Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55.456
Filtrar
1.
Sci Rep ; 14(1): 16347, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013950

RESUMO

Associations of adipose tissue insulin resistance index (AT-IR, a product of fasting insulin and free fatty acids) with body fat mass and distribution and appendicular skeletal muscle mass (ASM) were compared with results of homeostasis-model assessment-insulin resistance (HOMA-IR) in 284 Japanese female university students and 148 their biological mothers whose BMI averaged < 23 kg/m2. Although mothers compared with daughters had higher BMI, body fat percentage, trunk fat to body fat (TF/BF) ratio and lower leg fat to body fat (LF/BF), AT-IR and HOMA-IR did not differ. We had multivariable linear regression analyses which included TF/BF ratio, LF/BF ratio, weight-adjusted ASM (%ASM), height-adjusted ASM index (ASMI), fat mass index (FMI), and body fat percentage. In young women, AT-IR was independently associated with LF/BF ratio (Standardized ß [Sß]: - 0.139, p = 0.019) and ASMI (Sß: - 0.167, p = 0.005). In middle-aged women, LF/BF ratio (Sß: - 0.177, p = 0.049) and %ASM (Sß: - 0.205, p = 0.02) emerged as independent determinants of AT-IR. HOMA-IR was associated with TF/BF ratio and FMI, a proxy of abdominal and general adiposity, respectively, in both young and middle-aged women. The inverse association of AT-IR with leg fat may support the notion that limited peripheral adipose storage capacity and small skeletal muscle size are important etiological components in insulin-resistant cardiometabolic disease in Japanese women.


Assuntos
Tecido Adiposo , Resistência à Insulina , Músculo Esquelético , Humanos , Feminino , Músculo Esquelético/metabolismo , Adulto , Tecido Adiposo/metabolismo , Japão , Pessoa de Meia-Idade , Índice de Massa Corporal , Adulto Jovem , Insulina/sangue , Insulina/metabolismo , Adiposidade , População do Leste Asiático
2.
Cell Metab ; 36(7): 1619-1633.e5, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959864

RESUMO

Population-level variation and mechanisms behind insulin secretion in response to carbohydrate, protein, and fat remain uncharacterized. We defined prototypical insulin secretion responses to three macronutrients in islets from 140 cadaveric donors, including those with type 2 diabetes. The majority of donors' islets exhibited the highest insulin response to glucose, moderate response to amino acid, and minimal response to fatty acid. However, 9% of donors' islets had amino acid responses, and 8% had fatty acid responses that were larger than their glucose-stimulated insulin responses. We leveraged this heterogeneity and used multi-omics to identify molecular correlates of nutrient responsiveness, as well as proteins and mRNAs altered in type 2 diabetes. We also examined nutrient-stimulated insulin release from stem cell-derived islets and observed responsiveness to fat but not carbohydrate or protein-potentially a hallmark of immaturity. Understanding the diversity of insulin responses to carbohydrate, protein, and fat lays the groundwork for personalized nutrition.


Assuntos
Diabetes Mellitus Tipo 2 , Secreção de Insulina , Insulina , Ilhotas Pancreáticas , Proteômica , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Feminino , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Pessoa de Meia-Idade , Nutrientes/metabolismo , Adulto , Glucose/metabolismo , Idoso , Ácidos Graxos/metabolismo
3.
BMJ Open Diabetes Res Care ; 12(4)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013634

RESUMO

INTRODUCTION: In this systematic review, we investigated the diagnostic accuracy of surrogate measures of insulin secretion based on fasting samples and the oral glucose tolerance test (OGTT). The first phase of insulin secretion was calculated using two gold standard methods; the hyperglycemic clamp (HGC) test and intravenous glucose tolerance test (IVGTT). RESEARCH DESIGN AND METHODS: We conducted searches in the PubMed, Cochrane Central, and Web of Science databases, the last of which was conducted at the end of June 2021. Studies were included that measured first-phase insulin secretion in adults using both a gold-standard reference method (either HGC or IVGTT) and one or more surrogate measures from either fasting samples, OGTT or a meal-tolerance test. QUADAS-2, a revised tool for the quality assessment of diagnostic accuracy studies, was used for quality assessment. Random-effects meta-analyses were performed to examine the correlation between first-phase measured with gold standard and surrogate methods. RESULTS: A total of 33 articles, encompassing 5362 individuals with normal glucose tolerance, pre-diabetes or type 2 diabetes, were included in our systematic review. Homeostatic model assessment (HOMA)-beta and Insulinogenic Index 30 (IGI(30)) were the surrogate measures validated in the largest number of studies (17 and 13, respectively). HOMA-beta's pooled correlation to the reference methods was 0.48 (95% CI 0.40 to 0.56) The pooled correlation of IGI to the reference methods was 0.61 (95% CI 0.54 to 0.68). The surrogate measures with the highest correlation to the reference methods were Kadowaki (0.67 (95% CI 0.61 to 0.73)) and Stumvoll's first-phase secretion (0.65 (95% CI 0.58 to 0.71)), both calculated from an OGTT. CONCLUSIONS: Surrogate measures from the first 30 min of an OGTT capture the first phase of insulin secretion and are a good choice for epidemiological studies. HOMA-beta has a moderate correlation to the reference methods but is not a measure of the first phase specifically. PROSPERO REGISTRATION NUMBER: The meta-analysis was registered at PROSPERO (Id: CRD42020169064) before inclusion started.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Secreção de Insulina , Insulina , Humanos , Teste de Tolerância a Glucose/métodos , Insulina/sangue , Insulina/metabolismo , Glicemia/análise , Diabetes Mellitus Tipo 2/sangue , Biomarcadores/análise , Biomarcadores/sangue , Resistência à Insulina , Estado Pré-Diabético/diagnóstico , Estado Pré-Diabético/sangue
4.
J Clin Invest ; 134(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950317

