Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
1.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38717918

RESUMO

The tomato spotted wilt virus (TSWV) is a member of the Tospoviridae family and has an negative/ambisense single-stranded RNA genome. Frankliniella occidentalis and F. intonsa are known to be dominant pests in Capsicum annuum (hot pepper) and can cause damage to the plant either directly by feeding, or indirectly by transmitting TSWV in a persistent and propagative manner, resulting in serious economic damage. This study compared the immune responses of two different thrips species against TSWV infection by transcriptome analysis, which then allowed the assessment of antiviral responses using RNA interference (RNAi). Both adult thrips shared about 90 % of the transcripts in non-viruliferous conditions. Most signal components of the immune pathways were shared by these two thrips species, and their expression levels fluctuated differentially in response to TSWV infection at early immature stages. The functional assays using RNAi treatments indicated that the Toll and JAK/STAT pathways were associated with the antiviral responses, but the IMD pathway was not. The upregulation of dorsal switch protein one supported its physiological role in recognizing TSWV infection and triggering the eicosanoid biosynthetic pathway, which mediates melanization and apoptosis in thrips. In addition, the signal components of the RNAi pathways fluctuated highly after TSWV infection. Individual RNAi treatments specific to the antiviral signalling and response components led to significant increases in the TSWV amount in the thrips, causing virus-induced mortality. These findings suggest that immune signalling pathways leading to antiviral responses are operating in the thrips to regulate TSWV litres to prevent a fatal viral overload. This study also indicates the differential antiviral responses between the TSWV-transmitting F. occidentalis and F. intonsa.


Assuntos
Doenças das Plantas , Tisanópteros , Tospovirus , Tospovirus/imunologia , Tospovirus/fisiologia , Tospovirus/genética , Animais , Tisanópteros/virologia , Tisanópteros/imunologia , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Capsicum/virologia , Capsicum/imunologia , Replicação Viral , Interferência de RNA , Insetos Vetores/virologia , Insetos Vetores/imunologia , Perfilação da Expressão Gênica , Transdução de Sinais
2.
PLoS Negl Trop Dis ; 16(1): e0010108, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35020729

RESUMO

BACKGROUND: In onchocerciasis endemic areas in Africa, heterogenous biting rates by blackfly vectors on humans are assumed to partially explain age- and sex-dependent infection patterns with Onchocerca volvulus. To underpin these assumptions and further improve predictions made by onchocerciasis transmission models, demographic patterns in antibody responses to salivary antigens of Simulium damnosum s.l. are evaluated as a measure of blackfly exposure. METHODOLOGY/PRINCIPAL FINDINGS: Recently developed IgG and IgM anti-saliva immunoassays for S. damnosum s.l. were applied to blood samples collected from residents in four onchocerciasis endemic villages in Ghana. Demographic patterns in antibody levels according to village, sex and age were explored by fitting generalized linear models. Antibody levels varied between villages but showed consistent patterns with age and sex. Both IgG and IgM responses declined with increasing age. IgG responses were generally lower in males than in females and exhibited a steeper decline in adult males than in adult females. No sex-specific difference was observed in IgM responses. CONCLUSIONS/SIGNIFICANCE: The decline in age-specific antibody patterns suggested development of immunotolerance or desensitization to blackfly saliva antigen in response to persistent exposure. The variation between sexes, and between adults and youngsters may reflect differences in behaviour influencing cumulative exposure. These measures of antibody acquisition and decay could be incorporated into onchocerciasis transmission models towards informing onchocerciasis control, elimination, and surveillance.


Assuntos
Anticorpos/sangue , Mordeduras e Picadas de Insetos/epidemiologia , Saliva/imunologia , Simuliidae/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Pré-Escolar , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Insetos Vetores/imunologia , Insetos Vetores/parasitologia , Masculino , Pessoa de Meia-Idade , Onchocerca volvulus/crescimento & desenvolvimento , Oncocercose/epidemiologia , Oncocercose/transmissão , Simuliidae/parasitologia , Adulto Jovem
3.
J Infect Dev Ctries ; 15(11): 1714-1723, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34898501

RESUMO

INTRODUCTION: Chagas disease is a neglected disease in the American continent. The southern Mexican state of Chiapas has the highest incidence rate of Chagas disease in the country. The disease, mainly caused by Tripanosoma cruzi in Mexico, is more prevalent in males than in females but the scientific basis for the sex-related tropism is not completely understood. The objective of this study was to evaluate the pathogenicity of a T. cruzi strain in mice of both sexes and to assess certain elements of the immune response in the infected animals. METHODOLOGY: Triatomines bugs were searched at Los Mezcales, Chiapas, Mexico and T. cruzi was identified by PCR and sequencing. A T. cruzi strain was isolated from the feces of triatomines bugs. Mice were infected with the strain and the virulence of the T. cruzi strain as well as the immune response against the infection was compared in male versus female mice. RESULTS: T. dimidiata was identified in all dwellings. 42.9% of the bugs were infected with T. cruzi lineage TcI. Male mice exhibited higher parasitemia than females, and developed leukopenia and lower levels of anti-T. cruzi antibodies compared to female mice. CONCLUSIONS: The identification of the T. cruzi strain in this endemic region of Mexico revealed that male mice are prone to this infectious protozoo, in addition to manifesting a deficient immune response against infection. These findings may explain the greater number of cases of Chagas disease among men in this endemic region of Latin America.


