Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Behav Brain Res ; 465: 114969, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38548024

RESUMO

Chronic exposure to manganese (Mn) results in motor dysfunction, biochemical and pathological alterations in the brain. Oxidative stress, inflammation, and dysfunction of dopaminergic and GABAergic systems stimulate activating transcription factor-6 (ATF-6) and protein kinase RNA-like ER kinase (PERK) leading to apoptosis. This study aimed to investigate the protective effect of sesame oil (SO) against Mn-induced neurotoxicity. Rats received 25 mg/kg MnCl2 and were concomitantly treated with 2.5, 5, or 8 ml/kg of SO for 5 weeks. Mn-induced motor dysfunction was indicated by significant decreases in the time taken by rats to fall during the rotarod test and in the number of movements observed during the open field test. Also, Mn resulted in neuronal degeneration as observed by histological staining. The striatal levels of lipid peroxides and reduced glutathione (oxidative stress markers), interleukin-6 and tumor necrosis factor-α (inflammatory markers) were significantly elevated. Mn significantly reduced the levels of dopamine and Bcl-2, while GABA, PERK, ATF-6, Bax, and caspase-3 were increased. Interestingly, all SO doses, especially at 8 ml/kg, significantly improved locomotor activity, biochemical deviations and reduced neuronal degeneration. In conclusion, SO may provide potential therapeutic benefits in enhancing motor performance and promoting neuronal survival in individuals highly exposed to Mn.


Assuntos
Intoxicação por Manganês , Doença de Parkinson , Ratos , Animais , Manganês/toxicidade , Óleo de Gergelim/farmacologia , Doença de Parkinson/tratamento farmacológico , Estresse Oxidativo , Intoxicação por Manganês/tratamento farmacológico , Intoxicação por Manganês/metabolismo , Intoxicação por Manganês/patologia
2.
Drug Chem Toxicol ; 46(1): 59-68, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34875954

RESUMO

Excessive exposure to manganese (Mn) may lead to neurotoxicity, referred to as manganism. In several studies, sodium para-aminosalicylic acid (PAS-Na) has shown efficacy against Mn-induced neurodegeneration by attenuating the neuroinflammatory response. The present study investigated the effect of Mn on inflammation and apoptosis in the rat thalamus, as well as the underlying mechanism of the PAS-Na protective effect. The study consisted of sub-acute (Mn treatment for 4 weeks) and sub-chronic (Mn and PAS-Na treatment for 8 weeks) experiments. In the sub-chronic experiments, pro-inflammatory cytokines, namely tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), and cyclooxygenase 2 (COX-2) were significantly increased in the Mn-exposed group compared to the control II. PAS-Na treatment led to a significant reduction in the Mn-induced neuroinflammation by inhibiting IL-1ß and COX-2 mRNA expression and reducing IL-1ß secretion and JNK/p38 MAPK pathway activity. Furthermore, immunohistochemical analysis showed that the expression of caspase-3 was significantly increased in both the sub-acute and sub-chronic experimental paradigms concomitant with a significant decrease in B-cell lymphoma 2 (Bcl-2) in the thalamus of Mn-treated rats. PAS-Na also decreased the expression levels of several apoptotic markers downstream of the MAPK pathway, including Bcl-2/Bax and caspase-3, while up-regulating anti-apoptotic Bcl-2 proteins. In conclusion, Mn exposure led to inflammation in the rat thalamus concomitant with apoptosis, which was mediated via the MAPK signaling pathway. PAS-Na treatment antagonized effectively Mn-induced neurotoxicity by inhibiting the MAPK activity in the same brain region.


Assuntos
Ácido Aminossalicílico , Intoxicação por Manganês , Ratos , Animais , Manganês/toxicidade , Ácido Aminossalicílico/toxicidade , Caspase 3/metabolismo , Ciclo-Oxigenase 2 , Intoxicação por Manganês/patologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Tálamo/metabolismo , Tálamo/patologia , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
3.
Neurochem Res ; 46(8): 1953-1969, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33950473

RESUMO

Clinical and experimental evidences reveal that excess exposure to manganese is neurotoxic and leads to cellular damage. However, the mechanism underlying manganese neurotoxicity remains poorly understood but oxidative stress has been implicated to be one of the key pathophysiological features related to it. The present study investigates the effects associated with manganese induced toxicity in rats and further to combat these alterations with a well-known antioxidant N-acetylcysteine which is being used in mitigating the damage by its radical scavenging activity. The study was designed to note the sequential changes along with the motor and memory dysfunction associated with biochemical and histo-pathological alterations following exposure and treatment for 2 weeks. The results so obtained showed decrease in the body weights, behavioral deficits with increased stress markers and also neuronal degeneration in histo-pathological examination after manganese intoxication in rats. To overcome the neurotoxic effects of manganese, N-acetylcysteine was used in the current study due to its pleiotropic potential in several pathological ailments. Taken together, N-acetylcysteine helped in ameliorating manganese induced neurotoxic effects by diminishing the behavioral deficits, normalizing acetylcholinesterase activity, and augmentation of redox status.