RESUMO

Glucose plays a key role in shaping pancreatic ß cell function. Thus, deciphering the mechanisms by which this nutrient stimulates ß cells holds therapeutic promise for combating ß cell failure in type 2 diabetes (T2D). ß Cells respond to hyperglycemia in part by rewiring their mRNA metabolism, yet the mechanisms governing these changes remain poorly understood. Here, we identify a requirement for the RNA-binding protein PCBP2 in maintaining ß cell function basally and during sustained hyperglycemic challenge. PCBP2 was induced in primary mouse islets incubated with elevated glucose and was required to adapt insulin secretion. Transcriptomic analysis of primary Pcbp2-deficient ß cells revealed impacts on basal and glucose-regulated mRNAs encoding core components of the insulin secretory pathway. Accordingly, Pcbp2-deficient ß cells exhibited defects in calcium flux, insulin granule ultrastructure and exocytosis, and the amplification pathway of insulin secretion. Further, PCBP2 was induced by glucose in primary human islets, was downregulated in islets from T2D donors, and impacted genes commonly altered in islets from donors with T2D and linked to single-nucleotide polymorphisms associated with T2D. Thus, these findings establish a paradigm for PCBP2 in governing basal and glucose-adaptive gene programs critical for shaping the functional state of ß cells.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Células Secretoras de Insulina , Insulina , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Camundongos , Humanos , Glucose/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Insulina/metabolismo , Secreção de Insulina , Camundongos Knockout , Masculino , Adaptação Fisiológica
5.
Gen Physiol Biophys ; 43(4): 335-346, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953575

RESUMO

Diabetic osteoporosis is a common health problem that is associated with a disruption in bone metabolism. A2A adenosine receptor (A2AAR) signaling seems to play a critical role in bone homeostasis. This study aimed to evaluate the effect of A2AAR stimulation on the treatment of diabetic-induced osteoporosis versus insulin treatment. Forty adult male rats were allocated into control (C), untreated diabetic-induced osteoporosis (DIO), insulin-treated DIO (I-DIO), and A2AAR agonist-treated DIO (A-DIO) groups. Both insulin and A2AAR agonist treatments significantly increased serum insulin level, glutathione peroxidase (GPx) activity, bone expression of osteoprotegerin (Opg) and ß-catenin (Ctnnb1), and cortical and trabecular bone thickness, whereas they decreased serum fasting glucose, malondialdehyde (MDA), tumor necrosis factor α (TNF-α), bone expression of receptor activator of nuclear factor kappa-B ligand (Rankl), runt-related transcription factor-2 (Runx2), and sclerostin (Sost) versus the untreated DIO groups. A2AAR agonist treatment was more effective than insulin in ameliorating diabetic osteoporosis. This might be attributed to the upregulation of ß-catenin gene expression, enhancing its anabolic effect on bone, in addition to the A2AAR agonist's anti-oxidative, anti-inflammatory, and anti-diabetic effects.


Assuntos
Diabetes Mellitus Experimental , Osteoporose , Animais , Masculino , Ratos , Agonistas do Receptor A2 de Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Insulina/metabolismo , Osteoporose/metabolismo , Osteoporose/etiologia , Osteoporose/tratamento farmacológico , Ratos Wistar , Receptor A2A de Adenosina/metabolismo , Resultado do Tratamento
6.
Front Endocrinol (Lausanne) ; 15: 1395028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989001