Assuntos
Doença de Chagas/epidemiologia , Imunidade , Trypanosoma cruzi/patogenicidade , Adolescente , Adulto , Animais , Doença de Chagas/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Insetos Vetores/imunologia , Masculino , México/epidemiologia , Camundongos , Pessoa de Meia-Idade , Fatores Sexuais , Trypanosoma cruzi/isolamento & purificação , Adulto Jovem
4.
Microbiol Spectr ; 9(3): e0061221, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34817206

RESUMO

The corn leafhopper (Dalbulus maidis) is an important vector of maize rayado fino virus (MRFV), a positive-strand RNA (+ssRNA) marafivirus which it transmits in a persistent propagative manner. The interaction of D. maidis with MRFV, including infection of the insect and subsequent transmission to new plants, is not well understood at the molecular level. To examine the leafhopper-virus interaction, a D. maidis transcriptome was assembled and differences in transcript abundance between virus-exposed and naive D. maidis were examined at two time points (4 h and 7 days) post exposure to MRFV. The D. maidis transcriptome contained 56,116 transcripts generated from 1,727,369,026 100-nt paired-end reads from whole adult insects. The transcriptome of D. maidis shared highest identity and most orthologs with the leafhopper Graminella nigrifrons (65% of transcripts had matches with E values of <10-5) versus planthoppers Sogatella furcifera (with 23% of transcript matches below the E value cutoff) and Peregrinus maidis (with 21% transcript matches below the E value cutoff), as expected based on taxonomy. D. maidis expressed genes in the Toll, Imd, and Jak/Stat insect immune signaling pathways, RNA interference (RNAi) pathway genes, prophenoloxidase-activating system pathways, and immune recognition protein-encoding genes such as peptidoglycan recognition proteins (PGRPs), antimicrobial peptides, and other effectors. Statistical analysis (performed by R package DESeq2) identified 72 transcripts at 4 h and 67 at 7 days that were significantly responsive to MRFV exposure. Genes expected to be favorable for virus propagation, such as protein synthesis-related genes and genes encoding superoxide dismutase, were significantly upregulated after MRFV exposure. IMPORTANCE The transcriptome of the corn leafhopper, D. maidis, revealed conserved biochemical pathways for immunity and discovered transcripts responsive to MRFV-infected plants at two time points, providing a basis for functional identification of genes that either limit or promote the virus-vector interaction. Compared to other hopper species and the propagative plant viruses they transmit, D. maidis shared 15 responsive transcripts with S. furcifera (to southern rice black-streaked dwarf virus [SRBSDV]), one with G. nigrifrons (to maize fine streak virus [MFSV]), and one with P. maidis (to maize mosaic virus [MMV]), but no virus-responsive transcripts identified were shared among all four hopper vector species.


Assuntos
Hemípteros/genética , Hemípteros/virologia , Proteínas de Insetos/genética , Insetos Vetores/genética , Insetos Vetores/virologia , Tymoviridae/fisiologia , Animais , Hemípteros/imunologia , Interações Hospedeiro-Patógeno , Proteínas de Insetos/imunologia , Insetos Vetores/imunologia , Doenças das Plantas/virologia , Transcriptoma , Tymoviridae/genética , Zea mays/virologia
5.
PLoS Pathog ; 17(9): e1009870, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34473801

RESUMO

As mosquito females require a blood meal to reproduce, they can act as vectors of numerous pathogens, such as arboviruses (e.g. Zika, dengue and chikungunya viruses), which constitute a substantial worldwide public health burden. In addition to blood meals, mosquito females can also take sugar meals to get carbohydrates for their energy reserves. It is now recognised that diet is a key regulator of health and disease outcome through interactions with the immune system. However, this has been mostly studied in humans and model organisms. So far, the impact of sugar feeding on mosquito immunity and in turn, how this could affect vector competence for arboviruses has not been explored. Here, we show that sugar feeding increases and maintains antiviral immunity in the digestive tract of the main arbovirus vector Aedes aegypti. Our data demonstrate that the gut microbiota does not mediate the sugar-induced immunity but partly inhibits it. Importantly, sugar intake prior to an arbovirus-infected blood meal further protects females against infection with arboviruses from different families. Sugar feeding blocks arbovirus initial infection and dissemination from the gut and lowers infection prevalence and intensity, thereby decreasing the transmission potential of female mosquitoes. Finally, we show that the antiviral role of sugar is mediated by sugar-induced immunity. Overall, our findings uncover a crucial role of sugar feeding in mosquito antiviral immunity which in turn decreases vector competence for arboviruses. Since Ae. aegypti almost exclusively feed on blood in some natural settings, our findings suggest that this lack of sugar intake could increase the spread of mosquito-borne arboviral diseases.


