Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.124
Filtrar
1.
Cell ; 187(13): 3445-3459.e15, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38838668

RESUMO

Understanding cellular force transmission dynamics is crucial in mechanobiology. We developed the DNA-based ForceChrono probe to measure force magnitude, duration, and loading rates at the single-molecule level within living cells. The ForceChrono probe circumvents the limitations of in vitro single-molecule force spectroscopy by enabling direct measurements within the dynamic cellular environment. Our findings reveal integrin force loading rates of 0.5-2 pN/s and durations ranging from tens of seconds in nascent adhesions to approximately 100 s in mature focal adhesions. The probe's robust and reversible design allows for continuous monitoring of these dynamic changes as cells undergo morphological transformations. Additionally, by analyzing how mutations, deletions, or pharmacological interventions affect these parameters, we can deduce the functional roles of specific proteins or domains in cellular mechanotransduction. The ForceChrono probe provides detailed insights into the dynamics of mechanical forces, advancing our understanding of cellular mechanics and the molecular mechanisms of mechanotransduction.


Assuntos
Mecanotransdução Celular , Imagem Individual de Molécula , Animais , Humanos , Camundongos , Fenômenos Biomecânicos , Adesão Celular , DNA/química , DNA/metabolismo , Adesões Focais/metabolismo , Integrinas/metabolismo , Microscopia de Força Atômica/métodos , Imagem Individual de Molécula/métodos , Linhagem Celular , Sobrevivência Celular , Pareamento de Bases , Calibragem
2.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892308

RESUMO

Sarcospan (SSPN) is a 25-kDa transmembrane protein that is broadly expressed at the cell surface of many tissues, including, but not limited to, the myofibers from skeletal and smooth muscles, cardiomyocytes, adipocytes, kidney epithelial cells, and neurons. SSPN is a core component of the dystrophin-glycoprotein complex (DGC) that links the intracellular actin cytoskeleton with the extracellular matrix. It is also associated with integrin α7ß1, the predominant integrin expressed in skeletal muscle. As a tetraspanin-like protein with four transmembrane spanning domains, SSPN functions as a scaffold to facilitate protein-protein interactions at the cell membrane. Duchenne muscular dystrophy, Becker muscular dystrophy, and X-linked dilated cardiomyopathy are caused by the loss of dystrophin at the muscle cell surface and a concomitant loss of the entire DGC, including SSPN. SSPN overexpression ameliorates Duchenne muscular dystrophy in the mdx murine model, which supports SSPN being a viable therapeutic target. Other rescue studies support SSPN as a biomarker for the proper assembly and membrane expression of the DGC. Highly specific and robust antibodies to SSPN are needed for basic research on the molecular mechanisms of SSPN rescue, pre-clinical studies, and biomarker evaluations in human samples. The development of SSPN antibodies is challenged by the presence of its four transmembrane domains and limited antigenic epitopes. To address the significant barrier presented by limited commercially available antibodies, we aimed to generate a panel of robust SSPN-specific antibodies that can serve as a resource for the research community. We created antibodies to three SSPN protein epitopes, including the intracellular N- and C-termini as well as the large extracellular loop (LEL) between transmembrane domains 3 and 4. We developed a panel of rabbit antibodies (poly- and monoclonal) against an N-terminal peptide fragment of SSPN. We used several assays to show that the rabbit antibodies recognize mouse SSPN with a high functional affinity and specificity. We developed mouse monoclonal antibodies against the C-terminal peptide and the large extracellular loop of human SSPN. These antibodies are superior to commercially available antibodies and outperform them in various applications, including immunoblotting, indirect immunofluorescence analysis, immunoprecipitation, and an ELISA. These newly developed antibodies will significantly improve the quality and ease of SSPN detection for basic and translational research.