RESUMO

Introduction: Biphasic insulin secretion is an intrinsic characteristic of the pancreatic islet and has clinical relevance due to the loss of first-phase in patients with Type 2 diabetes. As it has long been shown that first-phase insulin secretion only occurs in response to rapid changes in glucose, we tested the hypothesis that islet response to an increase in glucose is a combination of metabolism plus an osmotic effect where hypertonicity is driving first-phase insulin secretion. Methods: Experiments were performed using perifusion analysis of rat, mouse, and human islets. Insulin secretion rate (ISR) and other parameters associated with its regulation were measured in response to combinations of D-glucose and membrane-impermeable carbohydrates (L-glucose or mannitol) designed to dissect the effect of hypertonicity from that of glucose metabolism. Results: Remarkably, the appearance of first-phase responses was wholly dependent on changes in tonicity: no first-phase in NAD(P)H, cytosolic calcium, cAMP secretion rate (cAMP SR), or ISR was observed when increased D-glucose concentration was counterbalanced by decreases in membrane-impermeable carbohydrates. When D-glucose was greater than 8 mM, rapid increases in L-glucose without any change in D-glucose resulted in first-phase responses in all measured parameters that were kinetically similar to D-glucose. First-phase ISR was completely abolished by H89 (a non-specific inhibitor of protein kinases) without affecting first-phase calcium response. Defining first-phase ISR as the difference between glucose-stimulated ISR with and without a change in hypertonicity, the peak of first-phase ISR occurred after second-phase ISR had reached steady state, consistent with the well-established glucose-dependency of mechanisms that potentiate glucose-stimulated ISR. Discussion: The data collected in this study suggests a new model of glucose-stimulated biphasic ISR where first-phase ISR derives from (and after) a transitory amplification of second-phase ISR and driven by hypertonicity-induced rise in H89-inhibitable kinases likely driven by first-phase responses in cAMP, calcium, or a combination of both.


Assuntos
Glucose , Secreção de Insulina , Insulina , Animais , Secreção de Insulina/efeitos dos fármacos , Glucose/metabolismo , Ratos , Humanos , Insulina/metabolismo , Camundongos , Masculino , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , AMP Cíclico/metabolismo , Cálcio/metabolismo
7.
Sci Rep ; 14(1): 15996, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987609

RESUMO

Alzheimer's disease (AD) is a neurological condition that is connected with a decline in a person's memory as well as their cognitive ability. One of the key topics of AD research has been the exploration of metabolic causes. We investigated the effects of treadmill exercise and intranasal insulin on learning and memory impairment and the expression of IGF1, BDNF, and GLUT4 in hypothalamus. The animals were put into 9 groups at random. In this study, we examined the impact of insulin on spatial memory in male Wistar rats and analyzed the effects of a 4-week pretreatment of moderate treadmill exercise and insulin on the mechanisms of improved hypothalamic glucose metabolism through changes in gene and protein expression of IGF1, BDNF, and GLUT4. We discovered that rat given Aß25-35 had impaired spatial learning and memory, which was accompanied by higher levels of Aß plaque burden in the hippocampus and lower levels of IGF1, BDNF, and GLUT4 mRNA and protein expression in the hypothalamus. Additionally, the administration of exercise training and intranasal insulin results in the enhancement of spatial learning and memory impairments, the reduction of plaque burden in the hippocampus, and the enhancement of the expression of IGF1, BDNF, and GLUT4 in the hypothalamus of rats that were treated with Aß25-35. Our results show that the improvement of learning and spatial memory due to the improvement of metabolism and upregulation of the IGF1, BDNF, and GLUT4 pathways can be affected by pretreatment exercise and intranasal insulin.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Transportador de Glucose Tipo 4 , Hipotálamo , Fator de Crescimento Insulin-Like I , Insulina , Condicionamento Físico Animal , Ratos Wistar , Transdução de Sinais , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/terapia , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Insulina/metabolismo , Ratos , Hipotálamo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Peptídeos beta-Amiloides/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Administração Intranasal , Fragmentos de Peptídeos , Memória Espacial/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos
8.
Sensors (Basel) ; 24(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39001139

RESUMO

The paper "Using Absorption Models for Insulin and Carbohydrates and Deep Leaning to Improve Glucose Level Predictions" (Sensors2021, 21, 5273) proposes a novel approach to predicting blood glucose levels for people with type 1 diabetes mellitus (T1DM). By building exponential models from raw carbohydrate and insulin data to simulate the absorption in the body, the authors reported a reduction in their model's root-mean-square error (RMSE) from 15.5 mg/dL (raw) to 9.2 mg/dL (exponential) when predicting blood glucose levels one hour into the future. In this comment, we demonstrate that the experimental techniques used in that paper are flawed, which invalidates its results and conclusions. Specifically, after reviewing the authors' code, we found that the model validation scheme was malformed, namely, the training and test data from the same time intervals were mixed. This means that the reported RMSE numbers in the referenced paper did not accurately measure the predictive capabilities of the approaches that were presented. We repaired the measurement technique by appropriately isolating the training and test data, and we discovered that their models actually performed dramatically worse than was reported in the paper. In fact, the models presented in the that paper do not appear to perform any better than a naive model that predicts future glucose levels to be the same as the current ones.