Assuntos
Aedes/virologia , Infecções por Arbovirus , Dieta , Insetos Vetores/virologia , Intestinos/imunologia , Aedes/imunologia , Animais , Arbovírus , Insetos Vetores/imunologia , Açúcares
6.
Insect Biochem Mol Biol ; 136: 103620, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216781

RESUMO

Fleas (Order Siphonaptera) transmit numerous bacterial pathogens that cause severe human diseases (e.g., cat scratch disease, flea-borne spotted fever, murine typhus, plague). Because initial entry of these infectious agents occurs while blood feeding, the immune response in the flea gut is considered to be the first line of defense against invading microbes. However, relatively few studies have identified the flea immune molecules that effectively resist or limit infection in the gut. In other hematophagous insects, an immediate immune response to imbibed pathogens is the generation of reactive oxygen species (ROS). In this study, we utilized cat fleas (Ctenocephalides felis) to investigate whether oral infection with a well-known insect bacterial pathogen (Serratia marcescens) induces ROS synthesis in the flea gut, and whether production of ROS provides a defense mechanism against microbial colonization. Specifically, we treated fleas with an antioxidant to limit the number of free radicals in the digestive tract prior to infection, and then measured the following: S. marcescens infection loads, hydrogen peroxide (ROS) levels, and mRNA abundance of ROS signaling pathway genes. Overall, our data shows that ROS levels increase in response to infection in the flea gut, and that this increase helps to strengthen the flea immune response through the microbicidal activity of ROS.


Assuntos
Infecções Bacterianas/imunologia , Ctenocephalides , Espécies Reativas de Oxigênio/imunologia , Animais , Antioxidantes/farmacologia , Ctenocephalides/imunologia , Ctenocephalides/metabolismo , Ctenocephalides/microbiologia , Insetos Vetores/imunologia , Insetos Vetores/metabolismo , Insetos Vetores/microbiologia , Intestinos/microbiologia , Serratia/efeitos dos fármacos , Serratia/imunologia
7.
Future Microbiol ; 16: 657-670, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34100305

RESUMO

Drawing of host blood is a natural phenomenon during the bite of blood-probing insect vectors. Along with the blood meal, the vectors introduce salivary components and a trail of microbiota. In the case of infected vectors, the related pathogen accompanies the aforementioned biological components. In addition to Anopheles gambiae or Anopheles stephensi, the bites of other nonmalarial vectors cannot be ignored in malaria-endemic regions. Similarly, the bite incidence of Phlebotomus papatasi cannot be ignored in visceral leishmaniasis-endemic regions. Even the chances of getting bitten by uninfected vectors are higher than the infected vectors. We have discussed the probability or possibility of uninfected, infected, and/or nonvector's saliva and gut microbiota as a therapeutic option leading to the initial deterrent to pathogen establishment.


Assuntos
Microbioma Gastrointestinal/imunologia , Insetos Vetores , Saliva/imunologia , Animais , Culicidae/imunologia , Humanos , Imunomodulação , Mordeduras e Picadas de Insetos/imunologia , Mordeduras e Picadas de Insetos/prevenção & controle , Insetos Vetores/imunologia , Psychodidae/imunologia , Doenças Transmitidas por Vetores/imunologia , Doenças Transmitidas por Vetores/prevenção & controle
8.
PLoS Negl Trop Dis ; 15(6): e0009378, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34081700

RESUMO

BACKGROUND: Sand fly saliva exposure plays an important role in immunity against leishmaniasis where it has mostly been associated with protection. Phlebotomus (Ph.) alexandri transmits Leishmania (L.) infantum, the causative agent of visceral leishmaniasis (VL), in Iraq. Our group recently demonstrated that 20% of Operation Iraqi Freedom (OIF) deployers had asymptomatic VL (AVL) indicative of prior infection by the parasite L. infantum. Little is known about Ph. alexandri saliva, and the human immune response to it has never been investigated. Here, we characterize the humoral and cellular immune response to vector saliva in OIF deployers naturally exposed to bites of Ph. alexandri and characterize their immunological profiles in association to AVL. METHODOLOGY/PRINCIPAL FINDINGS: The humoral response to Ph. alexandri salivary gland homogenate (SGH) showed that 64% of 200 OIF deployers developed an antibody response. To assess the cellular immune response to saliva, we selected a subcohort of subjects based on their post-travel (median 4 months; range 1-22 months) antibody response (SGH Antibody [Ab] positive or negative) as well as their AVL status; ten never-traveled controls were also included. Banked peripheral blood mononuclear cells (PBMC), collected ~10 years after end of deployment, were stimulated with SGH for 96 hours. The levels of IFN- γ, IL-6, IL-10, IL-13 and IL-17 were determined by ELISA. Our findings indicate that OIF deployers mounted a cellular response to SGH where the anti-SGH+ asymptomatic subjects developed the highest cytokine levels. Further, stimulation with SGH produced a mixture of pro-inflammatory and anti-inflammatory cytokines. Contrary to our hypothesis, we observed no correlation between the cellular immune response to Ph. alexandri SGH and prevention from asymptomatic infection with L. infantum. CONCLUSIONS/SIGNIFICANCE: As we found, although all infected deployers demonstrated persistent disease control years after deployment, this did not correlate with anti-saliva systemic cellular response. More exposure to this vector may facilitate transmission of the L. infantum parasite. Since exposure to saliva of Ph. alexandri may alter the human immune response to bites of this vector, this parameter should be taken into consideration when considering the VL risk.