Assuntos
Acetilcisteína/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Intoxicação por Manganês/tratamento farmacológico , Manganês/toxicidade , Acetilcolinesterase/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Catalase/metabolismo , Glutationa/metabolismo , Masculino , Intoxicação por Manganês/metabolismo , Intoxicação por Manganês/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurotransmissores/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Superóxido Dismutase/metabolismo
4.
Parkinsonism Relat Disord ; 85: 37-43, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33691274

RESUMO

INTRODUCTION: Manganese (Mn)-induced parkinsonism involves motor symptoms similar to those observed in Parkinson's disease (PD). Previous literature suggests that chronic Mn- exposure may increase PD risk, although Mn-induced clinical syndromes are considered atypical for PD. This study investigated whether asymptomatic welders display differences in the substantia nigra (SN), the key pathological locus of PD. METHOD: Brain MRI data and occupational exposure history were obtained in welders (N = 43) and matched controls (N = 31). Diffusion tensor imaging fractional anisotropy (FA; estimate of microstructural integrity) and R2* (estimate of iron and other PD-related brain differences) values in the SN pars compacta (SNc), SN reticulata (SNr), and globus pallidus (GP) were compared between the two groups. The MRI markers of the SN and GP within welders were related to exposure estimates. RESULTS: Compared to controls, welders who had chronic, but low-level, Mn-exposure had similar FA and R2* values in both SN regions (p's > 0.082), but significantly lower FA (p = 0.0013), although not R2* (p = 0.553), in the GP. In welders, FA values in the SN and GP showed a second-order polynomial relationship with cumulative lifetime welding exposure (p's < 0.03). CONCLUSION: Neurotoxic processes associated with Mn-exposure may be different from those in PD when the exposure-level is relatively low. Greater welding duration and level, however, were associated with FA differences in the GP and SN, indicating that welding exposures above a certain level may induce neurotoxicity in the SN, a finding that should be explored further in future studies.


Assuntos
Imagem de Tensor de Difusão , Globo Pálido/diagnóstico por imagem , Intoxicação por Manganês/diagnóstico por imagem , Ferreiros , Doenças Profissionais/diagnóstico por imagem , Exposição Ocupacional/efeitos adversos , Substância Negra/diagnóstico por imagem , Adulto , Idoso , Globo Pálido/patologia , Humanos , Masculino , Intoxicação por Manganês/patologia , Pessoa de Meia-Idade , Doenças Profissionais/induzido quimicamente , Doenças Profissionais/patologia , Substância Negra/patologia , Fatores de Tempo , Adulto Jovem
5.
Neurotherapeutics ; 17(4): 1878-1896, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32959271

RESUMO

The molecular mechanism of Alzheimer-like cognitive impairment induced by manganese (Mn) exposure has not yet been fully clarified, and there are currently no effective interventions to treat neurodegenerative lesions related to manganism. Protein phosphatase 2 A (PP2A) is a major tau phosphatase and was recently identified as a potential therapeutic target molecule for neurodegenerative diseases; its activity is directed by the methylation status of the catalytic C subunit. Methionine is an essential amino acid, and its downstream metabolite S-adenosylmethionine (SAM) participates in transmethylation pathways as a methyl donor. In this study, the neurotoxic mechanism of Mn and the protective effect of methionine were evaluated in Mn-exposed cell and rat models. We show that Mn-induced neurotoxicity is characterized by PP2Ac demethylation accompanied by abnormally decreased LCMT-1 and increased PME-1, which are associated with tau hyperphosphorylation and spatial learning and memory deficits, and that the poor availability of SAM in the hippocampus is likely to determine the loss of PP2Ac methylation. Importantly, maintenance of local SAM levels through continuous supplementation with exogenous methionine, or through specific inhibition of PP2Ac demethylation by ABL127 administration in vitro, can effectively prevent tau hyperphosphorylation to reduce cellular oxidative stress, apoptosis, damage to cell viability, and rat memory deficits in cell or animal Mn exposure models. In conclusion, our data suggest that SAM and PP2Ac methylation may be novel targets for the treatment of Mn poisoning and neurotoxic mechanism-related tauopathies.


