Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.765
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1319753, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726345

RESUMO

Background: The relationship between basal metabolic rate (BMR) and Chronic kidney disease (CKD) remains unclear and controversial. In this study, we investigated the causal role of BMR in renal injury, and inversely, whether altered renal function causes changes in BMR. Methods: In this two-sample mendelian randomization (MR) study, Genetic data were accessed from published genome-wide association studies (GWAS) for BMR ((n = 454,874) and indices of renal function, i.e. estimated glomerular filtration rate (eGFR) based on creatinine (n =1, 004, 040), CKD (n=480, 698), and blood urea nitrogen (BUN) (n =852, 678) in European. The inverse variance weighted (IVW) random-effects MR method serves as the main analysis, accompanied by several sensitivity MR analyses. We also performed a reverse MR to explore the causal effects of the above indices of renal function on the BMR. Results: We found that genetically predicted BMR was negatively related to eGFR, (ß= -0.032, P = 4.95*10-12). Similar results were obtained using the MR-Egger (ß= -0.040, P = 0.002), weighted median (ß= -0.04, P= 5.35×10-11) and weighted mode method (ß= -0.05, P=9.92×10-7). Higher BMR had a causal effect on an increased risk of CKD (OR =1.36, 95% CI = 1.11-1.66, P =0.003). In reverse MR, lower eGFR was related to higher BMR (ß= -0.64, P = 2.32×10-6, IVW analysis). Bidirectional MR supports no causal association was observed between BMR and BUN. Sensitivity analyses confirmed these findings, indicating the robustness of the results. Conclusion: Genetically predicted high BMR is associated with impaired kidney function. Conversely, genetically predicted decreased eGFR is associated with higher BMR.


Assuntos
Metabolismo Basal , Estudo de Associação Genômica Ampla , Taxa de Filtração Glomerular , Análise da Randomização Mendeliana , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Metabolismo Basal/genética , Rim/metabolismo , Polimorfismo de Nucleotídeo Único , Testes de Função Renal , Masculino
2.
Cells ; 13(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38727287

RESUMO

Currently, more and more people are suffering from chronic kidney disease (CKD). It is estimated that CKD affects over 10% of the population worldwide. This is a significant issue, as the kidneys largely contribute to maintaining homeostasis by, among other things, regulating blood pressure, the pH of blood, and the water-electrolyte balance and by eliminating unnecessary metabolic waste products from blood. What is more, this disease does not show any specific symptoms at the beginning. The development of CKD is predisposed by certain conditions, such as diabetes mellitus or hypertension. However, these disorders are not the only factors promoting the onset and progression of CKD. The primary purpose of this review is to examine renin-angiotensin-aldosterone system (RAAS) activity, transforming growth factor-ß1 (TGF-ß1), vascular calcification (VC), uremic toxins, and hypertension in the context of their impact on the occurrence and the course of CKD. We firmly believe that a deeper comprehension of the cellular and molecular mechanisms underlying CKD can lead to an enhanced understanding of the disease. In the future, this may result in the development of medications targeting specific mechanisms involved in the decline of kidney function. Our paper unveils the selected processes responsible for the deterioration of renal filtration abilities.


Assuntos
Progressão da Doença , Insuficiência Renal Crônica , Sistema Renina-Angiotensina , Humanos , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Sistema Renina-Angiotensina/fisiologia , Animais , Hipertensão/fisiopatologia , Hipertensão/patologia , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Calcificação Vascular/fisiopatologia , Fator de Crescimento Transformador beta1/metabolismo , Rim/patologia , Rim/metabolismo , Rim/fisiopatologia
3.
J Physiol Sci ; 74(1): 29, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38730366

RESUMO

L-Ascorbic acid, commonly known as vitamin C, has been used not only for disease prevention and in complementary and alternative medicine, but also for anti-aging purposes. However, the scientific evidence is not yet sufficient. Here, we review the physiological functions of vitamin C and its relationship with various pathological conditions, including our previous findings, and discuss the prospects of its application in healthy longevity. In summary, vitamin C levels are associated with lifespan in several animal models. Furthermore, clinical studies have shown that the blood vitamin C levels are lower in middle-aged and older adults than in younger adults. Lower blood vitamin C levels have also been observed in various pathological conditions such as chronic kidney disease and chronic obstructive pulmonary disease in the elderly. These observations suggest the implications of vitamin C in age-related pathological mechanisms owing to its physiological functions.