Assuntos
Proteínas de Membrana , Pesquisa Translacional Biomédica , Animais , Humanos , Camundongos , Distrofina/metabolismo , Distrofina/imunologia , Distrofina/genética , Integrinas/metabolismo , Integrinas/imunologia , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/metabolismo
3.
Front Immunol ; 15: 1403764, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915411

RESUMO

Immune system recognizes invading microbes at both pathogen and antigen levels. Toll-like receptors (TLRs) play a key role in the first-line defense against pathogens. Major functions of TLRs include cytokine and chemokine production. TLRs share common downstream signaling pathways with other receptors. The crosstalk revolving around TLRs is rather significant and complex, underscoring the intricate nature of immune system. The profiles of produced cytokines and chemokines via TLRs can be affected by other receptors. Integrins are critical heterodimeric adhesion molecules expressed on many different cells. There are studies describing synergetic or inhibitory interplay between TLRs and integrins. Thus, we reviewed the crosstalk between TLRs and integrins. Understanding the nature of the crosstalk could allow us to modulate TLR functions via integrins.


Assuntos
Integrinas , Receptor Cross-Talk , Transdução de Sinais , Receptores Toll-Like , Humanos , Receptores Toll-Like/metabolismo , Integrinas/metabolismo , Integrinas/imunologia , Animais , Citocinas/metabolismo , Imunidade Inata
4.
Int J Mol Sci ; 25(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38928297

RESUMO

Senescence is a physiological and pathological cellular program triggered by various types of cellular stress. Senescent cells exhibit multiple characteristic changes. Among them, the characteristic flattened and enlarged morphology exhibited in senescent cells is observed regardless of the stimuli causing the senescence. Several studies have provided important insights into pro-adhesive properties of cellular senescence, suggesting that cell adhesion to the extracellular matrix (ECM), which is involved in characteristic morphological changes, may play pivotal roles in cellular senescence. Matricellular proteins, a group of structurally unrelated ECM molecules that are secreted into the extracellular environment, have the unique ability to control cell adhesion to the ECM by binding to cell adhesion receptors, including integrins. Recent reports have certified that matricellular proteins are closely involved in cellular senescence. Through this biological function, matricellular proteins are thought to play important roles in the pathogenesis of age-related diseases, including fibrosis, osteoarthritis, intervertebral disc degeneration, atherosclerosis, and cancer. This review outlines recent studies on the role of matricellular proteins in inducing cellular senescence. We highlight the role of integrin-mediated signaling in inducing cellular senescence and provide new therapeutic options for age-related diseases targeting matricellular proteins and integrins.


Assuntos
Envelhecimento , Senescência Celular , Proteínas da Matriz Extracelular , Integrinas , Humanos , Integrinas/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Animais , Envelhecimento/metabolismo , Matriz Extracelular/metabolismo , Transdução de Sinais , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Fibrose , Adesão Celular , Aterosclerose/metabolismo , Aterosclerose/patologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Terapia de Alvo Molecular
5.
Nat Commun ; 15(1): 4986, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862544

RESUMO

Focal adhesions form liquid-like assemblies around activated integrin receptors at the plasma membrane. How they achieve their flexible properties is not well understood. Here, we use recombinant focal adhesion proteins to reconstitute the core structural machinery in vitro. We observe liquid-liquid phase separation of the core focal adhesion proteins talin and vinculin for a spectrum of conditions and interaction partners. Intriguingly, we show that binding to PI(4,5)P2-containing membranes triggers phase separation of these proteins on the membrane surface, which in turn induces the enrichment of integrin in the clusters. We suggest a mechanism by which 2-dimensional biomolecular condensates assemble on membranes from soluble proteins in the cytoplasm: lipid-binding triggers protein activation and thus, liquid-liquid phase separation of these membrane-bound proteins. This could explain how early focal adhesions maintain a structured and force-resistant organization into the cytoplasm, while still being highly dynamic and able to quickly assemble and disassemble.


Assuntos
Membrana Celular , Adesões Focais , Talina , Vinculina , Talina/metabolismo , Talina/química , Adesões Focais/metabolismo , Membrana Celular/metabolismo , Vinculina/metabolismo , Vinculina/química , Humanos , Animais , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Integrinas/metabolismo , Integrinas/química , Citoplasma/metabolismo , Ligação Proteica , Separação de Fases
6.
J Cell Biol ; 223(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-38889096

RESUMO

Immune cells are highly dynamic and able to migrate through environments with diverse biochemical and mechanical compositions. Their migration has classically been defined as amoeboid under the assumption that it is integrin independent. Here, we show that activated primary Th1 T cells require both confinement and extracellular matrix proteins to migrate efficiently. This migration is mediated through small and dynamic focal adhesions that are composed of the same proteins associated with canonical mesenchymal cell focal adhesions, such as integrins, talin, and vinculin. These focal adhesions, furthermore, localize to sites of contractile traction stresses, enabling T cells to pull themselves through confined spaces. Finally, we show that Th1 T cells preferentially follow tracks of other T cells, suggesting that these adhesions modify the extracellular matrix to provide additional environmental guidance cues. These results demonstrate not only that the boundaries between amoeboid and mesenchymal migration modes are ambiguous, but that integrin-mediated focal adhesions play a key role in T cell motility.