Assuntos
Insetos Vetores/imunologia , Leishmaniose Visceral/transmissão , Phlebotomus/imunologia , Saliva/imunologia , Adulto , Animais , Anticorpos/sangue , Feminino , Humanos , Imunidade Celular , Imunidade Humoral , Iraque/epidemiologia , Leishmania infantum/imunologia , Leishmaniose Visceral/epidemiologia , Leucócitos Mononucleares , Masculino , Risco , Células Th2
9.
Nat Commun ; 12(1): 3213, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050141

RESUMO

Apart from bacterial formyl peptides or viral chemokine mimicry, a non-vertebrate or insect protein that directly attracts mammalian innate cells such as neutrophils has not been molecularly characterized. Here, we show that members of sand fly yellow salivary proteins induce in vitro chemotaxis of mouse, canine and human neutrophils in transwell migration or EZ-TAXIScan assays. We demonstrate murine neutrophil recruitment in vivo using flow cytometry and two-photon intravital microscopy in Lysozyme-M-eGFP transgenic mice. We establish that the structure of this ~ 45 kDa neutrophil chemotactic protein does not resemble that of known chemokines. This chemoattractant acts through a G-protein-coupled receptor and is dependent on calcium influx. Of significance, this chemoattractant protein enhances lesion pathology (P < 0.0001) and increases parasite burden (P < 0.001) in mice upon co-injection with Leishmania parasites, underlining the impact of the sand fly salivary yellow proteins on disease outcome. These findings show that some arthropod vector-derived factors, such as this chemotactic salivary protein, activate rather than inhibit the host innate immune response, and that pathogens take advantage of these inflammatory responses to establish in the host.


Assuntos
Fatores Quimiotáticos/metabolismo , Proteínas de Insetos/metabolismo , Leishmaniose Cutânea/imunologia , Neutrófilos/imunologia , Proteínas e Peptídeos Salivares/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Quimiotaxia de Leucócito/imunologia , Modelos Animais de Doenças , Cães , Feminino , Voluntários Saudáveis , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Proteínas de Insetos/genética , Proteínas de Insetos/isolamento & purificação , Insetos Vetores/imunologia , Insetos Vetores/metabolismo , Insetos Vetores/parasitologia , Leishmania major/imunologia , Leishmania major/patogenicidade , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/transmissão , Masculino , Camundongos , Pessoa de Meia-Idade , Infiltração de Neutrófilos/imunologia , Cultura Primária de Células , Psychodidae/imunologia , Psychodidae/metabolismo , Psychodidae/parasitologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/isolamento & purificação , Adulto Jovem
10.
PLoS Pathog ; 17(3): e1009347, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33647067

RESUMO

In the field, many insect-borne crop viral diseases are more suitable for maintenance and spread in hot-temperature areas, but the mechanism remains poorly understood. The epidemic of a planthopper (Sogatella furcifera)-transmitted rice reovirus (southern rice black-streaked dwarf virus, SRBSDV) is geographically restricted to southern China and northern Vietnam with year-round hot temperatures. Here, we reported that two factors of endoplasmic reticulum-associated degradation (ERAD) machinery, the heat shock protein DnaJB11 and ER membrane protein BAP31, were activated by viral infection to mediate the adaptation of S. furcifera to high temperatures. Infection and transmission efficiencies of SRBSDV by S. furcifera increased with the elevated temperatures. We observed that high temperature (35°C) was beneficial for the assembly of virus-containing tubular structures formed by nonstructural protein P7-1 of SRBSDV, which facilitates efficient viral transmission by S. furcifera. Both DnaJB11 and BAP31 competed to directly bind to the tubule protein P7-1 of SRBSDV; however, DnaJB11 promoted whereas BAP31 inhibited P7-1 tubule assembly at the ER membrane. Furthermore, the binding affinity of DnaJB11 with P7-1 was stronger than that of BAP31 with P7-1. We also revealed that BAP31 negatively regulated DnaJB11 expression through their direct interaction. High temperatures could significantly upregulate DnaJB11 expression but inhibit BAP31 expression, thereby strongly facilitating the assembly of abundant P7-1 tubules. Taken together, we showed that a new temperature-dependent protein quality control pathway in the ERAD machinery has evolved for strong activation of DnaJB11 for benefiting P7-1 tubules assembly to support efficient transmission of SRBSDV in high temperatures. We thus deduced that ERAD machinery has been hitchhiked by insect-borne crop viruses to enhance their transmission in tropical climates.