Assuntos
Envelhecimento , Ácido Ascórbico , Humanos , Envelhecimento/fisiologia , Animais , Longevidade/fisiologia , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/metabolismo
4.
Gut Microbes ; 16(1): 2351532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38727248

RESUMO

Emerging evidence indicates that alteration of gut microbiota plays an important role in chronic kidney disease (CKD)-related vascular calcification (VC). We aimed to investigate the specific gut microbiota and the underlying mechanism involved in CKD-VC. We identified an increased abundance of Prevotella copri (P. copri) in the feces of CKD rats (induced by using 5/6 nephrectomy followed by a high calcium and phosphate diet) with aortic calcification via amplicon sequencing of 16S rRNA genes. In patients with CKD, we further confirmed a positive correlation between abundance of P. copri and aortic calcification scores. Moreover, oral administration of live P. copri aggravated CKD-related VC and osteogenic differentiation of vascular smooth muscle cells in vivo, accompanied by intestinal destruction, enhanced expression of Toll-like receptor-4 (TLR4), and elevated lipopolysaccharide (LPS) levels. In vitro and ex vivo experiments consistently demonstrated that P. copri-derived LPS (Pc-LPS) accelerated high phosphate-induced VC and VSMC osteogenic differentiation. Mechanistically, Pc-LPS bound to TLR4, then activated the nuclear factor κB (NF-κB) and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome signals during VC. Inhibition of NF-κB reduced NLRP3 inflammasome and attenuated Pc-LPS-induced VSMC calcification. Our study clarifies a novel role of P. copri in CKD-related VC, by the mechanisms involving increased inflammation-regulating metabolites including Pc-LPS, and activation of the NF-κB/NLRP3 signaling pathway. These findings highlight P. copri and its-derived LPS as potential therapeutic targets for VC in CKD.


Assuntos
Microbioma Gastrointestinal , Lipopolissacarídeos , NF-kappa B , Prevotella , Insuficiência Renal Crônica , Transdução de Sinais , Receptor 4 Toll-Like , Calcificação Vascular , Animais , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , NF-kappa B/metabolismo , Lipopolissacarídeos/metabolismo , Ratos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/microbiologia , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/patologia , Humanos , Masculino , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Prevotella/metabolismo , Ratos Sprague-Dawley , Miócitos de Músculo Liso/metabolismo , Osteogênese/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fezes/microbiologia , Inflamassomos/metabolismo
5.
Nihon Yakurigaku Zasshi ; 159(3): 157-159, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38692879

RESUMO

Anemia in chronic kidney disease (CKD) occurs due to insufficient production of erythropoietin to compensate for the decrease in hemoglobin. Anemia in CKD has traditionally been treated with periodic injections of erythropoiesis-stimulating agents (ESAs), which are recombinant human erythropoietin preparations. Although ESA improved anemia in CKD and dramatically improved the quality of life of patients, there are some patients who are hyporesponsive to ESA, and the use of large doses of ESA in these patients may have a negative impact on patient prognosis. Currently, HIF prolyl hydroxylase (HIF-PH) inhibitors have been approved in Japan as a new treatment for anemia in CKD. HIF-PH inhibitors activate HIF and promote the production of endogenous erythropoietin. The 2019 Nobel Prize in Physiology or Medicine was awarded for groundbreaking research that uncovered the HIF pathway. Because HIF-PH inhibitors improve both erythropoietin production and iron metabolism, they are expected to be effective in treating ESA hyporesponsiveness and solve the inconvenience of injectable preparations. On the other hand, its effects are systemic and multifaceted, and long-term effects must be closely monitored.