Assuntos
Movimento Celular , Matriz Extracelular , Adesões Focais , Integrinas , Talina , Adesões Focais/metabolismo , Animais , Integrinas/metabolismo , Talina/metabolismo , Camundongos , Matriz Extracelular/metabolismo , Vinculina/metabolismo , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ativação Linfocitária , Adesão Celular
7.
MAbs ; 16(1): 2365891, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38889315

RESUMO

Integrins are cell surface receptors that mediate the interactions of cells with their surroundings and play essential roles in cell adhesion, migration, and homeostasis. Eight of the 24 integrins bind to the tripeptide Arg-Gly-Asp (RGD) motif in their extracellular ligands, comprising the RGD-binding integrin subfamily. Despite similarity in recognizing the RGD motif and some redundancy, these integrins can selectively recognize RGD-containing ligands to fulfill specific functions in cellular processes. Antibodies against individual RGD-binding integrins are desirable for investigating their specific functions, and were selected here from a synthetic yeast-displayed Fab library. We discovered 11 antibodies that exhibit high specificity and affinity toward their target integrins, i.e. αVß3, αVß5, αVß6, αVß8, and α5ß1. Of these, six are function-blocking antibodies and contain a ligand-mimetic R(G/L/T)D motif in their CDR3 sequences. We report antibody-binding specificity, kinetics, and binding affinity for purified integrin ectodomains, as well as intact integrins on the cell surface. We further used these antibodies to reveal binding preferences of the αV subunit for its 5 ß-subunit partners: ß6 = ß8 > ß3 > ß1 = ß5.


Assuntos
Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Cadeias beta de Integrinas/imunologia , Cadeias beta de Integrinas/química , Cadeias beta de Integrinas/metabolismo , Cadeias beta de Integrinas/genética , Integrina alfaV/imunologia , Integrina alfaV/metabolismo , Integrinas/imunologia , Integrinas/metabolismo , Biblioteca de Peptídeos , Técnicas de Visualização da Superfície Celular , Ligação Proteica , Especificidade de Anticorpos
8.
Cell Death Dis ; 15(6): 397, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844455

RESUMO

Integrin αvß6 holds promise as a therapeutic target for organ fibrosis, yet targeted therapies are hampered by concerns over inflammatory-related side effects. The role of αvß6 in renal inflammation remains unknown, and clarifying this issue is crucial for αvß6-targeted treatment of chronic kidney disease (CKD). Here, we revealed a remarkable positive correlation between overexpressed αvß6 in proximal tubule cells (PTCs) and renal inflammation in CKD patients and mouse models. Notably, knockout of αvß6 not only significantly alleviated renal fibrosis but also reduced inflammatory responses in mice, especially the infiltration of pro-inflammatory macrophages. Furthermore, conditional knockout of αvß6 in PTCs in vivo and co-culture of PTCs with macrophages in vitro showed that depleting αvß6 in PTCs suppressed the migration and pro-inflammatory differentiation of macrophages. Screening of macrophage activators showed that αvß6 in PTCs activates macrophages via secreting IL-34. IL-34 produced by PTCs was significantly diminished by αvß6 silencing, and reintroduction of IL-34 restored macrophage activities, while anti-IL-34 antibody restrained macrophage activities enhanced by αvß6 overexpression. Moreover, RNA-sequencing of PTCs and verification experiments demonstrated that silencing αvß6 in PTCs blocked hypoxia-stimulated IL-34 upregulation and secretion by inhibiting YAP expression, dephosphorylation, and nuclear translocation, which resulted in the activation of Hippo signaling. While application of a YAP agonist effectively recurred IL-34 production by PTCs, enhancing the subsequent macrophage migration and activation. Besides, reduced IL-34 expression and YAP activation were also observed in global or PTCs-specific αvß6-deficient injured kidneys. Collectively, our research elucidates the pro-inflammatory function and YAP/IL-34/macrophage axis-mediated mechanism of αvß6 in renal inflammation, providing a solid rationale for the use of αvß6 inhibition to treat kidney inflammation and fibrosis.