Assuntos
Glicemia , Diabetes Mellitus Tipo 1 , Insulina , Insulina/metabolismo , Humanos , Glicemia/metabolismo , Glicemia/análise , Diabetes Mellitus Tipo 1/metabolismo , Carboidratos/química , Modelos Biológicos
9.
Nutrients ; 16(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38999834

RESUMO

In obesity, circulating saturated fatty acids (SFAs) and inflammatory cytokines interfere with skeletal muscle insulin signaling, leading to whole body insulin resistance. Further, obese skeletal muscle is characterized by macrophage infiltration and polarization to the inflammatory M1 phenotype, which is central to the development of local inflammation and insulin resistance. While skeletal muscle-infiltrated macrophage-myocyte crosstalk is exacerbated by SFA, the effects of other fatty acids, such as n-3 and n-6 polyunsaturated fatty acids (PUFAs), are less studied. Thus, the objective of this study was to determine the effects of long-chain n-3 and n-6 PUFAs on macrophage M1 polarization and subsequent effects on myocyte inflammation and metabolic function compared to SFA. Using an in vitro model recapitulating obese skeletal muscle cells, differentiated L6 myocytes were cultured for 24 h with RAW 264.7 macrophage-conditioned media (MCM), followed by insulin stimulation (100 nM, 20 min). MCM was generated by pre-treating macrophages for 24 h with 100 µM palmitic acid (16:0, PA-control), arachidonic acid (20:4n-6, AA), or docosahexaenoic acid (22:6n-3, DHA). Next, macrophage cultures were stimulated with a physiological dose (10 ng/mL) of lipopolysaccharide for an additional 12 h to mimic in vivo obese endotoxin levels. Compared to PA, both AA and DHA reduced mRNA expression and/or secreted protein levels of markers for M1 (TNFα, IL-6, iNOS; p < 0.05) and increased those for M2 (IL-10, TGF-ß; p < 0.05) macrophage polarization. In turn, AA- and DHA-derived MCM reduced L6 myocyte-secreted cytokines (TNFα, IL-6; p < 0.05) and chemokines (MCP-1, MIP-1ß; p < 0.05). Only AA-derived MCM increased L6-myocyte phosphorylation of Akt (p < 0.05), yet this was inconsistent with improved insulin signaling, as only DHA-derived MCM improved L6 myocyte glucose uptake (p < 0.05). In conclusion, dietary n-3 and n-6 PUFAs may be a useful strategy to modulate macrophage-myocyte inflammatory crosstalk and improve myocyte insulin sensitivity in obesity.


Assuntos
Ácidos Graxos Ômega-3 , Inflamação , Resistência à Insulina , Macrófagos , Animais , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Ácidos Graxos Ômega-3/farmacologia , Inflamação/metabolismo , Células RAW 264.7 , Ácidos Graxos Ômega-6/farmacologia , Insulina/metabolismo , Citocinas/metabolismo , Obesidade/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos
10.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999937

RESUMO

Serotonin or 5-hydroxytryptamine (5-HT) is a monoamine that plays a critical role in insulin secretion, energy metabolism, and mitochondrial biogenesis. However, the action of serotonin in insulin production and secretion by pancreatic ß cells has not yet been elucidated. Here, we investigated how exogenous nanomolar serotonin concentrations regulate insulin synthesis and secretion in rat insulinoma INS-1E cells. Nanomolar serotonin concentrations (10 and 50 nM) significantly increased insulin protein expression above the constant levels in untreated control cells and decreased insulin protein levels in the media. The reductions in insulin protein levels in the media may be associated with ubiquitin-mediated protein degradation. The levels of membrane vesicle trafficking-related proteins including Rab5, Rab3A, syntaxin6, clathrin, and EEA1 proteins were significantly decreased by serotonin treatment compared to the untreated control cells, whereas the expressions of Rab27A, GOPC, and p-caveolin-1 proteins were significantly reduced by serotonin treatment. In this condition, serotonin receptors, Gαq-coupled 5-HT2b receptor (Htr2b), and ligand-gated ion channel receptor Htr3a were significantly decreased by serotonin treatment. To confirm the serotonylation of Rab3A and Rab27A during insulin secretion, we investigated the protein levels of Rab3A and Rab27A, in which transglutaminase 2 (TGase2) serotonylated Rab3A but not Rab27A. The increases in ERK phosphorylation levels were consistent with increases in the expression of p-Akt. Also, the expression level of the Bcl-2 protein was significantly increased by 50 and 100 nM serotonin treatment compared to the untreated control cells, whereas the levels of Cu/Zn-SOD and Mn-SOD proteins decreased. These results indicate that nanomolar serotonin treatment regulates the insulin protein level but decreases this level in media through membrane vesicle trafficking-related proteins (Rab5, Rab3A, syntaxin6, clathrin, and EEA1), the Akt/ERK pathway, and Htr2b/Htr3a in INS-1E cells.