Assuntos
Anemia , Humanos , Anemia/tratamento farmacológico , Anemia/etiologia , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Eritropoetina/metabolismo
6.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732210

RESUMO

Investigating the role of podocytes in proteinuric disease is imperative to address the increasing global burden of chronic kidney disease (CKD). Studies strongly implicate increased levels of monocyte chemoattractant protein-1 (MCP-1/CCL2) in proteinuric CKD. Since podocytes express the receptor for MCP-1 (i.e., CCR2), we hypothesized that podocyte-specific MCP-1 production in response to stimuli could activate its receptor in an autocrine manner, leading to further podocyte injury. To test this hypothesis, we generated podocyte-specific MCP-1 knockout mice (Podo-Mcp-1fl/fl) and exposed them to proteinuric injury induced by either angiotensin II (Ang II; 1.5 mg/kg/d, osmotic minipump) or Adriamycin (Adr; 18 mg/kg, intravenous bolus). At baseline, there were no between-group differences in body weight, histology, albuminuria, and podocyte markers. After 28 days, there were no between-group differences in survival, change in body weight, albuminuria, kidney function, glomerular injury, and tubulointerstitial fibrosis. The lack of protection in the knockout mice suggests that podocyte-specific MCP-1 production is not a major contributor to either Ang II- or Adr-induced glomerular disease, implicating that another cell type is the source of pathogenic MCP-1 production in CKD.


Assuntos
Angiotensina II , Quimiocina CCL2 , Doxorrubicina , Camundongos Knockout , Podócitos , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Podócitos/metabolismo , Podócitos/patologia , Podócitos/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Camundongos , Masculino , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Deleção de Genes , Modelos Animais de Doenças
7.
Pak J Pharm Sci ; 37(1): 155-161, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38741412

RESUMO

Nephrin is a transmembrane protein that maintains the slit diaphragm of renal podocyte. In chronic kidney disease (CKD), podocyte effacement causes damage to glomerular basement membrane barrier leading to proteinuria. Boerhavia diffusa, (BD), an Ayurveda herb, is used in treatment of various diseases particularly in relation to the urinary system. This study attempts to evaluate the effect of ethanolic extract of BD on the expression of nephrin in adenine induced CKD rats. CKD was induced in Wistar albino rats using adenine (600/mg/kg, orally for 10 days). CKD rats were treated with BD (400/mg/kg) and pirfenidone (500/mg/kg) orally for 14 days. The kidneys were harvested from euthanized animals and processed for histopathology, electron microscopy and immunohistochemistry, gene and protein expression of nephrin. Diseased rats treated with BD and pirfenidone showed reduction in the thickening of renal basement membranes and reduced haziness in brush border of PCT and glomeruli. Nephrin gene and protein expressions were higher in BD and pirfenidone treated group when compared to the disease control group. The structural and functional damage brought on by adenine-induced nephrotoxicity was countered by protective action of BD by up regulating the expression of nephrin. Therefore, BD can be utilized as a nutraceutical for the prevention and treatment of CKD.


Assuntos
Adenina , Proteínas de Membrana , Extratos Vegetais , Podócitos , Ratos Wistar , Insuficiência Renal Crônica , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Podócitos/patologia , Extratos Vegetais/farmacologia , Adenina/farmacologia , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Masculino , Ratos , Modelos Animais de Doenças
8.
Eur J Histochem ; 68(2)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38742403

RESUMO

Chronic kidney disease (CKD) is a leading public health issue associated with high morbidity worldwide. However, there are only a few effective therapeutic strategies for CKD. Emodin, an anthraquinone compound from rhubarb, can inhibit fibrosis in tissues and cells. Our study aims to investigate the antifibrotic effect of emodin and the underlying molecular mechanism. A unilateral ureteral obstruction (UUO)-induced rat model was established to evaluate the effect of emodin on renal fibrosis development. Hematoxylin and eosin staining, Masson's trichrome staining, and immunohistochemistry staining were performed to analyze histopathological changes and fibrotic features after emodin treatment. Subsequently, a transforming growth factor-beta 1 (TGF-ß1)-induced cell model was used to assess the inhibition of emodin on cell fibrosis in vitro. Furthermore, Western blot analysis and real-time quantitative reverse transcription-polymerase chain reaction were performed to validate the regulatory mechanism of emodin on renal fibrosis progression. As a result, emodin significantly improved histopathological abnormalities in rats with UUO. The expression of fibrosis biomarkers and mitochondrial biogenesis-related proteins also decreased after emodin treatment. Moreover, emodin blocked TGF-ß1-induced fibrotic phenotype, lipid accumulation, and mitochondrial homeostasis in NRK-52E cells. Conversely, peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α) silencing significantly reversed these features in emodin-treated cells. Collectively, emodin plays an important role in regulating PGC-1α-mediated mitochondria function and energy homeostasis. This indicates that emodin exhibits great inhibition against renal fibrosis and acts as a promising inhibitor of CKD.