Assuntos
Integrinas , Macrófagos , Camundongos Knockout , Insuficiência Renal Crônica , Animais , Macrófagos/metabolismo , Camundongos , Humanos , Integrinas/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Masculino , Antígenos de Neoplasias/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Modelos Animais de Doenças , Proteínas de Sinalização YAP/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Fibrose
9.
Cells ; 13(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38727292

RESUMO

Integrin α4ß7+ T cells perpetuate tissue injury in chronic inflammatory diseases, yet their role in hepatic fibrosis progression remains poorly understood. Here, we report increased accumulation of α4ß7+ T cells in the liver of people with cirrhosis relative to disease controls. Similarly, hepatic fibrosis in the established mouse model of CCl4-induced liver fibrosis was associated with enrichment of intrahepatic α4ß7+ CD4 and CD8 T cells. Monoclonal antibody (mAb)-mediated blockade of α4ß7 or its ligand mucosal addressin cell adhesion molecule (MAdCAM)-1 attenuated hepatic inflammation and prevented fibrosis progression in CCl4-treated mice. Improvement in liver fibrosis was associated with a significant decrease in the infiltration of α4ß7+ CD4 and CD8 T cells, suggesting that α4ß7/MAdCAM-1 axis regulates both CD4 and CD8 T cell recruitment to the fibrotic liver, and α4ß7+ T cells promote hepatic fibrosis progression. Analysis of hepatic α4ß7+ and α4ß7- CD4 T cells revealed that α4ß7+ CD4 T cells were enriched for markers of activation and proliferation, demonstrating an effector phenotype. The findings suggest that α4ß7+ T cells play a critical role in promoting hepatic fibrosis progression, and mAb-mediated blockade of α4ß7 or MAdCAM-1 represents a promising therapeutic strategy for slowing hepatic fibrosis progression in chronic liver diseases.


Assuntos
Moléculas de Adesão Celular , Progressão da Doença , Integrinas , Cirrose Hepática , Fígado , Mucoproteínas , Animais , Feminino , Humanos , Masculino , Camundongos , Anticorpos Monoclonais/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Moléculas de Adesão Celular/metabolismo , Modelos Animais de Doenças , Imunoglobulinas/metabolismo , Inflamação/patologia , Integrinas/metabolismo , Fígado/patologia , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/imunologia , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL , Mucoproteínas/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Tetracloreto de Carbono/farmacologia , Tetracloreto de Carbono/toxicidade
10.
Cells ; 13(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38727316

RESUMO

Epithelial-mesenchymal transition (EMT) is a process during which epithelial cells lose epithelial characteristics and gain mesenchymal features. Here, we used several cell models to study migratory activity and redistribution of cell-cell adhesion proteins in cells in different EMT states: EGF-induced EMT of epithelial IAR-20 cells; IAR-6-1 cells with a hybrid epithelial-mesenchymal phenotype; and their more mesenchymal derivatives, IAR-6-1-DNE cells lacking adherens junctions. In migrating cells, the cell-cell adhesion protein α-catenin accumulated at the leading edges along with ArpC2/p34 and α-actinin. Suppression of α-catenin shifted cell morphology from fibroblast-like to discoid and attenuated cell migration. Expression of exogenous α-catenin in MDA-MB-468 cells devoid of α-catenin drastically increased their migratory capabilities. The Y654 phosphorylated form of ß-catenin was detected at integrin adhesion complexes (IACs). Co-immunoprecipitation studies indicated that α-catenin and pY654-ß-catenin were associated with IAC proteins: vinculin, zyxin, and α-actinin. Taken together, these data suggest that in cells undergoing EMT, catenins not participating in assembly of adherens junctions may affect cell migration.