Assuntos
Temperatura Alta/efeitos adversos , Insetos Vetores/virologia , Doenças das Plantas/virologia , Reoviridae/imunologia , Animais , Degradação Associada com o Retículo Endoplasmático/imunologia , Insetos Vetores/imunologia , Orthoreovirus/patogenicidade
11.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751625

RESUMO

Many pathogens are transmitted by tick bites, including Anaplasma spp., Ehrlichia spp., Rickettsia spp., Babesia and Theileria sensu stricto species. These pathogens cause infectious diseases both in animals and humans. Different types of immune effector mechanisms could be induced in hosts by these microorganisms, triggered either directly by pathogen-derived antigens or indirectly by molecules released by host cells binding to these antigens. The components of innate immunity, such as natural killer cells, complement proteins, macrophages, dendritic cells and tumor necrosis factor alpha, cause a rapid and intense protection for the acute phase of infectious diseases. Moreover, the onset of a pro-inflammatory state occurs upon the activation of the inflammasome, a protein scaffold with a key-role in host defense mechanism, regulating the action of caspase-1 and the maturation of interleukin-1ß and IL-18 into bioactive molecules. During the infection caused by different microbial agents, very similar profiles of the human innate immune response are observed including secretion of IL-1α, IL-8, and IFN-α, and suppression of superoxide dismutase, IL-1Ra and IL-17A release. Innate immunity is activated immediately after the infection and inflammasome-mediated changes in the pro-inflammatory cytokines at systemic and intracellular levels can be detected as early as on days 2-5 after tick bite. The ongoing research field of "inflammasome biology" focuses on the interactions among molecules and cells of innate immune response that could be responsible for triggering a protective adaptive immunity. The knowledge of the innate immunity mechanisms, as well as the new targets of investigation arising by bioinformatics analysis, could lead to the development of new methods of emergency diagnosis and prevention of tick-borne infections.


Assuntos
Imunidade Inata , Insetos Vetores/imunologia , Doenças Transmitidas por Carrapatos/imunologia , Carrapatos/patogenicidade , Anaplasma/patogenicidade , Animais , Babesia/patogenicidade , Ehrlichia/patogenicidade , Humanos , Insetos Vetores/patogenicidade , Rickettsia/patogenicidade , Theileria/patogenicidade , Doenças Transmitidas por Carrapatos/transmissão , Carrapatos/microbiologia
12.
PLoS Pathog ; 16(8): e1008754, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776975

RESUMO

Arbovirus infection of Aedes aegypti salivary glands (SGs) determines transmission. However, there is a dearth of knowledge on SG immunity. Here, we characterized SG immune response to dengue, Zika and chikungunya viruses using high-throughput transcriptomics. We also describe a transcriptomic response associated to apoptosis, blood-feeding and lipid metabolism. The three viruses differentially regulate components of Toll, Immune deficiency (IMD) and c-Jun N- terminal Kinase (JNK) pathways. However, silencing of the Toll and IMD pathway components showed variable effects on SG infection by each virus. In contrast, regulation of the JNK pathway produced consistent responses in both SGs and midgut. Infection by the three viruses increased with depletion of the activator Kayak and decreased with depletion of the negative regulator Puckered. Virus-induced JNK pathway regulates the complement factor, Thioester containing protein-20 (TEP20), and the apoptosis activator, Dronc, in SGs. Individual and co-silencing of these genes demonstrate their antiviral effects and that both may function together. Co-silencing either TEP20 or Dronc with Puckered annihilates JNK pathway antiviral effect. Upon infection in SGs, TEP20 induces antimicrobial peptides (AMPs), while Dronc is required for apoptosis independently of TEP20. In conclusion, we revealed the broad antiviral function of JNK pathway in SGs and showed that it is mediated by a TEP20 complement and Dronc-induced apoptosis response. These results expand our understanding of the immune arsenal that blocks arbovirus transmission.


Assuntos
Aedes/imunologia , Apoptose , Febre de Chikungunya/imunologia , Proteínas do Sistema Complemento/imunologia , Dengue/imunologia , Sistema de Sinalização das MAP Quinases , Glândulas Salivares/imunologia , Infecção por Zika virus/imunologia , Aedes/virologia , Animais , Febre de Chikungunya/metabolismo , Febre de Chikungunya/prevenção & controle , Febre de Chikungunya/virologia , Vírus Chikungunya/imunologia , Proteínas do Sistema Complemento/metabolismo , Dengue/metabolismo , Dengue/prevenção & controle , Dengue/virologia , Vírus da Dengue/imunologia , Feminino , Interações Hospedeiro-Patógeno , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos Vetores/imunologia , Insetos Vetores/virologia , Glândulas Salivares/virologia , Transcriptoma , Replicação Viral , Zika virus/imunologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia
13.
J Insect Physiol ; 126: 104100, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32822690