Assuntos
Emodina , Fibrose , Mitocôndrias , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Insuficiência Renal Crônica , Animais , Emodina/farmacologia , Emodina/uso terapêutico , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Fibrose/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Homeostase/efeitos dos fármacos , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Obstrução Ureteral/patologia , Obstrução Ureteral/tratamento farmacológico , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular
9.
Int J Mol Sci ; 25(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732178

RESUMO

Some of the most common conditions affecting people are kidney diseases. Among them, we distinguish chronic kidney disease and acute kidney injury. Both entities pose serious health risks, so new drugs are still being sought to treat and prevent them. In recent years, such a role has begun to be assigned to sodium-glucose cotransporter-2 (SGLT2) inhibitors. They increase the amount of glucose excreted in the urine. For this reason, they are currently used as a first-line drug in type 2 diabetes mellitus. Due to their demonstrated cardioprotective effect, they are also used in heart failure treatment. As for the renal effects of SGLT2 inhibitors, they reduce intraglomerular pressure and decrease albuminuria. This results in a slower decline in glomelular filtration rate (GFR) in patients with kidney disease. In addition, these drugs have anti-inflammatory and antifibrotic effects. In the following article, we review the evidence for the effectiveness of this group of drugs in kidney disease and their nephroprotective effect. Further research is still needed, but meta-analyses indicate SGLT2 inhibitors' efficacy in kidney disease, especially the one caused by diabetes. Development of new drugs and clinical trials on specific patient subgroups will further refine their nephroprotective effects.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Taxa de Filtração Glomerular/efeitos dos fármacos , Nefropatias/tratamento farmacológico , Animais
10.
PeerJ ; 12: e17260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680884

RESUMO

Chronic kidney disease (CKD) represents a significant global health concern, with renal fibrosis emerging as a prevalent and ultimate manifestation of this condition. The absence of targeted therapies presents an ongoing and substantial challenge. Accumulating evidence suggests that the integrity and functionality of mitochondria within renal tubular epithelial cells (RTECs) often become compromised during CKD development, playing a pivotal role in the progression of renal fibrosis. Mitophagy, a specific form of autophagy, assumes responsibility for eliminating damaged mitochondria to uphold mitochondrial equilibrium. Dysregulated mitophagy not only correlates with disrupted mitochondrial dynamics but also contributes to the advancement of renal fibrosis in CKD. While numerous studies have examined mitochondrial metabolism, ROS (reactive oxygen species) production, inflammation, and apoptosis in kidney diseases, the precise pathogenic mechanisms underlying mitophagy in CKD remain elusive. The exact mechanisms through which modulating mitophagy mitigates renal fibrosis, as well as its influence on CKD progression and prognosis, have not undergone systematic investigation. The role of mitophagy in AKI has been relatively clear, but the role of mitophagy in CKD is still rare. This article presents a comprehensive review of the current state of research on regulating mitophagy as a potential treatment for CKD. The objective is to provide fresh perspectives, viable strategies, and practical insights into CKD therapy, thereby contributing to the enhancement of human living conditions and patient well-being.


Assuntos
Mitocôndrias , Mitofagia , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fibrose/patologia , Fibrose/metabolismo , Progressão da Doença , Espécies Reativas de Oxigênio/metabolismo , Animais , Túbulos Renais/patologia , Túbulos Renais/metabolismo
11.
Biomed Pharmacother ; 174: 116556, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636398