Assuntos
Intoxicação por Manganês/metabolismo , Manganês/toxicidade , Metionina/metabolismo , Proteína Fosfatase 2/metabolismo , Tauopatias/induzido quimicamente , Tauopatias/metabolismo , Animais , Linhagem Celular Tumoral , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Intoxicação por Manganês/patologia , Metilação/efeitos dos fármacos , Camundongos , Ratos , Ratos Sprague-Dawley , Tauopatias/patologia
6.
J Biol Chem ; 295(46): 15662-15676, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32893191

RESUMO

Manganese (Mn)-induced neurotoxicity resembles Parkinson's disease (PD), but the mechanisms underpinning its effects remain unknown. Mn dysregulates astrocytic glutamate transporters, GLT-1 and GLAST, and dopaminergic function, including tyrosine hydroxylase (TH). Our previous in vitro studies have shown that Mn repressed GLAST and GLT-1 via activation of transcription factor Yin Yang 1 (YY1). Here, we investigated if in vivo astrocytic YY1 deletion mitigates Mn-induced dopaminergic neurotoxicity, attenuating Mn-induced reduction in GLAST/GLT-1 expression in murine substantia nigra (SN). AAV5-GFAP-Cre-GFP particles were infused into the SN of 8-week-old YY1 flox/flox mice to generate a region-specific astrocytic YY1 conditional knockout (cKO) mouse model. 3 weeks after adeno-associated viral (AAV) infusion, mice were exposed to 330 µg of Mn (MnCl2 30 mg/kg, intranasal instillation, daily) for 3 weeks. After Mn exposure, motor functions were determined in open-field and rotarod tests, followed by Western blotting, quantitative PCR, and immunohistochemistry to assess YY1, TH, GLAST, and GLT-1 levels. Infusion of AAV5-GFAP-Cre-GFP vectors into the SN resulted in region-specific astrocytic YY1 deletion and attenuation of Mn-induced impairment of motor functions, reduction of TH-expressing cells in SN, and TH mRNA/protein levels in midbrain/striatum. Astrocytic YY1 deletion also attenuated the Mn-induced decrease in GLAST/GLT-1 mRNA/protein levels in midbrain. Moreover, YY1 deletion abrogated its interaction with histone deacetylases in astrocytes. These results indicate that astrocytic YY1 plays a critical role in Mn-induced neurotoxicity in vivo, at least in part, by reducing astrocytic GLAST/GLT-1. Thus, YY1 might be a potential target for treatment of Mn toxicity and other neurological disorders associated with dysregulation of GLAST/GLT-1.


Assuntos
Intoxicação por Manganês/patologia , Substância Negra/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Cloretos/toxicidade , Regulação para Baixo/efeitos dos fármacos , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Histona Desacetilases/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Compostos de Manganês , Intoxicação por Manganês/metabolismo , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Fator de Transcrição YY1/genética
7.
Biomed Pharmacother ; 129: 110449, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32768944

RESUMO

Manganese (Mn) exposure has been reported to cause neurodegenerative disorders. ß-Amyloid (Aß) induced Tau pathology in an NLRP3-dependent manner is at the heart of Alzheimer's and Parkinson's diseases. The gut microbiota plays a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities. In this study, we found that Mn exposure increases Aß1-40 and Tau production in brain, and causes hippocampal degeneration and necrosis. Meanwhile, Mn exposure can stimulate neurotoxicity by increasing inflammation either in peripheral blood and CNS. Importantly, we found that transplantation of gut microbiota from normal rats into Mn exposure rats reduced Aß and Tau expression, and the cerebral expression of NLRP3 was downregulated, and the expression of neuroinflammatory factors was also downregulated. Therefore, improving the composition of gut microbiota in Mn exposure rats can attenuate neuroinflammation, which is considered as a novel therapeutic strategy for Mn exposure by remodelling the gut microbiota.


Assuntos
Córtex Cerebral/metabolismo , Microbioma Gastrointestinal , Inflamassomos/metabolismo , Intestinos/microbiologia , Intoxicação por Manganês/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Córtex Cerebral/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Masculino , Intoxicação por Manganês/microbiologia , Intoxicação por Manganês/patologia , Intoxicação por Manganês/prevenção & controle , Fragmentos de Peptídeos/metabolismo , Ratos Sprague-Dawley , Proteínas tau/metabolismo
8.
Neurotoxicology ; 80: 71-75, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32621835

RESUMO

Environmental and occupational metal exposure poses serious global concerns. Metal exposure have severally been associated with neurotoxicity and brain damage. Furthermore, receptor for advanced glycation end products (RAGE) is also implicated in neurological disorders, particularly those with altered glucose metabolism. Here, we examine potential compounding effect of metal exposure and RAGE expression on dopamine (DA) and serotonin (SER) neurons in C. elegans. In addition, we evaluate the effect of RAGE expression on DA and SER neurons in hyperglycemic conditions. Newly generated RAGE-expressing C. elegans tagged with green fluorescent proteins (GFP) in DAergic and SERergic neurons were treated with cadmium (Cd) or manganese (Mn). Additionally, the RAGE-expressing worms were also exposed to high glucose conditions. Results showed metals induced neurodegeneration both in the presence and absence of RAGE expression, but the manner of degeneration differed between Cd and Mn treated nematodes. Furthermore, RAGE-expressing worms showed significant neurodegeneration in both DAergic and SERergic neurons. Our results indicate co-occurrence of metal exposure and RAGE expression can induce neurodegeneration. Additionally, we show that RAGE expression can exacerbate hyperglycemic induced neurodegeneration.