Assuntos
Secreção de Insulina , Insulina , Insulinoma , Serotonina , Animais , Serotonina/metabolismo , Serotonina/farmacologia , Ratos , Insulinoma/metabolismo , Insulinoma/patologia , Secreção de Insulina/efeitos dos fármacos , Insulina/metabolismo , Linhagem Celular Tumoral , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
Endocrinology ; 165(8)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38953181

RESUMO

Neprilysin is a ubiquitous peptidase that can modulate glucose homeostasis by cleaving insulinotropic peptides. While global deletion of neprilysin protects mice against high-fat diet (HFD)-induced insulin secretory dysfunction, strategies to ablate neprilysin in a tissue-specific manner are favored to limit off-target effects. Since insulinotropic peptides are produced in the gut, we sought to determine whether gut-specific neprilysin deletion confers beneficial effects on insulin secretion similar to that of global neprilysin deletion in mice fed a HFD. Mice with conditional deletion of neprilysin in enterocytes (NEPGut-/-) were generated by crossing Vil-Cre and floxed neprilysin mice. Neprilysin activity was almost abolished throughout the gut in NEPGut-/- mice, and was similar in plasma, pancreas, and kidney in NEPGut-/- vs control mice. An oral glucose tolerance test was performed at baseline and following 14 weeks of HFD feeding, during which glucose tolerance and glucose-stimulated insulin secretion (GSIS) were assessed. Despite similar body weight gain at 14 weeks, NEPGut-/- displayed lower fasting plasma glucose levels, improved glucose tolerance, and increased GSIS compared to control mice. In conclusion, gut-specific neprilysin deletion recapitulates the enhanced GSIS seen with global neprilysin deletion in HFD-fed mice. Thus, strategies to inhibit neprilysin specifically in the gut may protect against fat-induced glucose intolerance and beta-cell dysfunction.


Assuntos
Dieta Hiperlipídica , Secreção de Insulina , Insulina , Neprilisina , Animais , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Enterócitos/metabolismo , Deleção de Genes , Teste de Tolerância a Glucose , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neprilisina/genética , Neprilisina/metabolismo
12.
Protein Expr Purif ; 222: 106539, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38960013

RESUMO

PF11_0189 is a putative insulin degrading enzyme present in Plasmodium falciparum genome. The catalytic domain of PF11_0189 is about 27 kDa. Substrate specificity study shows PF11_0189 acts upon different types of proteins. The substrate specificity is found to be highest when insulin is used as a substrate. Metal dependency study shows highest dependency of PF11_0189 towards zinc metal for its proteolytic activity. Chelation of zinc metal with EDTA shows complete absence of PF11_0189 activity. Peptide inhibitors, P-70 and P-121 from combinatorial peptide library prepared against PF11_0189 show inhibition with an IC50 value of 4.8 µM and 7.5 µM respectively. A proven natural anti-malarial peptide cyclosporin A shows complete inhibition against PF11_0189 with an IC50 value of 0.75 µM suggesting PF11_0189 as a potential target for peptide inhibitors. The study implicates that PF11_0189 is a zinc metalloprotease involved in catalysis of insulin. The study gives a preliminary insight into the mechanism of complications arising from glucose abnormalities during severe malaria.


Assuntos
Insulisina , Plasmodium falciparum , Proteínas de Protozoários , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Insulisina/genética , Insulisina/química , Insulisina/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Especificidade por Substrato , Insulina/química , Insulina/metabolismo , Insulina/genética , Zinco/química , Zinco/metabolismo , Genoma de Protozoário , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/isolamento & purificação , Expressão Gênica , Clonagem Molecular , Antimaláricos/química , Antimaláricos/farmacologia , Ciclosporina/química , Ciclosporina/farmacologia
13.
Mol Biol Rep ; 51(1): 807, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002036

RESUMO

BACKGROUND: Acute Myeloid Leukemia (AML) is a fast-developing invading cancer that impacts the blood and bone marrow, marked by the rapid proliferation of abnormal white blood cells. Chemotherapeutic agents, a primary treatment for AML, encounter clinical limitations such as poor solubility and low bioavailability. Previous studies have highlighted antibiotics as effective in inducing cancer cell death and potentially preventing metastasis. Besides, insulin is known to activate the PI3K/Akt pathway, often disrupted in cancers, leading to enhanced cell survival and resistance to apoptosis. In light of the above-mentioned points, we examined the anti-cancer impact of antibiotics Ciprofloxacin (CP) and Salinomycin (SAL) and their combination on KG1-a cells in the presence and absence of insulin. METHODS: This was accomplished by exposing KG1-a cells to different doses of CP and SAL alone, in combination, and with or without insulin for 24-72 h. Cell viability was evaluated using the MTT assay. Besides, apoptotic effects were examined using Hoechst staining and Annexin-V/PI flow cytometry. The expression levels of Bax, p53, BIRC5, Akt, PTEN, and FOXO1 were analyzed through Real-Time PCR. RESULTS: CP and SAL demonstrated cytotoxic and notable pro-apoptotic impact on KG1-a cells by upregulating Bax and p53 and downregulating BIRC5, leading to G0/G1 cell cycle arrest and prevention of the PI3K-Akt signaling pathway. Our findings demonstrated that combination of CP and SAL promote apoptosis in the KG1-a cell line by down-regulating BIRC5 and Akt, as well as up-regulating Bax, p53, PTEN, and FOXO1. Additionally, the findings strongly indicated that insulin effectively mitigates apoptosis by enhancing Akt expression and reducing FOXO1 and PTEN gene expression in the cells treated with CP and SAL. CONCLUSION: Our findings showed that the combined treatment of CP and SAL exhibit a strong anti-cancer effect on leukemia KG1-a cells. Moreover, it was discovered that the PI3K-Akt signaling can be a promising target in leukemia treatment particularly in hyperinsulinemia condition.