Assuntos
Citoesqueleto de Actina , Movimento Celular , Transição Epitelial-Mesenquimal , Animais , Citoesqueleto de Actina/metabolismo , Actinina/metabolismo , Junções Aderentes/metabolismo , alfa Catenina/metabolismo , beta Catenina/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Integrinas/metabolismo , Fosforilação , Vinculina/metabolismo , Zixina/metabolismo , Ratos
11.
Cell ; 187(12): 2990-3005.e17, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38772370

RESUMO

Integrins link the extracellular environment to the actin cytoskeleton in cell migration and adhesiveness. Rapid coordination between events outside and inside the cell is essential. Single-molecule fluorescence dynamics show that ligand binding to the bent-closed integrin conformation, which predominates on cell surfaces, is followed within milliseconds by two concerted changes, leg extension and headpiece opening, to give the high-affinity integrin conformation. The extended-closed integrin conformation is not an intermediate but can be directly accessed from the extended-open conformation and provides a pathway for ligand dissociation. In contrast to ligand, talin, which links the integrin ß-subunit cytoplasmic domain to the actin cytoskeleton, modestly stabilizes but does not induce extension or opening. Integrin activation is thus initiated by outside-in signaling and followed by inside-out signaling. Our results further imply that talin binding is insufficient for inside-out integrin activation and that tensile force transmission through the ligand-integrin-talin-actin cytoskeleton complex is required.


Assuntos
Integrinas , Talina , Animais , Humanos , Camundongos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Adesão Celular , Células CHO , Cricetulus , Integrinas/metabolismo , Integrinas/química , Ligantes , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Imagem Individual de Molécula , Talina/metabolismo , Talina/química
12.
Biomed Mater ; 19(4)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38772389

RESUMO

The extracellular matrix plays a crucial role in the growth of human neural stem cells (hNSCs) by forming a stem cell niche, bothin vitroandin vivo. The demand for defined synthetic substrates has been increasing recently in stem cell research, reflecting the requirements for precise functions and safety concerns in potential clinical approaches. In this study, we tested the adhesion and expansion of one of the most representative hNSC lines, the ReNcell VM Human Neural Progenitor Cell Line, in a pure-synthesized short peptide-basedin vitroniche using a previously established integrin-binding peptide array. Spontaneous cell differentiation was then induced using two differentin vitroapproaches to further confirm the multipotent features of cells treated with the peptides. Twelve different integrin-binding peptides were capable of supporting hNSC adhesion and expansion at varied proliferation rates. In the ReNcell medium-based differentiation approach, cells detached in almost all peptide-based groups, except integrinα5ß1 binding peptide. In an altered differentiation process induced by retinoic acid containing neural differentiation medium, cell adhesion was retained in all 12 peptide groups. These peptides also appeared to have varied effects on the differentiation potential of hNSCs towards neurons and astrocytes. Our findings provide abundant options for the development ofin vitroneural stem cell niches and will help develop promising tools for disease modeling and future stem cell therapies for neurological diseases.


Assuntos
Adesão Celular , Diferenciação Celular , Proliferação de Células , Integrinas , Células-Tronco Neurais , Peptídeos , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Diferenciação Celular/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Integrinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Linhagem Celular , Matriz Extracelular/metabolismo , Neurônios/metabolismo , Neurônios/citologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Tretinoína/farmacologia , Propriedades de Superfície , Astrócitos/metabolismo , Astrócitos/citologia
13.
Acta Neuropathol Commun ; 12(1): 71, 2024 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-38706008

RESUMO

Diffuse Intrinsic Pontine Glioma (DIPG) is a highly aggressive and fatal pediatric brain cancer. One pre-requisite for tumor cells to infiltrate is adhesion to extracellular matrix (ECM) components. However, it remains largely unknown which ECM proteins are critical in enabling DIPG adhesion and migration and which integrin receptors mediate these processes. Here, we identify laminin as a key ECM protein that supports robust DIPG cell adhesion and migration. To study DIPG infiltration, we developed a DIPG-neural assembloid model, which is composed of a DIPG spheroid fused to a human induced pluripotent stem cell-derived neural organoid. Using this assembloid model, we demonstrate that knockdown of laminin-associated integrins significantly impedes DIPG infiltration. Moreover, laminin-associated integrin knockdown improves DIPG response to radiation and HDAC inhibitor treatment within the DIPG-neural assembloids. These findings reveal the critical role of laminin-associated integrins in mediating DIPG progression and drug response. The results also provide evidence that disrupting integrin receptors may offer a novel therapeutic strategy to enhance DIPG treatment outcomes. Finally, these results establish DIPG-neural assembloid models as a powerful tool to study DIPG disease progression and enable drug discovery.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Integrinas , Laminina , Humanos , Laminina/metabolismo , Integrinas/metabolismo , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/metabolismo , Neoplasias do Tronco Encefálico/terapia , Glioma Pontino Intrínseco Difuso/patologia , Glioma Pontino Intrínseco Difuso/genética , Adesão Celular/efeitos dos fármacos , Movimento Celular , Linhagem Celular Tumoral , Glioma/patologia , Glioma/metabolismo , Glioma/genética , Glioma/terapia
14.
PLoS Comput Biol ; 20(5): e1012140, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38768266

RESUMO

Apical-basal polarization in renal epithelial cells is crucial to renal function and an important trigger for tubule formation in kidney development. Loss of polarity can induce epithelial-to-mesenchymal transition (EMT), which can lead to kidney pathologies. Understanding the relative and combined roles of the involved proteins and their interactions that govern epithelial polarity may provide insights for controlling the process of polarization via chemical or mechanical manipulations in an in vitro or in vivo setting. Here, we developed a computational framework that integrates several known interactions between integrins, Rho-GTPases Rho, Rac and Cdc42, and polarity complexes Par and Scribble, to study their mutual roles in the emergence of polarization. The modeled protein interactions were shown to induce the emergence of polarized distributions of Rho-GTPases, which in turn led to the accumulation of apical and basal polarity complexes Par and Scribble at their respective poles, effectively recapitulating polarization. Our multiparametric sensitivity analysis suggested that polarization depends foremost on the mutual inhibition between Rac and Rho. Next, we used the computational framework to investigate the role of integrins and GTPases in the generation and disruption of polarization. We found that a minimum concentration of integrins is required to catalyze the process of polarization. Furthermore, loss of polarization was found to be only inducible via complete degradation of the Rho-GTPases Rho and Cdc42, suggesting that polarization is fairly stable once it is established. Comparison of our computational predictions against data from in vitro experiments in which we induced EMT in renal epithelial cells while quantifying the relative Rho-GTPase levels, displayed that EMT coincides with a large reduction in the Rho-GTPase Rho. Collectively, these results demonstrate the essential roles of integrins and Rho-GTPases in the establishment and disruption of apical-basal polarity and thereby provide handles for the in vitro or in vivo regulation of polarity.


Assuntos
Polaridade Celular , Células Epiteliais , Integrinas , Rim , Proteínas rho de Ligação ao GTP , Polaridade Celular/fisiologia , Integrinas/metabolismo , Células Epiteliais/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Rim/metabolismo , Rim/citologia , Animais , Biologia Computacional , Modelos Biológicos , Simulação por Computador , Humanos , Transição Epitelial-Mesenquimal/fisiologia
15.
Int J Med Sci ; 21(7): 1307-1320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818471

RESUMO

Transforming growth factor-ß (TGF-ß) is strongly associated with the cell adhesion signaling pathway in cell differentiation, migration, etc. Mechanistically, TGF-ß is secreted in an inactive form and localizes to the extracellular matrix (ECM) via the latent TGF-ß binding protein (LTBP). However, it is the release of mature TGF-ß that is essential for the activation of the TGF-ß signaling pathway. This progress requires specific integrins (one of the main groups of cell adhesion molecules (CAMs)) to recognize and activate the dormant TGF-ß. In addition, TGF-ß regulates cell adhesion ability through modulating CAMs expression. The aberrant activation of the TGF-ß signaling pathway, caused by abnormal expression of key regulatory molecules (such as Smad proteins, certain transcription factors, and non-coding RNAs), promotes tumor invasive and metastasis ability via epithelial-mesenchymal transition (EMT) during the late stages of tumorigenesis. In this paper, we summarize the crosstalk between TGF-ß and cell adhesion signaling pathway in cancer and its underlying molecular mechanisms.