Assuntos
Intoxicação por Cádmio/metabolismo , Caenorhabditis elegans/metabolismo , Neurônios Dopaminérgicos/metabolismo , Intoxicação por Manganês/metabolismo , Degeneração Neural , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Neurônios Serotoninérgicos/metabolismo , Animais , Animais Geneticamente Modificados , Cloreto de Cádmio , Intoxicação por Cádmio/etiologia , Intoxicação por Cádmio/genética , Intoxicação por Cádmio/patologia , Caenorhabditis elegans/genética , Cloretos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Glucose/toxicidade , Compostos de Manganês , Intoxicação por Manganês/etiologia , Intoxicação por Manganês/genética , Intoxicação por Manganês/patologia , Receptor para Produtos Finais de Glicação Avançada/genética , Neurônios Serotoninérgicos/efeitos dos fármacos , Neurônios Serotoninérgicos/patologia
9.
Toxicology ; 442: 152526, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32574669

RESUMO

Manganese neurotoxicity leads to Parkinson-like symptoms associated with the apoptotic cell death of dopaminergic neurons. Protein kinase R (PKR) is a serine/threonine-specific protein kinase that has been implicated in several cellular signal transduction pathways, including the induction of apoptosis. Here, we investigated the role of PKR in the manganese-induced apoptosis of dopamine-producing pheochromocytoma PC12 cells. Manganese (0.5 mM) induced the proteolytic cleavage of PKR and caspase-3, DNA fragmentation, and cell death, which were prevented by the co-treatment of PC12 cells with a PKR specific inhibitor, C16 in a concentration-dependent manner. C16 did not affect the manganese-induced activation of the c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) pathway, indicating that PKR functions downstream of JNK and p38 MAPK. In contrast, C16 triggered the activation of the p44/42 MAPK (ERK1/2) pathway and induced hemoxygenase-1, both in the absence and presence of manganese. PKR is reportedly involved in endoplasmic reticulum (ER) stress-induced apoptosis. Manganese activated all three branches of the unfolded protein response in PC12 cells; however, this effect was very weak compared with the ER stress induced by the well-known ER stress inducers thapsigargin and tunicamycin. Moreover, C16 did not affect manganese-induced ER stress at concentrations that almost prevented caspase-3 activation and DNA fragmentation. These results suggest that PKR is involved in manganese-induced apoptotic cell death and stress response, such as the activation of the p44/42 MAPK pathway and the induction of hemoxygenase-1. Although manganese induced a faint, but typical, ER stress, these events contributed little to manganese-induced apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Intoxicação por Manganês/metabolismo , eIF-2 Quinase/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Manganês , Intoxicação por Manganês/patologia , Células PC12 , Ratos , Transdução de Sinais/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , eIF-2 Quinase/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno
10.
Toxicol Mech Methods ; 30(7): 497-507, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32441205

RESUMO

Manganese (Mn) is essential for many physiological processes; however, its excessive accumulation in the brain causes severe dysfunctions in the nervous system. Oxidative stress is thought to be involved in Mn-induced neurotoxicity. The aim of this study was to evaluate the neurotoxic effects of Mn and the potential protective effects of alpha lipoic acid (ALA) and Spirulina platensis (SP), each alone and in combination. Sixty-four male albino rats were divided into eight equal groups: group 1 was used as control, group 2 received saline, which used as a vehicle, group 3 received ALA (50 mg/kg/day), group 4 received SP (300 mg/kg/day), group 5 received Mn (74 mg/kg, 5 days/week), group 6 received Mn + ALA, group 7 received Mn + SP, group 8 received Mn + ALA + SP. Groups 6, 7 and 8 received the same previously mentioned doses. All treatments were orally gavaged for 8 weeks. Mn administration caused neurobehavioral changes, increases of brain and serum Mn and malondialdehyde (MDA), with decreased glutathione peroxidase (GPx), dopamine and acetylcholine levels. The co-treatment with ALA and SP revealed their ability to protect against oxidative damage, neurobehavioral and biochemical changes induced by Mn.


Assuntos
Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Intoxicação por Manganês/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Spirulina/fisiologia , Ácido Tióctico/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Comportamento Alimentar/efeitos dos fármacos , Masculino , Intoxicação por Manganês/metabolismo , Intoxicação por Manganês/patologia , Intoxicação por Manganês/fisiopatologia , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Ratos
11.
Neurochem Int ; 135: 104688, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31972215

RESUMO

Manganese (Mn) is the twelfth most abundant element on the earth and an essential metal to human health. Mn is present at low concentrations in a variety of dietary sources, which provides adequate Mn content to sustain support various physiological processes in the human body. However, with the rise of Mn utility in a variety of industries, there is an increased risk of overexposure to this transition metal, which can have neurotoxic consequences. This risk includes occupational exposure of Mn to workers as well as overall increased Mn pollution affecting the general public. Here, we review exposure due to air pollution and inhalation in industrial settings; we also delve into the toxic effects of manganese on the brain such as oxidative stress, inflammatory response and transporter dysregulation. Additionally, we summarize current understandings underlying the mechanisms of Mn toxicity.