RESUMO

The immune system of Rhodnius prolixus comprehends the synthesis of different effectors that modulate the intestinal microbiota population and the life cycle of the parasite Trypanosoma cruzi inside the vector midgut. One of these immune responses is the production of reactive nitrogen species (RNS) derived by the action of nitric oxide synthase (NOS). Therefore, we investigated the effects of L-arginine, the substrate for nitric oxide (NO) production and Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME), an inhibitor of NOS, added in the insect blood meal. We analyzed the impact of these treatments on the immune responses and development of intestinal bacteria and parasites on R. prolixus nymphs. The L-arginine treatment in R. prolixus nymphs induced a higher NOS gene expression in the fat body and increased NO production, but reduced catalase and antimicrobial activities in the midgut. As expected, L-NAME treatment reduced NOS gene expression in the fat body. In addition, L-NAME treatment diminished catalase activity in the hemolymph and posterior midgut reduced phenoloxidase activity in the anterior midgut and increased the antimicrobial activity in the hemolymph. Both treatments caused a reduction in the cultivatable intestinal microbiota, especially in insects treated with L-NAME. However, T. cruzi development in the insect's digestive tract was suppressed after L-arginine treatment and the opposite was observed with L-NAME, which resulted in higher parasite counts. Therefore, we conclude that induction and inhibition of NOS and NO production are associated with other R. prolixus humoral immune responses, such as catalase, phenoloxidase, and antibacterial activities in different insect organs. These alterations reflect on intestinal microbiota and T. cruzi development.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Óxido Nítrico , Rhodnius , Trypanosoma cruzi/efeitos dos fármacos , Animais , Arginina/antagonistas & inibidores , Arginina/farmacologia , Catalase/efeitos dos fármacos , Catalase/metabolismo , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Expressão Gênica/efeitos dos fármacos , Genes de Insetos , Hemolinfa/efeitos dos fármacos , Hemolinfa/imunologia , Hemolinfa/metabolismo , Imunidade Humoral/efeitos dos fármacos , Insetos Vetores/imunologia , Insetos Vetores/microbiologia , Insetos Vetores/parasitologia , Monofenol Mono-Oxigenase/efeitos dos fármacos , Monofenol Mono-Oxigenase/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Rhodnius/imunologia , Rhodnius/microbiologia , Rhodnius/parasitologia
14.
PLoS Negl Trop Dis ; 14(7): e0007489, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32658913

RESUMO

Phlebotomus papatasi sand flies inject their hosts with a myriad of pharmacologically active salivary proteins to assist with blood feeding and to modulate host defenses. In addition, salivary proteins can influence cutaneous leishmaniasis disease outcome, highlighting the potential of the salivary components to be used as a vaccine. Variability of vaccine targets in natural populations influences antigen choice for vaccine development. Therefore, the objective of this study was to investigate the variability in the predicted protein sequences of nine of the most abundantly expressed salivary proteins from field populations, testing the hypothesis that salivary proteins appropriate to target for vaccination strategies will be possible. PpSP12, PpSP14, PpSP28, PpSP29, PpSP30, PpSP32, PpSP36, PpSP42, and PpSP44 mature cDNAs from field collected P. papatasi from three distinct ecotopes in the Middle East and North Africa were amplified, sequenced, and in silico translated to assess the predicted amino acid variability. Two of the predicted sequences, PpSP12 and PpSP14, demonstrated low genetic variability across the three geographic isolated sand fly populations, with conserved multiple predicted MHCII epitope binding sites suggestive of their potential application in vaccination approaches. The other seven predicted salivary proteins revealed greater allelic variation across the same sand fly populations, possibly precluding their use as vaccine targets.


Assuntos
Proteínas de Insetos/genética , Insetos Vetores/genética , Phlebotomus/genética , Proteínas e Peptídeos Salivares/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Egito , Humanos , Proteínas de Insetos/imunologia , Insetos Vetores/imunologia , Jordânia , Phlebotomus/imunologia , Proteínas e Peptídeos Salivares/imunologia , Alinhamento de Sequência
15.
J Invest Dermatol ; 140(12): 2332-2342.e10, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32360599

RESUMO

Fogo selvagem (FS) is a blistering skin disease caused by pathogenic IgG4 autoantibodies to desmoglein 1 (DSG1). Preclinical FS and leishmaniasis are endemic to certain regions of Brazil and exhibit nonpathogenic anti-DSG1 antibodies. Recurring bites from Lutzomyia longipalpis, the sand fly vector of leishmaniasis, immunize individuals with L. longipalpis salivary antigens LJM17 and LJM11. We measured the antibody responses to LJM17, LJM11, and DSG1 in normal settlers and patients with FS from an endemic focus of FS and nonendemic control populations. We also immunized mice with these antigens and assessed the IgG response. Healthy individuals and patients with FS from endemic areas had significantly higher values of IgG4 anti-LJM17 antibodies than nonendemic controls (P < 0.001 for both). The levels of IgG anti-DSG1 and IgG4 anti-LJM17 and anti-LJM11 antibodies correlated positively in normal settlers and patients with FS. Mice immunized with recombinant LJM17 produced IgG1 antibodies (human IgG4 homolog) that strongly cross-reacted with recombinant DSG1; these IgG1 antibodies were inhibited by LJM17, LJM11, and DSG1 in a dose-dependent manner. However, they did not bind human or mouse epidermis by indirect immunofluorescence. Lastly, we identified short-sequence homologies of surface-exposed residues within the human DSG1 ectodomain and LJM17. Inoculation by LJM17 from L. longipalpis-elicited DSG1-cross-reactive IgG4 antibodies may lead to FS in genetically predisposed individuals.


Assuntos
Mordeduras e Picadas/imunologia , Desmogleína 1/imunologia , Proteínas de Insetos/imunologia , Pênfigo/imunologia , Psychodidae/imunologia , Animais , Autoanticorpos/imunologia , Autoantígenos/imunologia , Mordeduras e Picadas/epidemiologia , Mordeduras e Picadas/patologia , Brasil/epidemiologia , Reações Cruzadas , Modelos Animais de Doenças , Doenças Endêmicas , Epiderme/imunologia , Epiderme/patologia , Humanos , Insetos Vetores/imunologia , Insetos Vetores/parasitologia , Leishmaniose Cutânea/epidemiologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Camundongos , Pênfigo/epidemiologia , Pênfigo/patologia , Psychodidae/parasitologia , Proteínas Recombinantes/imunologia , Proteínas e Peptídeos Salivares/imunologia
16.
Trends Parasitol ; 36(3): 250-265, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32007395

RESUMO

Triatomines are blood-feeding insects that prey on vertebrate hosts. Their saliva is largely responsible for their feeding success. The triatomine salivary content has been studied over the past decades, revealing multifunctional bioactive proteins targeting the host´s hemostasis and immune system. Recently, sequencing of salivary-gland mRNA libraries revealed increasingly complex and complete transcript databases that have been used to validate the expression of deduced proteins through proteomics. This review provides an insight into the journey of discovery and characterization of novel molecules in triatomine saliva.


Assuntos
Proteínas de Insetos/química , Insetos Vetores/química , Saliva/química , Glândulas Salivares/química , Triatominae/química , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia , Insetos Vetores/genética , Insetos Vetores/imunologia , Proteômica , RNA Mensageiro/química , RNA Mensageiro/genética , Saliva/imunologia , Glândulas Salivares/imunologia , Triatominae/genética , Triatominae/imunologia
17.
Methods ; 183: 38-42, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31654749

RESUMO

During infection, RNA viruses can produce two types of virus-derived small RNAs (vsRNAs), small interfering RNA (siRNA) and microRNA (miRNA), that play a key role in RNA silencing-mediated antiviral mechanisms in various hosts by associating with different Argonaute (Ago) proteins. Ago1 has been widely identified as an essential part of the miRNA pathway, while Ago2 is required for the siRNA pathway. Thus, analysis of the interaction between vsRNAs and Ago proteins can provide a clue about which pathway the vsRNA may be involved in. In this study, using rice stripe virus (RSV)-small brown planthoppers (Laodelphax striatellus, Fallen) as an infection model, the interactions of eight vsRNAs derived from four viral genomic RNA fragments and Ago1 or Ago2 were detected via the RNA immunoprecipitation (RIP) method. vsRNA4-1 and vsRNA4-2 derived from RSV RNA4 were significantly enriched in Ago1-immunoprecipitated complexes, whereas vsRNA2-1 and vsRNA3-2 seemed enriched in Ago2-immunoprecipitated complexes. vsRNA1-2 and vsRNA2-2 were detected in both of the two Ago-immunoprecipitated complexes. In contrast, vsRNA1-1 and vsRNA3-1 did not accumulate in either Ago1- or Ago2-immunoprecipitated complexes, indicating that regulatory pathways other than miRNA or siRNA pathways might be employed. In addition, two conserved L. striatellus miRNAs were analysed via the RIP method. Both miRNAs accumulated in Ago1-immunoprecipitated complexes, which was consistent with previous studies, suggesting that our experimental system can be widely used. In conclusion, our study provides an accurate and convenient detection system to determine the potential pathway of vsRNAs, and this method may also be suitable for studying other sRNAs.


Assuntos
Proteínas Argonautas/isolamento & purificação , Hemípteros/genética , Imunoprecipitação/métodos , Insetos Vetores/genética , RNA Viral/isolamento & purificação , Animais , Proteínas Argonautas/imunologia , Proteínas Argonautas/metabolismo , Hemípteros/imunologia , Hemípteros/metabolismo , Hemípteros/virologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Insetos Vetores/imunologia , Insetos Vetores/metabolismo , Insetos Vetores/virologia , MicroRNAs/genética , MicroRNAs/imunologia , MicroRNAs/metabolismo , Oryza , Doenças das Plantas/genética , Doenças das Plantas/virologia , RNA Interferente Pequeno/imunologia , RNA Interferente Pequeno/isolamento & purificação , RNA Interferente Pequeno/metabolismo , RNA Viral/imunologia , RNA Viral/metabolismo , Tenuivirus/genética , Tenuivirus/imunologia , Tenuivirus/patogenicidade
18.
Parasit Vectors ; 12(1): 483, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615544