RESUMO

Skeletal muscle atrophy is a common complication of chronic kidney disease (CKD) that affects the quality of life and prognosis of patients. We aimed to investigate the effects and mechanisms of caffeic acid (CA), a natural phenolic compound, on skeletal muscle atrophy in CKD rats. Male Sprague-Dawley rats underwent 5/6 nephrectomy (NPM) and were treated with CA (20, 40, or 80 mg/kg/day) for 10 weeks. The body and muscle weights, renal function, hemoglobin, and albumin were measured. The histological, molecular, and biochemical changes in skeletal muscles were evaluated using hematoxylin-eosin staining, quantitative real-time PCR, malondialdehyde/catalase/superoxide dismutase/glutathione level detection, and enzyme-linked immunosorbent assay. Western blotting and network pharmacology were applied to identify the potential targets and pathways of CA, CKD, and muscle atrophy. The results showed that CA significantly improved NPM-induced muscle-catabolic effects, reduced the expression of muscle atrophy-related proteins (muscle atrophy F-box and muscle RING finger 1) and proinflammatory cytokines (interleukin [IL]-6, tumor necrosis factor-alpha, and IL-1ß), and attenuated muscle oxidative stress. Network pharmacology revealed that CA modulated the response to oxidative stress and nuclear factor kappa B (NF-κB) signaling pathway and that Toll-like receptor 4 (TLR4) was a key target. In vivo experiment confirmed that CA inhibited the TLR4/myeloid differentiation primary response 88 (MYD88)/NF-kB signaling pathway, reduced muscle iron levels, and restored glutathione peroxidase 4 activity, thereby alleviating ferroptosis and inflammation in skeletal muscles. Thus, CA might be a promising therapeutic agent for preventing and treating skeletal muscle atrophy in CKD by modulating the TLR4/MYD88/NF-κB pathway and ferroptosis.


Assuntos
Ácidos Cafeicos , Atrofia Muscular , Fator 88 de Diferenciação Mieloide , Insuficiência Renal Crônica , Transdução de Sinais , Animais , Masculino , Ratos , Ácidos Cafeicos/farmacologia , Citocinas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Atrofia Muscular/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Nefrectomia/efeitos adversos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
12.
J Clin Invest ; 134(10)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625739

RESUMO

Renal interstitial fibrosis is an important mechanism in the progression of chronic kidney disease (CKD) to end-stage kidney disease. However, we lack specific treatments to slow or halt renal fibrosis. Ribosome profiling identified upregulation of a secreted micropeptide, C4orf48 (Cf48), in mouse diabetic nephropathy. Cf48 RNA and protein levels were upregulated in tubular epithelial cells in human and experimental CKD. Serum Cf48 levels were increased in human CKD and correlated with loss of kidney function, increasing CKD stage, and the degree of active interstitial fibrosis. Cf48 overexpression in mice accelerated renal fibrosis, while Cf48 gene deletion or knockdown by antisense oligonucleotides significantly reduced renal fibrosis in CKD models. In vitro, recombinant Cf48 (rCf48) enhanced TGF-ß1-induced fibrotic responses in renal fibroblasts and epithelial cells independently of Smad3 phosphorylation. Cellular uptake of Cf48 and its profibrotic response in fibroblasts operated via the transferrin receptor. RNA immunoprecipitation-sequencing identified Cf48 binding to mRNA of genes involved in the fibrotic response, including Serpine1, Acta2, Ccn2, and Col4a1. rCf48 binds to the 3'UTR of Serpine1 and increases mRNA half-life. We identify the secreted Cf48 micropeptide as a potential enhancer of renal fibrosis that operates as an RNA-binding peptide to promote the production of extracellular matrix.


Assuntos
Nefropatias Diabéticas , Fibrose , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/genética , Camundongos Knockout , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Proteína Smad3/metabolismo , Proteína Smad3/genética , Masculino , Rim/metabolismo , Rim/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas
13.
Sci Rep ; 14(1): 9070, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643262

RESUMO

Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite and TNF-α is proinflammatory cytokine, both known to be associated with renal inflammation, fibrosis and chronic kidney disease. However, today there are no data showing the combined effect of TMAO and TNF-α on renal fibrosis-and inflammation. The aim of this study was to investigate whether TMAO can enhance the inflammatory and fibrotic effects of TNF-α on renal fibroblasts. We found that the combination of TNF-α and TMAO synergistically increased fibronectin release and total collagen production from renal fibroblasts. The combination of TMAO and TNF-α also promoted increased cell proliferation. Both renal proliferation and collagen production were mediated through Akt/mTOR/ERK signaling. We also found that TMAO enhanced TNF-α mediated renal inflammation by inducing the release of several cytokines (IL-6, LAP TGF-beta-1), chemokines (CXCL-6, MCP-3), inflammatory-and growth mediators (VEGFA, CD40, HGF) from renal fibroblasts. In conclusion, we showed that TMAO can enhance TNF-α mediated renal fibrosis and release of inflammatory mediators from renal fibroblasts in vitro. Our results can promote further research evaluating the combined effect of TMAO and inflammatory mediators on the development of kidney disease.