Assuntos
Poluição do Ar/efeitos adversos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Intoxicação por Manganês/metabolismo , Manganês/efeitos adversos , Exposição Ocupacional/efeitos adversos , Animais , Encéfalo/patologia , Humanos , Intoxicação por Manganês/epidemiologia , Intoxicação por Manganês/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia
12.
Neurotoxicology ; 74: 230-241, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31377220

RESUMO

Metals are involved in different pathophysiological mechanisms associated with neurodegenerative diseases (NDDs), including Alzheimer's disease (AD), Parkinson's disease (PD) and multiple sclerosis (MS). The aim of this study was to review the effects of the essential metals zinc (Zn), copper (Cu), manganese (Mn) and iron (Fe) on the central nervous system (CNS), as well as the mechanisms involved in their neurotoxicity. Low levels of Zn as well as high levels of Cu, Mn, and Fe participate in the activation of signaling pathways of the inflammatory, oxidative and nitrosative stress (IO&NS) response, including nuclear factor kappa B and activator protein-1. The imbalance of these metals impairs the structural, regulatory, and catalytic functions of different enzymes, proteins, receptors, and transporters. Neurodegeneration occurs via association of metals with proteins and subsequent induction of aggregate formation creating a vicious cycle by disrupting mitochondrial function, which depletes adenosine triphosphate and induces IO&NS, cell death by apoptotic and/or necrotic mechanisms. In AD, at low levels, Zn suppresses ß-amyloid-induced neurotoxicity by selectively precipitating aggregation intermediates; however, at high levels, the binding of Zn to ß-amyloid may enhance formation of fibrillar ß-amyloid aggregation, leading to neurodegeneration. High levels of Cu, Mn and Fe participate in the formation α-synuclein aggregates in intracellular inclusions, called Lewy Body, that result in synaptic dysfunction and interruption of axonal transport. In PD, there is focal accumulation of Fe in the substantia nigra, while in AD a diffuse accumulation of Fe occurs in various regions, such as cortex and hippocampus, with Fe marginally increased in the senile plaques. Zn deficiency induces an imbalance between T helper (Th)1 and Th2 cell functions and a failure of Th17 down-regulation, contributing to the pathogenesis of MS. In MS, elevated levels of Fe occur in certain brain regions, such as thalamus and striatum, which may be due to inflammatory processes disrupting the blood-brain barrier and attracting Fe-rich macrophages. Delineating the specific mechanisms by which metals alter redox homeostasis is essential to understand the pathophysiology of AD, PD, and MS and may provide possible new targets for their prevention and treatment of the patients affected by these NDDs.


Assuntos
Cobre/toxicidade , Ferro/toxicidade , Intoxicação por Manganês/patologia , Manganês/toxicidade , Doenças Neurodegenerativas/induzido quimicamente , Zinco/toxicidade , Animais , Humanos , Intoxicação por Manganês/psicologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/psicologia
13.
Toxicol Sci ; 169(1): 84-94, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715528

RESUMO

Manganese (Mn)-associated neurotoxicity has been well recognized. However, Mn is also an essential nutrient to maintain physiological function. Our previous study of human neuroblastoma SH-SY5Y cells showed that Mn treatment comparable to physiological and toxicological concentrations in human brain resulted in different mitochondrial responses, yet cellular metabolic responses associated with such different outcomes remain uncharacterized. Herein, SH-SY5Y cells were examined for metabolic responses discriminated by physiological and toxicological levels of Mn using high-resolution metabolomics (HRM). Before performing HRM, we examined Mn dose (from 0 to100 µM) and time effects on cell death. Although we did not observe any immediate cell death after 5 h exposure to any of the Mn concentrations assessed (0-100 µM), cell loss was present after a 24-h recovery period in cultures treated with Mn ≥ 50 µM. Exposure to Mn for 5 h resulted in a wide range of changes in cellular metabolism including amino acids (AA), neurotransmitters, energy, and fatty acids metabolism. Adaptive responses at 10 µM showed increases in neuroprotective AA metabolites (creatine, phosphocreatine, phosphoserine). A 5-h exposure to 100 µM Mn, a time before any cell death occurred, resulted in decreases in energy and fatty acid metabolites (hexose-1,6 bisphosphate, acyl carnitines). The results show that adjustments in AA metabolism occur in response to Mn that does not cause cell death while disruption in energy and fatty acid metabolism occur in response to Mn that results in subsequent cell death. The present study establishes utility for metabolomics analyses to discriminate adaptive and toxic molecular responses in a human in vitro cellular model that could be exploited in evaluation of Mn toxicity.