RESUMO

BACKGROUND: Biting midges of the genus Culicoides vector multiple veterinary pathogens and are difficult to control. Endosymbionts particularly Wolbachia pipientis may offer an alternative to control populations of Culicoides and/or impact disease transmission in the form of population suppression or replacement strategies. METHODS: Culicoides sonorensis cell lines were transfected with a Wolbachia infection using a modified shell vial technique. Infections were confirmed using PCR and cell localization using fluorescent in situ hybridization (FISH). The stability of Wolbachia infections and density was determined by qPCR. qPCR was also used to examine immune genes in the IMD, Toll and JACK/STAT pathways to determine if Wolbachia were associated with an immune response in infected cells. RESULTS: Here we have transfected two Culicoides sonorensis cell lines (W3 and W8) with a Wolbachia infection (walbB) from donor Aedes albopictus Aa23 cells. PCR and FISH showed the presence of Wolbachia infections in both C. sonorensis cell lines. Infection densities were higher in the W8 cell lines when compared to W3. In stably infected cells, genes in the immune Toll, IMD and JAK/STAT pathways were upregulated, along with Attacin and an Attacin-like anti-microbial peptides. CONCLUSIONS: The successful introduction of Wolbachia infections in C. sonorensis cell lines and the upregulation of immune genes, suggest the utility of using Wolbachia for a population replacement and/or population suppression approach to limit the transmission of C. sonorensis vectored diseases. Results support the further investigation of Wolbachia induced pathogen inhibitory effects in Wolbachia-infected C. sonorensis cell lines and the introduction of Wolbachia into C. sonorensis adults via embryonic microinjection to examine for reproductive phenotypes and host fitness effects of a novel Wolbachia infection.


Assuntos
Ceratopogonidae/microbiologia , Insetos Vetores/microbiologia , Transfecção/métodos , Wolbachia/patogenicidade , Aedes/citologia , Animais , Agentes de Controle Biológico , Linhagem Celular/microbiologia , Ceratopogonidae/imunologia , Imunidade/genética , Hibridização in Situ Fluorescente , Insetos Vetores/imunologia , Controle Biológico de Vetores/métodos , Fenótipo , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real , Reprodução , Wolbachia/genética , Wolbachia/imunologia
19.
Virology ; 533: 137-144, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31247402

RESUMO

Angiotensin-converting enzyme (ACE) plays diverse roles in the animal kingdom. However, whether ACE plays an immune function against viral infection in vector insects is unclear. In this study, an ACE gene (LsACE) from the small brown planthopper was found to respond to Rice stripe virus (RSV) infection. The enzymatic activities of LsACE were characterized at different pH and temperature. Twenty planthopper proteins were found to interact with LsACE. RSV infection significantly upregulated LsACE expression in the testicle and fat body. When the expression of LsACE in viruliferous planthoppers was inhibited, the RNA level of the RSV SP gene was upregulated 2-fold in planthoppers, and all RSV genes showed higher RNA levels in the rice plants consumed by these planthoppers, leading to a higher viral infection rate and disease rating index. These results indicate that LsACE plays a role in the immune response against RSV transmission by planthoppers.


Assuntos
Hemípteros/imunologia , Hemípteros/virologia , Proteínas de Insetos/imunologia , Insetos Vetores/imunologia , Insetos Vetores/virologia , Peptidil Dipeptidase A/imunologia , Tenuivirus/fisiologia , Sequência de Aminoácidos , Animais , Hemípteros/genética , Hemípteros/fisiologia , Proteínas de Insetos/genética , Insetos Vetores/genética , Insetos Vetores/fisiologia , Oryza/virologia , Peptidil Dipeptidase A/genética , Filogenia , Doenças das Plantas/virologia , Tenuivirus/classificação , Tenuivirus/genética , Tenuivirus/isolamento & purificação
20.
Rev Soc Bras Med Trop ; 52: e20180415, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31141051

RESUMO

INTRODUCTION: Malaria and leishmaniases are transmitted by vectors during blood-feeding. Vector-infected animals develop antibodies against the vector's saliva. This study evaluated IgY antibody detection in the chicken eggs exposed to bites from Migonemyia migonei, Lutzomyia longipalpis and Anopheles aquasalis. METHODS: We used ELISA to quantify the antibody levels in the sera and exposed chicken eggs. RESULTS: High IgY levels were observed following immunization; furthermore, higher reactivity was observed in the eggs and species-specific immune response was observed post final immunization. CONCLUSIONS: Chicken eggs can be used as sentinels to surveil vector saliva antibodies.


Assuntos
Anopheles/imunologia , Galinhas/parasitologia , Ovos/parasitologia , Imunoglobulinas/análise , Insetos Vetores/imunologia , Psychodidae/imunologia , Saliva/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Leishmaniose/transmissão , Malária/transmissão , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...