Assuntos
Metilaminas , Insuficiência Renal Crônica , Fator de Necrose Tumoral alfa , Humanos , Mediadores da Inflamação , Fibrose , Insuficiência Renal Crônica/metabolismo , Citocinas , Fibroblastos/metabolismo , Inflamação/metabolismo , Colágeno
14.
Life Sci ; 346: 122628, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614303

RESUMO

Regular exercise training can lead to several health benefits, reduce mortality risk, and increase life expectancy. On the other hand, a sedentary lifestyle is a known risk factor for chronic diseases and increased mortality. Acute kidney injury (AKI) and chronic kidney disease (CKD) represent a significant global health problem, affecting millions of people worldwide. The progression from AKI to CKD is well-recognized in the literature, and exercise training has emerged as a potential renoprotective strategy. Thus, this article aims to review the main molecular mechanisms underlying the renoprotective actions of exercise training in the context of AKI and CKD, focusing on its antioxidative, anti-inflammatory, anti-apoptotic, anti-fibrotic, and autophagy regulatory effects. For that, bibliographical research was carried out in Medline/PubMed and Scielo databases. Although the pathophysiological mechanisms involved in renal diseases are not fully understood, experimental studies demonstrate that oxidative stress, inflammation, apoptosis, and dysregulation of fibrotic and autophagic processes play central roles in the development of tissue damage. Increasing evidence has suggested that exercise can beneficially modulate these mechanisms, potentially becoming a safe and effective non-pharmacological strategy for kidney health protection and promotion. Thus, the evidence base discussed in this review suggests that an adequate training program emerges as a valuable tool for preserving renal function in experimental animals, mainly through the production of antioxidant enzymes, nitric oxide (NO), irisin, IL-10, and IL-11. Future research can continue to explore these mechanisms to develop specific guidelines for the prescription of exercise training in different populations of patients with kidney diseases.


Assuntos
Injúria Renal Aguda , Exercício Físico , Insuficiência Renal Crônica , Humanos , Animais , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/metabolismo , Exercício Físico/fisiologia , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/terapia , Estresse Oxidativo , Antioxidantes/metabolismo , Autofagia/fisiologia , Terapia por Exercício/métodos , Apoptose
15.
ACS Synth Biol ; 13(4): 1077-1084, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38588591

RESUMO

Uremic toxins (UTs) are microbiota-derived metabolites that accelerate the progression of kidney damage in patients with chronic kidney disease (CKD). One of the major UTs involved in CKD progression is p-cresol-sulfate (PCS), derived from dietary l-tyrosine (l-Tyr). Here, we engineered a probiotic strain of Escherichia coli Nissle 1917, to convert l-Tyr to the nontoxic compound p-coumaric acid via tyrosine ammonia lyase (TAL). First, a small metagenomic library was assessed to identify the TAL with the greatest whole-cell activity. Second, accessory genes implicated in the import of l-Tyr and export of PCA were overexpressed to enhance l-Tyr degradation by 106% and 56%, respectively. Last, random mutagenesis coupled to a novel selection and screening strategy was developed that identified a TAL variant with a 25% increase in whole-cell activity. Taken together, the final strain exhibits a 183% improvement over initial whole-cell activity and provides a promising candidate to degrade l-Tyr mediated PCS accumulation.


Assuntos
Escherichia coli , Insuficiência Renal Crônica , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Toxinas Urêmicas , Mutagênese , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo
16.
Am J Pathol ; 194(5): 759-771, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38637109