Assuntos
Cloretos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Compostos de Manganês/farmacologia , Metabolômica , Neuroblastoma/metabolismo , Neurônios/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cloretos/toxicidade , Relação Dose-Resposta a Droga , Humanos , Intoxicação por Manganês/metabolismo , Intoxicação por Manganês/patologia , Neurônios/metabolismo , Medição de Risco , Fatores de Tempo
14.
Int Arch Occup Environ Health ; 92(3): 383-394, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30790043

RESUMO

PURPOSE: There is a lack of knowledge about neurobehavioral performance among patients with manganism and how their performance differs from that of idiopathic Parkinson disease patients (PD). This study was initiated with the aim to describe and compare neurobehavioral performance among patients diagnosed with manganism, PD and a group of referents. MATERIALS AND METHODS: Neurobehavioral performance was assessed in 34 patients diagnosed with manganism, 13 with PD, and 43 healthy workers (turners/fitters) who served as the reference group. Seventeen of the manganism patients had also been tested approximately 65 months previously. RESULTS: Manganism patients scored substantially more poorly than referents on tests for motor speed, manual dexterity and balance. They also performed more poorly than the PD patients on the postural sway test. In contrast, the PD patients had higher postural tremor intensity with narrower frequency dispersion than manganism patients. The pattern of neurobehavioral performance was more asymmetrical in PD compared to manganism patients, in particular when testing for tremor intestity, grooved pegboard and static steadiness, indicating lateralized impairment in the PD patients. The amount of bradykinesia was comparable between the patient groups. Neurobehavioral performance deteriorated slightly among 17 manganism patients followed for 65 months compared with the age-related decline among referents. CONCLUSIONS: Patients with manganism had severe bradykinesia and balance disturbances, but only slight postural tremor. In contrast, PD patients had significant postural tremor and bradykinesia, but only slight balance disturbances. Their neurobehavioral performance indicated lateralized impairment, more unilateral. Neurobehavioral performance deteriorated slightly in manganism patients during a 65-month follow-up.


Assuntos
Intoxicação por Manganês/patologia , Doença de Parkinson/patologia , Desempenho Psicomotor , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Lateralidade Funcional , Humanos , Hipocinesia , Masculino , Intoxicação por Manganês/fisiopatologia , Pessoa de Meia-Idade , Destreza Motora , Doenças do Sistema Nervoso/induzido quimicamente , Doenças do Sistema Nervoso/patologia , Testes Neuropsicológicos , Exposição Ocupacional/efeitos adversos , Equilíbrio Postural , Federação Russa , Tremor
15.
Toxicology ; 410: 193-198, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30118795

RESUMO

OBJECTIVE: We explored methods to establish an animal model of manganese poisoning and evaluate the feasibility of the determination method. METHODS: Twenty-four specific pathogen-free male rats were randomly divided into four groups: control, low-dose (15.0 mg/kg), middle-dose (25.0 mg/kg), and high-dose (50.0 mg/kg). Intraperitoneal injection of MnCl2·H2O was administered every 48 h for three months. Rats were tested for behavior, muscle tension, and with a balance beam experiment at the end of each month. Three months later, the rats were sacrificed and brain tyrosine hydroxylase (TH) expression levels were measured. RESULTS: Rats in each group exhibited changes in behavior, muscle tone, and balance after exposure to manganese, and the scores of each test for the high-dose and middle-dose groups were statistically different from the low-dose and control groups. Finally, a rat model of manganese poisoning was identified with the TH expression less than 30% of the normal value. We find that the modeling success rate of the middle-dose and high-dose groups were 66.67% and 100%, respectively. In addition, there were negative correlations between the three assessment methods such as behavioral tests and TH expression levels. CONCLUSIONS: Intraperitoneal injection of MnCl2·H2O (25 mg/kg) can successfully establish a manganese poisoning rat model with low mortality rate. Muscle tension, balance beam, and behavioral tests can be used as preliminary determination methods for modeling.