Assuntos
Apoptose , Sobrevivência Celular , Ciprofloxacina , Insulina , Piranos , Humanos , Ciprofloxacina/farmacologia , Apoptose/efeitos dos fármacos , Piranos/farmacologia , Linhagem Celular Tumoral , Insulina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Forkhead Box O1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Policetídeos de Poliéter
14.
Sci Rep ; 14(1): 16167, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003280

RESUMO

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by persistent hyperglycemia. It involves disturbances in carbohydrate, fat, and protein metabolism due to defects in insulin secretion, insulin action, or both. Novel therapeutic approaches are continuously being explored to enhance metabolic control and prevent complications associated with the disease. This study investigates the therapeutic potential of kaempherol-3-rhamnoside, a flavonoid, in managing diabetes by modulating the AMP-activated protein kinase (AMPK) pathway and improving metabolic enzyme activities in streptozotocin (STZ) -induced diabetic mice. Diabetic mice were treated with varying doses of kaempherol-3-rhamnoside and/or insulin over a 28-day period. Glycolytic and gluconeogenesis enzyme activities in the liver, fasting blood glucose levels, serum insulin levels, lipid profiles and oxidative stress markers were assessed. Treatment with kaempherol-3-rhamnoside significantly improved glycolytic enzyme activities, reduced fasting blood glucose, and enhanced insulin levels compared to diabetic controls. The compound also normalized lipid profiles and reduced oxidative stress in the liver, suggesting its potential in reversing diabetic dyslipidemia and oxidative damage. Furthermore, kaempherol-3-rhamnoside activated the AMPK pathway, indicating a mechanism through which it could exert its effects. Kaempherol-3-rhamnoside exhibits promising antidiabetic properties, potentially through AMPK pathway activation and metabolic enzyme modulation. These findings support its potential use as an adjunct therapy for diabetes management. Further clinical studies are warranted to validate these results in human subjects.


Assuntos
Proteínas Quinases Ativadas por AMP , Diabetes Mellitus Experimental , Fígado , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Camundongos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Masculino , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Insulina/metabolismo , Insulina/sangue , Estreptozocina , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
15.
Endocrinology ; 165(8)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954536

RESUMO

BACKGROUND: Nephrin is a transmembrane protein with well-established signaling roles in kidney podocytes, and a smaller set of secretory functions in pancreatic ß cells are implicated in diabetes. Nephrin signaling is mediated in part through its 3 cytoplasmic YDxV motifs, which can be tyrosine phosphorylated by high glucose and ß cell injuries. Although in vitro studies demonstrate these phosphorylated motifs can regulate ß cell vesicle trafficking and insulin release, in vivo evidence of their role in this cell type remains to be determined. METHODS: To further explore the role of nephrin YDxV phosphorylation in ß cells, we used a mouse line with tyrosine to phenylalanine substitutions at each YDxV motif (nephrin-Y3F) to inhibit phosphorylation. We assessed islet function via primary islet glucose-stimulated insulin secretion assays and oral glucose tolerance tests. RESULTS: Nephrin-Y3F mice successfully developed pancreatic endocrine and exocrine tissues with minimal structural differences. Unexpectedly, male and female nephrin-Y3F mice showed elevated insulin secretion, with a stronger increase observed in male mice. At 8 months of age, no differences in glucose tolerance were observed between wild-type (WT) and nephrin-Y3F mice. However, aged nephrin-Y3F mice (16 months of age) demonstrated more rapid glucose clearance compared to WT controls. CONCLUSION: Taken together, loss of nephrin YDxV phosphorylation does not alter baseline islet function. Instead, our data suggest a mechanism linking impaired nephrin YDxV phosphorylation to improved islet secretory ability with age. Targeting nephrin phosphorylation could provide novel therapeutic opportunities to improve ß cell function.