Assuntos
Adesão Celular , Transição Epitelial-Mesenquimal , Neoplasias , Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/genética , Transição Epitelial-Mesenquimal/genética , Integrinas/metabolismo , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica
16.
Biomed Pharmacother ; 175: 116718, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744221

RESUMO

Advanced cholangiocarcinoma (CCA) presents a clinical challenge due to limited treatment options, necessitating exploration of innovative therapeutic approaches. Bispecific T cell engager (BTE)-armed T cell therapy shows promise in hematological and solid malignancies, offering potential advantages in safety over continuous BTE infusion. In this context, we developed a novel BTE, targeting CD3 on T cells and integrin αvß6, an antigen elevated in various epithelial malignancies, on cancer cells. The novel BTE was generated by fusing an integrin αvß6-binding peptide (A20) to an anti-CD3 (OKT3) single-chain variable fragment (scFv) through a G4S peptide linker (A20/αCD3 BTE). T cells were then armed with A20/αCD3 BTE (A20/αCD3-armed T cells) and assessed for antitumor activity. Our results highlight the specific binding of A20/αCD3 BTE to CD3 on T cells and integrin αvß6 on target cells, effectively redirecting T cells towards these targets. After co-culture, A20/αCD3-armed T cells exhibited significantly heightened cytotoxicity against integrin αvß6-expressing target cells compared to unarmed T cells in both KKU-213A cells and A375.ß6 cells. Moreover, in a five-day co-culture, A20/αCD3-armed T cells demonstrated superior cytotoxicity against KKU-213A spheroids compared to unarmed T cells. Importantly, A20/αCD3-armed T cells exhibited an increased proportion of the effector memory T cell (Tem) subset, upregulation of T cell activation markers, enhanced T cell proliferation, and increased cytolytic molecule/cytokine production, when compared to unarmed T cells in an integrin αvß6-dependent manner. These findings support the potential of A20/αCD3-armed T cells as a novel therapeutic approach for integrin αvß6-expressing cancers.


Assuntos
Antígenos de Neoplasias , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Integrinas , Linfócitos T , Humanos , Colangiocarcinoma/imunologia , Colangiocarcinoma/terapia , Colangiocarcinoma/patologia , Antígenos de Neoplasias/imunologia , Linfócitos T/imunologia , Integrinas/metabolismo , Linhagem Celular Tumoral , Neoplasias dos Ductos Biliares/imunologia , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/terapia , Complexo CD3/imunologia , Anticorpos de Cadeia Única/farmacologia , Técnicas de Cocultura , Anticorpos Biespecíficos/farmacologia
17.
Viruses ; 16(5)2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38793651

RESUMO

Numerous human adenovirus (AdV) types are endowed with arginine-glycine-aspartic acid (RGD) sequences that enable them to recognize vitronectin-binding (αv) integrins. These RGD-binding cell receptors mediate AdV entry into host cells, a crucial early step in virus infection. Integrin interactions with adenoviruses not only initiate receptor-mediated endocytosis but also facilitate AdV capsid disassembly, a prerequisite for membrane penetration by AdV protein VI. This review discusses fundamental aspects of AdV-host interactions mediated by integrins. Recent efforts to re-engineer AdV vectors and non-viral nanoparticles to target αv integrins for bioimaging and the eradication of cancer cells will also be discussed.


Assuntos
Terapia Genética , Integrinas , Internalização do Vírus , Humanos , Terapia Genética/métodos , Integrinas/metabolismo , Vetores Genéticos/genética , Adenovírus Humanos/genética , Adenovírus Humanos/fisiologia , Adenoviridae/genética , Adenoviridae/fisiologia , Animais , Receptores Virais/metabolismo , Neoplasias/terapia , Neoplasias/virologia , Integrina alfaV/metabolismo , Integrina alfaV/genética , Oligopeptídeos
18.
Biochem Biophys Res Commun ; 721: 150121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38781659

RESUMO

The integrin family is a transmembrane receptor that plays critical roles in the cell-cell and cell-extracellular matrix adhesion, signal transduction such as cell cycle regulation, organization of the intracellular cytoskeleton, and immune responses. Consequently, dysfunction of integrins is associated with a wide range of human diseases, including cancer and immune diseases, which makes integrins therapeutic targets for drug discovery. Here we report the cryo-EM structure of the human α-I domain-containing full-length integrin αEß7, which is expressed in the leukocytes of the immune system and a drug target for inflammatory bowel disease (IBD). The structure reveals the half-bent conformation, an intermediate between the close and the open conformation, while the α-I domain responsible for the ligand binding covers the headpiece domain by a unique spatial arrangement. Our results provide the structural information for the drug design targeting IBD.


Assuntos
Microscopia Crioeletrônica , Modelos Moleculares , Domínios Proteicos , Humanos , Integrinas/metabolismo , Integrinas/química , Integrinas/ultraestrutura , Conformação Proteica
19.
Nat Cell Biol ; 26(6): 903-916, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702503

RESUMO

Dynamic changes in mechanical microenvironments, such as cell crowding, regulate lineage fates as well as cell proliferation. Although regulatory mechanisms for contact inhibition of proliferation have been extensively studied, it remains unclear how cell crowding induces lineage specification. Here we found that a well-known oncogene, ETS variant transcription factor 4 (ETV4), serves as a molecular transducer that links mechanical microenvironments and gene expression. In a growing epithelium of human embryonic stem cells, cell crowding dynamics is translated into ETV4 expression, serving as a pre-pattern for future lineage fates. A switch-like ETV4 inactivation by cell crowding derepresses the potential for neuroectoderm differentiation in human embryonic stem cell epithelia. Mechanistically, cell crowding inactivates the integrin-actomyosin pathway and blocks the endocytosis of fibroblast growth factor receptors (FGFRs). The disrupted FGFR endocytosis induces a marked decrease in ETV4 protein stability through ERK inactivation. Mathematical modelling demonstrates that the dynamics of cell density in a growing human embryonic stem cell epithelium precisely determines the spatiotemporal ETV4 expression pattern and, consequently, the timing and geometry of lineage development. Our findings suggest that cell crowding dynamics in a stem cell epithelium drives spatiotemporal lineage specification using ETV4 as a key mechanical transducer.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Embrionárias Humanas , Proteínas Proto-Oncogênicas c-ets , Fatores de Transcrição , Humanos , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Endocitose , Proliferação de Células , Integrinas/metabolismo , Integrinas/genética , Transdução de Sinais , Mecanotransdução Celular
20.
Front Immunol ; 15: 1341745, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765012

RESUMO

Individuals with Kabuki syndrome present with immunodeficiency; however, how pathogenic variants in the gene encoding the histone-modifying enzyme lysine methyltransferase 2D (KMT2D) lead to immune alterations remain poorly understood. Following up on our prior report of KMT2D-altered integrin expression in B-cells, we performed targeted analyses of KMT2D's influence on integrin expression in T-cells throughout development (thymocytes through peripheral T-cells) in murine cells with constitutive- and conditional-targeted Kmt2d deletion. Using high-throughput RNA-sequencing and flow cytometry, we reveal decreased expression (both at the transcriptional and translational levels) of a cluster of leukocyte-specific integrins, which perturb aspects of T-cell activation, maturation, adhesion/localization, and effector function. H3K4me3 ChIP-PCR suggests that these evolutionary similar integrins are under direct control of KMT2D. KMT2D loss also alters multiple downstream programming/signaling pathways, including integrin-based localization, which can influence T-cell populations. We further demonstrated that KMT2D deficiency is associated with the accumulation of murine CD8+ single-positive (SP) thymocytes and shifts in both human and murine peripheral T-cell populations, including the reduction of the CD4+ recent thymic emigrant (RTE) population. Together, these data show that the targeted loss of Kmt2d in the T-cell lineage recapitulates several distinct features of Kabuki syndrome-associated immune deficiency and implicates epigenetic mechanisms in the regulation of integrin signaling.


Assuntos
Integrinas , Ativação Linfocitária , Animais , Camundongos , Integrinas/metabolismo , Integrinas/genética , Ativação Linfocitária/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Camundongos Knockout , Doenças Vestibulares/genética , Doenças Vestibulares/imunologia , Doenças Vestibulares/metabolismo , Face/anormalidades , Humanos , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica , Anormalidades Múltiplas , Doenças Hematológicas , Proteína de Leucina Linfoide-Mieloide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...