Assuntos
Intoxicação por Manganês/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Cloretos/administração & dosagem , Cloretos/toxicidade , Análise Discriminante , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Injeções Intraperitoneais , Masculino , Compostos de Manganês/administração & dosagem , Intoxicação por Manganês/psicologia , Contração Muscular/efeitos dos fármacos , Tono Muscular/efeitos dos fármacos , Equilíbrio Postural/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/biossíntese
16.
Toxicol Lett ; 295: 357-368, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30040983

RESUMO

Heme Oxygenase-1 (HO-1), a stress- responsive enzyme which catalyzes heme degradation into iron, carbon monoxide, and biliverdin, exerts a neuroprotective role involving many different signaling pathways. In Parkinson disease patients, elevated HO-1 expression levels in astrocytes are involved in antioxidant defense. In the present work, employing an in vitro model of Mn2+-induced Parkinsonism in astroglial C6 cells, we investigated the role of HO-1 in both apoptosis and mitochondrial quality control (MQC). HO-1 exerted a protective effect against Mn2+ injury. In fact, HO-1 decreased both intracellular and mitochondrial reactive oxygen species as well as the appearance of apoptotic features. Considering that Mn2+ induces mitochondrial damage and a defective MQC has been implicated in neurodegenerative diseases, we hypothesized that HO-1 could mediate cytoprotection by regulating the MQC processes. Results obtained provide the first evidence that the beneficial effects of HO-1 in astroglial cells are mediated by the maintenance of both mitochondrial fusion/fission and biogenesis/mitophagy balances. Altogether, our data demonstrate a pro-survival function for HO-1 in Mn2+-induced apoptosis that involves the preservation of a proper MQC. These findings point to HO-1 as a new therapeutic target linked to mitochondrial pathophysiology in Manganism and probably Parkinson´s disease.


Assuntos
Astrócitos/efeitos dos fármacos , Cloretos/toxicidade , Heme Oxigenase-1/metabolismo , Intoxicação por Manganês/etiologia , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Animais , Apoptose/efeitos dos fármacos , Astrócitos/enzimologia , Astrócitos/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Compostos de Manganês , Intoxicação por Manganês/enzimologia , Intoxicação por Manganês/patologia , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Transtornos Parkinsonianos/enzimologia , Transtornos Parkinsonianos/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
17.
Neurotox Res ; 34(3): 584-596, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29882004

RESUMO

Excessive levels of the essential metal manganese (Mn) may cause a syndrome similar to Parkinson's disease. The model organism Caenorhabditis elegans mimics some of Mn effects in mammals, including dopaminergic neurodegeneration, oxidative stress, and increased levels of AKT. The evolutionarily conserved insulin/insulin-like growth factor-1 signaling pathway (IIS) modulates worm longevity, metabolism, and antioxidant responses by antagonizing the transcription factors DAF-16/FOXO and SKN-1/Nrf-2. AKT-1, AKT-2, and SGK-1 act upstream of these transcription factors. To study the role of these proteins in C. elegans response to Mn intoxication, wild-type N2 and loss-of-function mutants were exposed to Mn (2.5 to 100 mM) for 1 h at the L1 larval stage. Strains with loss-of-function in akt-1, akt-2, and sgk-1 had higher resistance to Mn compared to N2 in the survival test. All strains tested accumulated Mn similarly, as shown by ICP-MS. DAF-16 nuclear translocation was observed by fluorescence microscopy in WT and loss-of-function strains exposed to Mn. qRT-PCR data indicate increased expression of γ-glutamyl cysteine synthetase (GCS-1) antioxidant enzyme in akt-1 mutants. The expression of sod-3 (superoxide dismutase homologue) was increased in the akt-1 mutant worms, independent of Mn treatment. However, dopaminergic neurons degenerated even in the more resistant strains. Dopaminergic function was evaluated with the basal slowing response behavioral test and dopaminergic neuron integrity was evaluated using worms expressing green fluorescent protein (GFP) under the dopamine transporter (DAT-1) promoter. These results suggest that AKT-1/2 and SGK-1 play a role in C. elegans response to Mn intoxication. However, tissue-specific responses may occur in dopaminergic neurons, contributing to degeneration.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Cloretos/toxicidade , Intoxicação por Manganês/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Modelos Animais de Doenças , Dopamina/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Glutationa/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Compostos de Manganês , Intoxicação por Manganês/complicações , Intoxicação por Manganês/patologia , Mutação/genética , Degeneração Neural/etiologia , Degeneração Neural/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
18.
Neurotoxicology ; 64: 19-29, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28587807

RESUMO

This study examines the results of neuropsychological testing of 26 active welders and 17 similar controls and their relationship to welders' shortened MRI T1 relaxation time, indicative of increased brain manganese (Mn) accumulation. Welders were exposed to Mn for an average duration of 12.25 years to average levels of Mn in air of 0.11±0.05mg/m3. Welders scored significantly worse than controls on Fruit Naming and the Parallel Lines test of graphomotor tremor. Welders had shorter MRI T1 relaxation times than controls in the globus pallidus, substantia nigra, caudate nucleus, and the anterior prefrontal lobe. 63% of the variation in MRI T1 relaxation times was accounted for by exposure group. In welders, lower relaxation times in the caudate nucleus and substantia nigra were associated with lower neuropsychological test performance on tests of verbal fluency (Fruit Naming), verbal learning, memory, and perseveration (WHO-UCLA AVLT). Results indicate that verbal function may be one of the first cognitive domains affected by brain Mn deposition in welders as reflected by MRI T1 relaxation times.