Assuntos
Teste de Tolerância a Glucose , Secreção de Insulina , Células Secretoras de Insulina , Insulina , Proteínas de Membrana , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Fosforilação , Camundongos , Masculino , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Feminino , Insulina/metabolismo , Tirosina/metabolismo , Envelhecimento/metabolismo , Intolerância à Glucose/metabolismo , Camundongos Endogâmicos C57BL , Glucose/metabolismo
16.
J Med Food ; 27(7): 627-635, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38976324

RESUMO

Type 2 diabetes (T2D) is a serious health problem, and its prevalence is expected to increase worldwide in the years ahead. Cruciferous vegetables such as Brassica oleracea var. capitata L. (green cabbage) and Raphanus sativus L. (radish) have therapeutic properties that can be used to support the treatment of T2D. This study evaluated the effect of B. oleracea (BAE) and R. sativus (RAE) aqueous extracts on zoometric parameters, glycemic profiles, and pancreas and liver in prediabetic rats induced by a high-sucrose diet (HSD). BAE and RAE were administered to male HSD-induced Wistar rats (n = 35) at 5 and 10 mg/kg doses for 5 weeks. Zoometric and biochemical changes were measured, and then the pancreas and liver histological preparations were analyzed to observe the protective effect. BAE decreased feed intake and weight gain. Both extracts decreased fasting glucose and insulin levels compared with control (not treated), although not significantly (P > .05). The extracts significantly (P < .05) reduced homeostatic model assessment for insulin resistance, homeostasis model assessment of ß-cell function, and glucose intolerance, similar to metformin control. In addition, minor damage occurred in the pancreas and liver. The results indicated that BAE and RAE decreased weight gain, improved glucose regulation, and protected the pancreas and liver in HSD rats. Therefore, they have multiple therapeutical properties and may be helpful in the prevention of T2D.


Assuntos
Glicemia , Brassica , Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Insulina , Fígado , Extratos Vegetais , Estado Pré-Diabético , Raphanus , Ratos Wistar , Animais , Brassica/química , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Ratos , Estado Pré-Diabético/tratamento farmacológico , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Raphanus/química , Insulina/sangue , Insulina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hipoglicemiantes/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Humanos , Resistência à Insulina , Modelos Animais de Doenças
17.
Cardiovasc Diabetol ; 23(1): 258, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026321

RESUMO

BACKGROUND: Insulin signaling regulates cardiac substrate utilization and is implicated in physiological adaptations of the heart. Alterations in the signaling response within the heart are believed to contribute to pathological conditions such as type-2 diabetes and heart failure. While extensively investigated in several metabolic organs using phosphoproteomic strategies, the signaling response elicited in cardiac tissue in general, and specifically in the specialized cardiomyocytes, has not yet been investigated to the same extent. METHODS: Insulin or vehicle was administered to male C57BL6/JRj mice via intravenous injection into the vena cava. Ventricular tissue was extracted and subjected to quantitative phosphoproteomics analysis to evaluate the insulin signaling response. To delineate the cardiomyocyte-specific response and investigate the role of Tbc1d4 in insulin signal transduction, cardiomyocytes from the hearts of cardiac and skeletal muscle-specific Tbc1d4 knockout mice, as well as from wildtype littermates, were studied. The phosphoproteomic studies involved isobaric peptide labeling with Tandem Mass Tags (TMT), enrichment for phosphorylated peptides, fractionation via micro-flow reversed-phase liquid chromatography, and high-resolution mass spectrometry measurements. RESULTS: We quantified 10,399 phosphorylated peptides from ventricular tissue and 12,739 from isolated cardiomyocytes, localizing to 3,232 and 3,128 unique proteins, respectively. In cardiac tissue, we identified 84 insulin-regulated phosphorylation events, including sites on the Insulin Receptor (InsrY1351, Y1175, Y1179, Y1180) itself as well as the Insulin receptor substrate protein 1 (Irs1S522, S526). Predicted kinases with increased activity in response to insulin stimulation included Rps6kb1, Akt1 and Mtor. Tbc1d4 emerged as a major phosphorylation target in cardiomyocytes. Despite limited impact on the global phosphorylation landscape, Tbc1d4 deficiency in cardiomyocytes attenuated insulin-induced Glut4 translocation and induced protein remodeling. We observed 15 proteins significantly regulated upon knockout of Tbc1d4. While Glut4 exhibited decreased protein abundance consequent to Tbc1d4-deficiency, Txnip levels were notably increased. Stimulation of wildtype cardiomyocytes with insulin led to the regulation of 262 significant phosphorylation events, predicted to be regulated by kinases such as Akt1, Mtor, Akt2, and Insr. In cardiomyocytes, the canonical insulin signaling response is elicited in addition to regulation on specialized cardiomyocyte proteins, such as Kcnj11Y12 and DspS2597. Details of all phosphorylation sites are provided. CONCLUSION: We present a first global outline of the insulin-induced phosphorylation signaling response in heart tissue and in isolated adult cardiomyocytes, detailing the specific residues with changed phosphorylation abundances. Our study marks an important step towards understanding the role of insulin signaling in cardiac diseases linked to insulin resistance.