RESUMO

In patients with chronic kidney disease (CKD), skeletal muscle mass and function are known to occasionally decline. However, the muscle regeneration and differentiation process in uremia has not been extensively studied. In mice with CKD induced by adenine-containing diet, the tibialis anterior muscle injured using a barium chloride injection method recovered poorly as compared to control mice. In the cultured murine skeletal myocytes, stimulation with indoxyl sulfate (IS), a representative uremic toxin, morphologically jeopardized the differentiation, which was counteracted by L-ascorbic acid (L-AsA) treatment. Transcriptome analysis of cultured myocytes identified a set of genes whose expression was down-regulated by IS stimulation but up-regulated by L-AsA treatment. Gene silencing of myomixer, one of the genes in the set, impaired myocyte fusion during differentiation. By contrast, lentiviral overexpression of myomixer compensated for a hypomorphic phenotype caused by IS treatment. The split-luciferase technique demonstrated that IS stimulation negatively affected early myofusion activity that was rescued by L-AsA treatment. Lastly, in mice with CKD compared with control mice, myomixer expression in the muscle tissue in addition to the muscle weight after the injury was reduced, both of which were restored with L-AsA treatment. Collectively, data showed that the uremic milieu impairs the expression of myomixer and impedes the myofusion process. Considering frequent musculoskeletal injuries in uremic patients, defective myocyte fusion followed by delayed muscle damage recovery could underlie their muscle loss and weakness.


Assuntos
Insuficiência Renal Crônica , Sarcopenia , Uremia , Humanos , Animais , Camundongos , Sarcopenia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Uremia/complicações , Insuficiência Renal Crônica/metabolismo
17.
World J Gastroenterol ; 30(15): 2081-2086, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38681989

RESUMO

Over recent years, the nomenclature of non-alcoholic fatty liver disease has undergone significant changes. Indeed, in 2020, an expert consensus panel proposed the term "Metabolic (dysfunction) associated fatty liver disease" (MAFLD) to underscore the close association of fatty liver with metabolic abnormalities, thereby highlighting the cardiometabolic risks (such as metabolic syndrome, type 2 diabetes, insulin resistance, and cardiovascular disease) faced by these patients since childhood. More recently, this term has been further replaced with metabolic associated steatotic liver disease. It is worth noting that emerging evidence not only supports a close and independent association of MAFLD with chronic kidney disease in adults but also indicates its interplay with metabolic impairments. However, comparable pediatric data remain limited. Given the progressive and chronic nature of both diseases and their prognostic cardiometabolic implications, this editorial aims to provide a pediatric perspective on the intriguing relationship between MAFLD and renal function in childhood.


Assuntos
Rim , Síndrome Metabólica , Hepatopatia Gordurosa não Alcoólica , Insuficiência Renal Crônica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Criança , Rim/fisiopatologia , Rim/metabolismo , Síndrome Metabólica/metabolismo , Síndrome Metabólica/fisiopatologia , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/complicações , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/diagnóstico , Resistência à Insulina , Fígado/metabolismo , Fígado/fisiopatologia , Prognóstico , Fatores de Risco Cardiometabólico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia
18.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673780

RESUMO

Cognitive impairment (CI) is a complication of chronic kidney disease (CKD) that is frequently observed among patients. The aim of this study was to evaluate the potential crosstalk between changes in cognitive function and the levels of Klotho in the brain cortex in an experimental model of CKD. To induce renal damage, Wistar rats received a diet containing 0.25% adenine for six weeks, while the control group was fed a standard diet. The animals underwent different tests for the assessment of cognitive function. At sacrifice, changes in the parameters of mineral metabolism and the expression of Klotho in the kidney and frontal cortex were evaluated. The animals with CKD exhibited impaired behavior in the cognitive tests in comparison with the rats with normal renal function. At sacrifice, CKD-associated mineral disorder was confirmed by the presence of the expected disturbances in the plasma phosphorus, PTH, and both intact and c-terminal FGF23, along with a reduced abundance of renal Klotho. Interestingly, a marked and significant decrease in Klotho was observed in the cerebral cortex of the animals with renal dysfunction. In sum, the loss in cerebral Klotho observed in experimental CKD may contribute to the cognitive dysfunction frequently observed among patients. Although further studies are required, Klotho might have a relevant role in the development of CKD-associated CI and represent a potential target in the management of this complication.


Assuntos
Córtex Cerebral , Disfunção Cognitiva , Glucuronidase , Proteínas Klotho , Ratos Wistar , Insuficiência Renal Crônica , Proteínas Klotho/metabolismo , Animais , Insuficiência Renal Crônica/metabolismo , Córtex Cerebral/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Ratos , Masculino , Glucuronidase/metabolismo , Fator de Crescimento de Fibroblastos 23/metabolismo , Modelos Animais de Doenças , Rim/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo
19.
BMC Infect Dis ; 24(1): 427, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649864