Assuntos
Encéfalo/diagnóstico por imagem , Intoxicação por Manganês/diagnóstico , Exposição Ocupacional , Soldagem , Adulto , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Intoxicação por Manganês/patologia , Intoxicação por Manganês/psicologia , Pessoa de Meia-Idade , Testes Neuropsicológicos
19.
Neurotoxicology ; 64: 50-59, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28648949

RESUMO

Although an essential nutrient, manganese (Mn) can be toxic at high doses. There is, however, uncertainty regarding the effects of chronic low-level Mn-exposure. This review provides an overview of Mn-related brain and functional changes based on studies of a cohort of asymptomatic welders who had lower Mn-exposure than in most previous work. In welders with low-level Mn-exposure, we found: 1) Mn may accumulate in the brain in a non-linear fashion: MRI R1 (1/T1) signals significantly increased only after a critical level of exposure was reached (e.g., ≥300 welding hours in the past 90days prior to MRI). Moreover, R1 may be a more sensitive marker to capture short-term dynamic changes in Mn accumulation than the pallidal index [T1-weighted intensity ratio of the globus pallidus vs. frontal white matter], a traditional marker for Mn accumulation; 2) Chronic Mn-exposure may lead to microstructural changes as indicated by lower diffusion tensor fractional anisotropy values in the basal ganglia (BG), especially when welding years exceeded more than 30 years; 3) Mn-related subtle motor dysfunctions can be captured sensitively by synergy metrics (indices for movement stability), whereas traditional fine motor tasks failed to detect any significant differences; and 4) Iron (Fe) also may play a role in welding-related neurotoxicity, especially at low-level Mn-exposure, evidenced by higher R2* values (an estimate for brain Fe accumulation) in the BG. Moreover, higher R2* values were associated with lower phonemic fluency performance. These findings may guide future studies and the development of occupation- and public health-related polices involving Mn-exposure.


Assuntos
Encéfalo/patologia , Encéfalo/fisiopatologia , Intoxicação por Manganês/patologia , Intoxicação por Manganês/fisiopatologia , Exposição Ocupacional , Soldagem , Adulto , Humanos , Ferro/metabolismo , Masculino , Manganês/metabolismo , Intoxicação por Manganês/complicações , Pessoa de Meia-Idade , Transtornos Motores/induzido quimicamente
20.
Neurotoxicology ; 64: 68-77, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28847517

RESUMO

OBJECTIVE: Magnetic resonance imaging is a non-invasive method that allows the indirect quantification of manganese (Mn) and iron (Fe) accumulation in the brain due to their paramagnetic features. The WELDOX II study aimed to explore the influence of airborne and systemic exposure to Mn and Fe on the brain deposition using the relaxation rates R1 and R2* as biomarkers of metal accumulation in regions of interest in 161 men, including active and former welders. MATERIAL AND METHODS: We obtained data on the relaxation rates R1 and R2* in regions that included structures within the globus pallidus (GP), substantia nigra (SN), and white matter of the frontal lobe (FL) of both hemispheres, as well as Mn in whole blood (MnB), and serum ferritin (SF). The study subjects, all male, included 48 active and 20 former welders, 41 patients with Parkinson's disease (PD), 13 patients with hemochromatosis (HC), and 39 controls. Respirable Mn and Fe were measured during a working shift for welders. Mixed regression models were applied to estimate the effects of MnB and SF on R1 and R2*. Furthermore, we estimated the influence of airborne Mn and Fe on the relaxation rates in active welders. RESULTS: MnB and SF were significant predictors of R1 but not of R2* in the GP, and were marginally associated with R1 in the SN (SF) and FL (MnB). Being a welder or suffering from PD or HC elicited no additional group effect on R1 or R2* beyond the effects of MnB and SF. In active welders, shift concentrations of respirable Mn>100µg/m3 were associated with stronger R1 signals in the GP. In addition to the effects of MnB and SF, the welding technique had no further influence on R1. CONCLUSIONS: MnB and SF were significant predictors of R1 but not of R2*, indicative of metal accumulation, especially in the GP. Also, high airborne Mn concentration was associated with higher R1 signals in this brain region. The negative results obtained for being a welder or for the techniques with higher exposure to ultrafine particles when the blood-borne concentration was included into the models indicate that airborne exposure to Mn may act mainly through MnB.


Assuntos
Encéfalo/patologia , Ferro/toxicidade , Manganês/toxicidade , Exposição Ocupacional , Soldagem , Idoso , Poluentes Ocupacionais do Ar/metabolismo , Encéfalo/diagnóstico por imagem , Humanos , Ferro/sangue , Imageamento por Ressonância Magnética , Masculino , Manganês/sangue , Intoxicação por Manganês/sangue , Intoxicação por Manganês/diagnóstico por imagem , Intoxicação por Manganês/patologia , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...