Assuntos
Insulina , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos , Fosfoproteínas , Proteômica , Transdução de Sinais , Animais , Miócitos Cardíacos/metabolismo , Masculino , Insulina/metabolismo , Fosforilação , Fosfoproteínas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Receptor de Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos
18.
Sci Rep ; 14(1): 15349, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961190

RESUMO

Precision-cut liver slices (PCLS) are increasingly used as a model to investigate anti-fibrotic therapies. However, many studies use PCLS from healthy animals treated with pro-fibrotic stimuli in culture, which reflects only the early stages of fibrosis. The effects of different culture conditions on PCLS from cirrhotic animals has not been well characterized and there is no consensus on optimal methods. In this study, we report a method for the collection and culture of cirrhotic PCLS and compare the effect of common culture conditions on viability, function, and gene expression. Additionally, we compared three methods of RNA isolation and identified a protocol with high yield and purity. We observed significantly increased albumin production when cultured with insulin-transferrin-selenium and dexamethasone, and when incubated on a rocking platform. Culturing with insulin-transferrin-selenium and dexamethasone maintained gene expression closer to the levels in fresh slices. However, despite stable viability and function up to 4 days, we found significant changes in expression of key genes by day 2. Interestingly, we also observed that cirrhotic PCLS maintain viability in culture longer than slices from healthy animals. Due to the influence of matrix stiffness on fibrosis and hepatocellular function, it is important to evaluate prospective anti-fibrotic therapies in a platform that preserves tissue biomechanics. PCLS from cirrhotic animals represent a promising tool for the development of treatments for chronic liver disease.


Assuntos
Dexametasona , Cirrose Hepática , Fígado , Animais , Ratos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Dexametasona/farmacologia , Masculino , RNA/isolamento & purificação , RNA/genética , RNA/metabolismo , Insulina/metabolismo , Insulina/farmacologia , Ratos Sprague-Dawley , Selênio/farmacologia , Técnicas de Cultura de Tecidos/métodos
19.
FASEB J ; 38(13): e23800, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38979931

RESUMO

Insulin resistance, the hallmark of type 2 diabetes mellitus (T2DM), has emerged as a pathological feature in Alzheimer's disease (AD). Given the shared role of insulin resistance in T2DM and AD, repurposing peripheral insulin sensitizers is a promising strategy to preserve neuronal insulin sensitivity and prevent AD. 1-Deoxynojirimycin (DNJ), a bioactive iminosugar, exhibited insulin-sensitizing effects in metabolic tissues and was detected in brain tissue post-oral intake. However, its impact on brain and neuronal insulin signaling has not been described. Here, we investigated the effect of DNJ treatment on insulin signaling and AD markers in insulin-resistant human SK-N-SH neuroblastoma, a cellular model of neuronal insulin resistance. Our findings show that DNJ increased the expression of insulin signaling genes and the phosphorylation status of key molecules implicated in insulin resistance (Y1146-pIRß, S473-pAKT, S9-GSK3B) while also elevating the expression of glucose transporters Glut3 and Glut4, resulting in higher glucose uptake upon insulin stimuli. DNJ appeared to mitigate the insulin resistance-driven increase in phosphorylated tau and Aß1-42 levels by promoting insulin-induced phosphorylation of GSK3B (a major tau kinase) and enhancing mRNA expression of the insulin-degrading enzyme (IDE) pivotal for insulin and Aß clearance. Overall, our study unveils probable mechanisms underlying the potential benefits of DNJ for AD, wherein DNJ attenuates tau and amyloid pathologies by reversing neuronal insulin resistance. This provides a scientific basis for expanding the use of DNJ-containing products for neuroprotective purposes and prompts further research into compounds with similar mechanisms of action.


Assuntos
1-Desoxinojirimicina , Doença de Alzheimer , Resistência à Insulina , Neurônios , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Humanos , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/análogos & derivados , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Linhagem Celular Tumoral , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Transportador de Glucose Tipo 3/genética , Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Fosforilação/efeitos dos fármacos , Biomarcadores/metabolismo
20.
Vitam Horm ; 126: 113-124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39029970

RESUMO

The blood-brain barrier (BBB) is a unique system of the brain microvasculature that limits the exchange between the blood and the brain. Brain microvascular endothelial cells form the BBB as part of the neurovascular unit and express insulin receptors. The insulin receptor at the BBB has been studied in two different functional aspects. These functions include (1) the supplying of blood insulin to the brain and (2) the modulation of BBB function via insulin signaling. The first function involves drug delivery to the brain, while the second function is related to the association between central nervous system diseases and type 2 diabetes through insulin resistance. This chapter summarizes recent progress in research on the function of insulin receptors at the BBB.


Assuntos
Barreira Hematoencefálica , Receptor de Insulina , Transdução de Sinais , Barreira Hematoencefálica/metabolismo , Receptor de Insulina/metabolismo , Humanos , Transdução de Sinais/fisiologia , Animais , Transporte Biológico/fisiologia , Insulina/metabolismo , Células Endoteliais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA