular miRNAs or encode their own miRNAs that regulate both viral and cellular gene expression to create a favorable environment for viral infection.


Assuntos
Baculoviridae/imunologia , Insetos/imunologia , Insetos/virologia , MicroRNAs/genética , RNA Interferente Pequeno/genética , Animais , Interações entre Hospedeiro e Microrganismos/imunologia , Interferência de RNA , Viroses/imunologia , Viroses/prevenção & controle
11.
Sci Rep ; 11(1): 9459, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947876

RESUMO

This work continues our studies on the pleiotropic activity of the insect peptide Neb-colloostatin in insects. In vivo immunological bioassays demonstrated that hemocytotoxic analogs of Neb-colloostatin injected into Tenebrio molitor significantly reduced the number of hemocytes in the hemolymph and impaired phagocytosis, nodulation and phenoloxidase activities in the insects. Among the analogs tested, [Ala1]-,[Val1]-, [Hyp4]- and [Ach4]-colloostatin were particularly potent in disrupting cellular immunity in larvae, pupae and adult insects. This result suggests that the most effective analogs showed increases in the bioactivity period in the hemolymph of insects when compared to Neb-colloostatin. Recently, we demonstrated that it is possible to introduce Neb-colloostatin through the cuticle of an insect into the hemolymph when the peptide is coupled with nanodiamonds. In this study, we showed that [Ala1]-, [Val1]-, [Hyp4]- and [Ach4]-colloostatin, when complexed with nanodiamonds, may also pass through the cuticle into the hemolymph and induce long-term impairments of immunity in T. molitor at all developmental stages. Studies on the tissue selectivity and effectiveness of Neb-colloostatin analogs and efficient methods for their introduction into insects may contribute to the development of eco-friendly pest control methods based on bioactive peptidomimetics.


Assuntos
Imunidade Celular/imunologia , Hormônios de Inseto/imunologia , Insetos/imunologia , Hormônios Peptídicos/imunologia , Animais , Hemócitos/imunologia , Hemolinfa/imunologia , Larva/imunologia , Nanodiamantes/administração & dosagem , Nanodiamantes/química , Nanotecnologia/métodos , Hormônios Peptídicos/química , Controle de Pragas/métodos , Transdução de Sinais/imunologia , Tenebrio/imunologia
12.
Int Arch Allergy Immunol ; 182(10): 904-916, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33951642

RESUMO

The fifth class of immunoglobulin, immunoglobulin E (IgE) was discovered in 1967 and has had immense importance for the understanding, diagnosis, and treatment of allergic disease. More than 50 years have passed and efforts to characterize, standardize, and refine allergens with the aim to improve clinical diagnosis and allergen-specific immunotherapy are still ongoing. Another important breakthrough was made in 1999 with the introduction of component-resolved diagnostics (CRD), making it possible to quantify IgE antibodies against individual allergen proteins for diagnostic purposes at a molecular level. The progress and developments made in allergy diagnosis often originate from clinical observations and case studies. Observant physicians and health-care personnel have reported their findings in the medical literature, which in turn has inspired researchers to become involved in clinical research. Allergists continuously encounter new allergies and are often asked by their patients how to prevent new reactions. In the current article, we focus on recent clinical observations that can now be explained by CRD. The examples taken concern allergic reactions toward peanuts, tree nuts, lemon kernels, health drinks, meat, insects, dog dander, cannabis, and semen. We now have an improved understanding of why patients may react in a serious or unexpected way, as illustrated by these examples, yet many other clinical observations remain unexplained. The aim of this review is to highlight the importance of clinical observations among allergic patients, focusing on systemic, or unusual and unexpected allergic reactions, where component-testing has further refined the diagnosis of IgE-mediated allergy.


Assuntos
Hipersensibilidade/diagnóstico , Animais , Cannabis/imunologia , Testes Diagnósticos de Rotina , Humanos , Insetos/imunologia , Carne , Nozes/imunologia , Pólen/imunologia , Sementes/imunologia , Glycine max/imunologia
13.
PLoS Biol ; 19(5): e3001182, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33979323

RESUMO

Melanin, a black-brown pigment found throughout all kingdoms of life, has diverse biological functions including UV protection, thermoregulation, oxidant scavenging, arthropod immunity, and microbial virulence. Given melanin's broad roles in the biosphere, particularly in insect immune defenses, it is important to understand how exposure to ubiquitous environmental contaminants affects melanization. Glyphosate-the most widely used herbicide globally-inhibits melanin production, which could have wide-ranging implications in the health of many organisms, including insects. Here, we demonstrate that glyphosate has deleterious effects on insect health in 2 evolutionary distant species, Galleria mellonella (Lepidoptera: Pyralidae) and Anopheles gambiae (Diptera: Culicidae), suggesting a broad effect in insects. Glyphosate reduced survival of G. mellonella caterpillars following infection with the fungus Cryptococcus neoformans and decreased the size of melanized nodules formed in hemolymph, which normally help eliminate infection. Glyphosate also increased the burden of the malaria-causing parasite Plasmodium falciparum in A. gambiae mosquitoes, altered uninfected mosquito survival, and perturbed the microbial composition of adult mosquito midguts. Our results show that glyphosate's mechanism of melanin inhibition involves antioxidant synergy and disruption of the reaction oxidation-reduction balance. Overall, these findings suggest that glyphosate's environmental accumulation could render insects more susceptible to microbial pathogens due to melanin inhibition, immune impairment, and perturbations in microbiota composition, potentially contributing to declines in insect populations.


Assuntos
Anopheles/efeitos dos fármacos , Glicina/análogos & derivados , Melaninas/metabolismo , Mariposas/efeitos dos fármacos , Animais , Anopheles/imunologia , Cryptococcus neoformans/patogenicidade , Dípteros/efeitos dos fármacos , Dípteros/imunologia , Glicina/metabolismo , Glicina/farmacologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Infecções/imunologia , Infecções/metabolismo , Infecções/fisiopatologia , Insetos/efeitos dos fármacos , Insetos/imunologia , Lepidópteros/efeitos dos fármacos , Lepidópteros/imunologia , Mariposas/imunologia , Plasmodium falciparum/patogenicidade , Virulência , Glifosato
14.
Curr Opin Insect Sci ; 44: 82-88, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33894408

RESUMO

Plants release distinct blends of herbivore-induced plant volatiles (HIPVs) upon herbivore attack. HIPVs have long been known to influence the behavior of herbivores and natural enemies. In addition, HIPVs can act as physiological regulators that induce or prime plant defenses. Recent work indicates that the regulatory capacity of HIPVs may extend to herbivore immunity: herbivores that are exposed to HIPVs can become more resistant or susceptible to parasitoids and pathogens. While the mechanisms of HIPV-mediated plant defense regulation are being unraveled, the mechanisms underlying the regulation of herbivore immunity are unclear. Evidence so far suggests a high degree of context dependency. Here, we review the mechanisms by which HIPVs regulate plant defense and herbivore immunity. We address major gaps of knowledge and discuss directions for future mechanistic research to facilitate efforts to use the regulatory capacity of HIPVs for the biological control of insect pests.


Assuntos
Herbivoria , Insetos/imunologia , Defesa das Plantas contra Herbivoria , Plantas/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Animais
15.
Allergol Int ; 70(3): 303-312, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33903033

RESUMO

Airborne insect particles have been identified as an important cause of respiratory allergies, including allergic asthma and rhinitis. In the literature, the significance of respiratory exposure to insect particles as a cause of occupational allergy has been well-documented. Indeed, many cases of occupational allergy have been reported including allergy to the larvae of flies and moths in anglers and occupationally exposed workers, to grain pests in bakers or other workers handling grains, and to crickets and/or locusts in researchers and workers in aquaculture companies. Furthermore, the prevalence of sensitization to insect allergens is considerably high among patients with asthma and/or rhinitis who are not occupationally exposed to insects, suggesting the clinical relevance of exposure to insects in indoor and outdoor environmental non-occupational settings. Exposure to cockroaches, a well-studied indoor insect, is associated with cockroach sensitization and the development and exacerbation of asthma. Booklice, another common indoor insect, were recently identified as a significant sensitizer of asthmatic patients in Japan and India, and potentially of asthma patients living in warm and humid climates around the world. Lip b 1 was identified as an allergenic protein contributing to the species-specific sensitization to booklice. Moths are considered a significant seasonal outdoor allergen and their allergens are considered to have the highest sensitization rate among Japanese patients. However, other than cockroaches, allergenic insect proteins contributing to sensitization have not been fully characterized to date.


Assuntos
Alérgenos/imunologia , Proteínas de Insetos/imunologia , Insetos/imunologia , Hipersensibilidade Respiratória/imunologia , Animais , Asma/imunologia , Chironomidae/imunologia , Baratas/imunologia , Humanos , Mariposas/imunologia , Doenças Profissionais/imunologia , Rinite Alérgica/imunologia
16.
Cell Signal ; 83: 110003, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33836260

RESUMO

Insects possess an immune system that protects them from attacks by various pathogenic microorganisms that would otherwise threaten their survival. Immune mechanisms may deal directly with the pathogens by eliminating them from the host organism or disarm them by suppressing the synthesis of toxins and virulence factors that promote the invasion and destructive action of the intruder within the host. Insects have been established as outstanding models for studying immune system regulation because innate immunity can be explored as an integrated system at the level of the whole organism. Innate immunity in insects consists of basal immunity that controls the constitutive synthesis of effector molecules such as antimicrobial peptides, and inducible immunity that is activated after detection of a microbe or its product(s). Activation and coordination of innate immune defenses in insects involve evolutionary conserved immune factors. Previous research in insects has led to the identification and characterization of distinct immune signalling pathways that modulate the response to microbial infections. This work has not only advanced the field of insect immunology, but it has also rekindled interest in the innate immune system of mammals. Here we review the current knowledge on key molecular components of insect immunity and discuss the opportunities they present for confronting infectious diseases in humans.


Assuntos
Peptídeos Antimicrobianos/imunologia , Imunidade Inata , Proteínas de Insetos/imunologia , Insetos/imunologia , Transdução de Sinais/imunologia , Animais
17.
Front Immunol ; 12: 613729, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708207

RESUMO

Viral infection triggers insect immune response, including RNA interference, apoptosis and autophagy, and profoundly changes the gene expression profiles in infected cells. Although intracellular degradation is crucial for restricting viral infection, intercellular communication is required to mount a robust systemic immune response. This review focuses on recent advances in understanding the intercellular communications in insect antiviral immunity, including protein-based and virus-derived RNA based cell-cell communications, with emphasis on the signaling pathway that induces the production of the potential cytokines. The prospects and challenges of future work are also discussed.


Assuntos
Comunicação Celular , Resistência à Doença/imunologia , Interações Hospedeiro-Patógeno/imunologia , Insetos/imunologia , Insetos/virologia , Doenças dos Animais/genética , Doenças dos Animais/imunologia , Doenças dos Animais/metabolismo , Doenças dos Animais/virologia , Animais , Biomarcadores , Citocinas/metabolismo , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Imunidade Inata , Insetos/metabolismo
18.
Genes (Basel) ; 12(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535438

RESUMO

This paper is focused on eicosanoid signaling in insect immunology. We begin with eicosanoid biosynthesis through the actions of phospholipase A2, responsible for hydrolyzing the C18 polyunsaturated fatty acid, linoleic acid (18:2n-6), from cellular phospholipids, which is subsequently converted into arachidonic acid (AA; 20:4n-6) via elongases and desaturases. The synthesized AA is then oxygenated into one of three groups of eicosanoids, prostaglandins (PGs), epoxyeicosatrienoic acids (EETs) and lipoxygenase products. We mark the distinction between mammalian cyclooxygenases and insect peroxynectins, both of which convert AA into PGs. One PG, PGI2 (also called prostacyclin), is newly discovered in insects, as a negative regulator of immune reactions and a positive signal in juvenile development. Two new elements of insect PG biology are a PG dehydrogenase and a PG reductase, both of which enact necessary PG catabolism. EETs, which are produced from AA via cytochrome P450s, also act in immune signaling, acting as pro-inflammatory signals. Eicosanoids signal a wide range of cellular immune reactions to infections, invasions and wounding, including nodulation, cell spreading, hemocyte migration and releasing prophenoloxidase from oenocytoids, a class of lepidopteran hemocytes. We briefly review the relatively scant knowledge on insect PG receptors and note PGs also act in gut immunity and in humoral immunity. Detailed new information on PG actions in mosquito immunity against the malarial agent, Plasmodium berghei, has recently emerged and we treat this exciting new work. The new findings on eicosanoid actions in insect immunity have emerged from a very broad range of research at the genetic, cellular and organismal levels, all taking place at the international level.


Assuntos
Eicosanoides/genética , Insetos/genética , Fosfolipases A2/genética , Transdução de Sinais/genética , Animais , Ácido Araquidônico/genética , Ácido Araquidônico/imunologia , Eicosanoides/biossíntese , Eicosanoides/imunologia , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/imunologia , Hemócitos/enzimologia , Insetos/imunologia , Insetos/metabolismo , Lipoxigenase/genética , Lipoxigenase/imunologia , Mamíferos/genética , Mamíferos/imunologia , Fosfolipases A2/imunologia , Fator de Ativação de Plaquetas/análogos & derivados , Fator de Ativação de Plaquetas/genética , Fator de Ativação de Plaquetas/imunologia , Prostaglandina-Endoperóxido Sintases/genética
19.
Genes (Basel) ; 12(2)2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573306

RESUMO

Insects in nature interact with a wide variety of microbial enemies including nematodes. These include entomopathogenic nematodes that contain mutualistic bacteria and together are able to infect a broad range of insects in order to complete their life cycle and multiply, filarial nematodes which are vectored by mosquitoes, and other parasitic nematodes. Entomopathogenic nematodes are commonly used in biological control practices and they form excellent research tools for understanding the genetic and functional bases of nematode pathogenicity and insect anti-nematode immunity. In addition, clarifying the mechanism of transmission of filarial nematodes by mosquitoes is critical for devising strategies to reduce disease transmission in humans. In all cases and in order to achieve these goals, it is vital to determine the number and type of insect host genes which are differentially regulated during infection and encode factors with anti-nematode properties. In this respect, the use of transcriptomic approaches has proven a key step for the identification of insect molecules with anti-nematode activity. Here, we review the progress in the field of transcriptomics that deals with the insect response to nematode infection. This information is important because it will expose conserved pathways of anti-nematode immunity in humans.


Assuntos
Imunidade/genética , Nematoides/imunologia , Infecções por Nematoides/genética , Transcriptoma/genética , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/parasitologia , Humanos , Imunidade/imunologia , Insetos/genética , Insetos/imunologia , Nematoides/genética , Nematoides/patogenicidade , Infecções por Nematoides/imunologia , Simbiose/genética , Simbiose/imunologia
20.
Annu Rev Entomol ; 66: 61-79, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33417818

RESUMO

As an overarching immune mechanism, RNA interference (RNAi) displays pathogen specificity and memory via different pathways. The small interfering RNA (siRNA) pathway is the primary antiviral defense mechanism against RNA viruses of insects and plays a lesser role in defense against DNA viruses. Reflecting the pivotal role of the siRNA pathway in virus selection, different virus families have independently evolved unique strategies to counter this host response, including protein-mediated, decoy RNA-based, and microRNA-based strategies. In this review, we outline the interplay between insect viruses and the different pathways of the RNAi antiviral response; describe practical application of these interactions for improved expression systems and for pest and disease management; and highlight research avenues for advancement of the field.


Assuntos
Interações Hospedeiro-Patógeno , Vírus de Insetos/fisiologia , Insetos/virologia , Interferência de RNA , Animais , Insetos/genética , Insetos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...