RESUMO

BACKGROUND: COVID-19 has been shown to increase the risk of extracorporeal coagulation during hemodialysis in patients, but the underlying mechanism remains unclear. This study aimed to investigate the effect and mechanism of COVID-19 on the risk of extracorporeal coagulation in patients with chronic kidney disease undergoing hemodialysis. METHODS: A retrospective analysis of the extracorporeal coagulation status of 339 hemodialysis patients at our center before and after COVID-19 infection was performed, including subgroup analyses. Post-infection blood composition was analyzed by protein spectrometry and ELISA. RESULTS: Compared to the pre-COVID-19 infection period, COVID-19-induced extracorporeal coagulation predominantly occurred in patients with severe/critical symptoms. Further proteomic analysis demonstrated that in patients with severe/critical symptoms, the coagulation cascade reaction, platelet activation, inflammation, and oxidative stress-related pathways were significantly amplified compared to those in patients with no/mild symptoms. Notably, the vWF/FBLN5 pathway, which is associated with inflammation, vascular injury, and coagulation, was significantly upregulated. CONCLUSIONS: Patients with severe/critical COVID-19 symptoms are at a higher risk of extracorporeal coagulation during hemodialysis, which is associated with the upregulation of the vWF/FBLN5 signaling pathway. These findings highlight the importance of early anticoagulant therapy initiation in COVID-19 patients with severe/critical symptoms, particularly those undergoing hemodialysis. Additionally, vWF/FBLN5 upregulation may be a novel mechanism for virus-associated thrombosis/coagulation.


Assuntos
COVID-19 , Diálise Renal , SARS-CoV-2 , Transdução de Sinais , Regulação para Cima , Fator de von Willebrand , Humanos , COVID-19/sangue , COVID-19/metabolismo , Diálise Renal/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fator de von Willebrand/metabolismo , Fator de von Willebrand/análise , Idoso , Coagulação Sanguínea , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/sangue , Adulto
20.
Iran J Kidney Dis ; 18(2): 87-98, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38660700

RESUMO

INTRODUCTION: One of the most significant clinical features of chronic  kidney disease is renal interstitial fibrosis (RIF). This study aimed  to investigate the role and mechanism of Shenqi Pill (SQP) on RIF. METHODS: RIF model was established by conducting unilateral  ureteral obstruction (UUO) surgery on rat or stimulating human  kidney-2 (HK-2) cell with transforming growth factor ß1 (TGFß1).  After modeling, the rats in the SQP low dose group (SQP-L), SQP  middle dose group (SQP-M) and SQP high dose group (SQP-H)  were treated with SQP at 1.5, 3 or 6 g/kg/d, and the cells in the  TGFß1+SQP-L/M/H were treated with 2.5%, 5%, 10% SQP-containing  serum. In in vivo assays, serum creatinine (SCr) and blood urea  nitrogen (BUN) content were measured, kidney histopathology  was evaluated., and α-smooth muscle actin (α-SMA) expression  was detected by immunohistochemistry. Interleukin-1ß (IL-1ß),  interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) content,  inhibitor of kappa B alpha (IKBα) and P65 phosphorylation were  assessed. Meanwhile, cell viability, inflammatory cytokines content,  α-SMA expression, IKBα and P65 phosphorylation were detected  in vitro experiment.  Results. SQP exhibited reno-protective effect by decreasing SCr  and BUN content, improving renal interstitial damage, blunting  fibronectin (FN) and α-SMA expression in RIF rats. Similarly, after  the treatment with SQP-containing serum, viability and α-SMA  expression were remarkably decreased in TGFß1-stimulated HK-2  cell. Furthermore, SQP markedly down-regulated IL-1ß, IL-6, and  TNF-α content, IKBα and RelA (P65) phosphorylation both in vivo and in vitro.  Conclusion. SQP has a reno-protective effect against RIF in vivo and in vitro, and the effect is partly linked to nuclear factor-kappa  B (NF-κB) pathway related inflammatory response, which indicates  that SQP may be a candidate drug for RIF. DOI: 10.52547/ijkd.7546.


Assuntos
Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Fibrose , Rim , NF-kappa B , Animais , Humanos , Ratos , Actinas/metabolismo , Nitrogênio da Ureia Sanguínea , Linhagem Celular , Creatinina/sangue , Citocinas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Fibrose/patologia , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Ratos Sprague-Dawley , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/patologia , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...