Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 35(10): 1701-1719, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35972774

RESUMO

Arsenic, a metalloid, is known to cause deleterious effects in various body organs, particularly the liver, urinary bladder, and brain, and these effects are primarily mediated through oxidative stress. Chelation therapy has been considered one of the promising medical treatments for arsenic poisoning. Meso 2,3- dimercaptosuccinic acid (DMSA) has been recognized as one of the most effective chelating drugs to treat arsenic poisoning. However, the drug is compromised with a number of shortcomings, including the inability to treat chronic arsenic poisoning due to its extracellular distribution. Monoisoamyl 2,3-dimercaptosuccinic acid, one of the analogues of meso 2,3-dimeraptosuccinic acid (DMSA), is a lipophilic chelator and has shown promise to be considered as a potential future chelating agent/antidote not only for arsenic but also for a few other heavy metals like lead, mercury, cadmium, and gallium arsenide. The results from numerous studies carried out in the recent past, mainly from our group, strongly support the clinical application of MiADMSA. This review paper summarizes most of the scientific details including the chemistry, pharmacology, and safety profile of MiADMSA. The efficacy of MiADMSA mainly against arsenic toxicity but also a few other heavy metals was also discussed. We also reviewed a few other strategies in order to achieve the optimum effects of MiADMSA, like combination therapy using two chelating agents or coadministration of a natural and synthetic antioxidant (including phytomedicine) along with MiADMSA for treatment of metal/metalloid poisoning. We also briefly discussed the use of nanotechnology (nano form of MiADMSA i.e. nano-MiADMSA) and compared it with bulk MiADMSA. All these strategies have been shown to be beneficial in getting more pronounced therapeutic efficacy of MiADMSA, as an adjuvant or as a complementary agent, by significantly increasing the chelating efficacy of MiADMSA.


Assuntos
Intoxicação por Arsênico , Arsênio , Mercúrio , Animais , Antídotos , Antioxidantes/uso terapêutico , Intoxicação por Arsênico/tratamento farmacológico , Cádmio , Quelantes/farmacologia , Quelantes/uso terapêutico , Intoxicação por Metais Pesados/tratamento farmacológico , Ratos , Ratos Wistar , Succímero/análogos & derivados , Succímero/farmacologia , Succímero/uso terapêutico
2.
Molecules ; 26(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34946690

RESUMO

The effectiveness of an amphoteric cryogel (AAC) as an oral sorbent (enerosorbent) for the treatment of acute poisoning of small animals (rats) with heavy metals (HMs) was studied in in vivo experiments. The morphological structure of the cryogel was examined using scanning electron microscopy/energy-dispersive X-ray analysis and confocal microscopy. The use of the cryogel in the treatment of rats administered an LD50 dose of Cd(NO3)2, CsNO3, Sr(NO3)2, or HgCl2 in aqueous solution showed their high survival rate compared to the control group, which did not receive such treatment. The histological and chemical analysis of internal tissues and the biochemical analysis of the blood of the experimental animals showed the effectiveness of the cryogel in protecting the animals against the damaging effect of HMs on the organism comparable with unithiol, a chelating agent based on 2,3-dimercapto-1-propane sulfonic acid sodium salt (DMPS) approved for the treatment of acute poisoning with some heavy metals.


Assuntos
Antídotos , Quelantes , Criogéis , Intoxicação por Metais Pesados/tratamento farmacológico , Animais , Antídotos/síntese química , Antídotos/química , Antídotos/farmacologia , Quelantes/síntese química , Quelantes/química , Quelantes/farmacologia , Criogéis/síntese química , Criogéis/química , Criogéis/farmacologia , Intoxicação por Metais Pesados/metabolismo , Masculino , Metais Pesados/metabolismo , Ratos
3.
Molecules ; 26(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34577062

RESUMO

Copper (Cu) is essential for multiple biochemical processes, and copper sulphate (CuSO4) is a pesticide used for repelling pests. Accidental or intentional intoxication can induce multiorgan toxicity and could be fatal. Curcumin (CUR) is a potent antioxidant, but its poor systemic bioavailability is the main drawback in its therapeutic uses. This study investigated the protective effect of CUR and N-CUR on CuSO4-induced cerebral oxidative stress, inflammation, and apoptosis in rats, pointing to the possible involvement of Akt/GSK-3ß. Rats received 100 mg/kg CuSO4 and were concurrently treated with CUR or N-CUR for 7 days. Cu-administered rats exhibited a remarkable increase in cerebral malondialdehyde (MDA), NF-κB p65, TNF-α, and IL-6 associated with decreased GSH, SOD, and catalase. Cu provoked DNA fragmentation, upregulated BAX, caspase-3, and p53, and decreased BCL-2 in the brain of rats. N-CUR and CUR ameliorated MDA, NF-κB p65, and pro-inflammatory cytokines, downregulated pro-apoptotic genes, upregulated BCL-2, and enhanced antioxidants and DNA integrity. In addition, both N-CUR and CUR increased AKT Ser473 and GSK-3ß Ser9 phosphorylation in the brain of Cu-administered rats. In conclusion, N-CUR and CUR prevent Cu neurotoxicity by attenuating oxidative injury, inflammatory response, and apoptosis and upregulating AKT/GSK-3ß signaling. The neuroprotective effect of N-CUR was more potent than CUR.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Cobre/toxicidade , Curcumina/uso terapêutico , Intoxicação por Metais Pesados/tratamento farmacológico , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Apoptose , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Curcumina/administração & dosagem , Curcumina/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Intoxicação por Metais Pesados/etiologia , Interleucina-6/metabolismo , Masculino , NF-kappa B/metabolismo , Nanopartículas/química , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
4.
Learn Mem ; 27(9): 395-413, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32817306

RESUMO

A set of common-acting iron-responsive 5'untranslated region (5'UTR) motifs can fold into RNA stem loops that appear significant to the biology of cognitive declines of Parkinson's disease dementia (PDD), Lewy body dementia (LDD), and Alzheimer's disease (AD). Neurodegenerative diseases exhibit perturbations of iron homeostasis in defined brain subregions over characteristic time intervals of progression. While misfolding of Aß from the amyloid-precursor-protein (APP), alpha-synuclein, prion protein (PrP) each cause neuropathic protein inclusions in the brain subregions, iron-responsive-like element (IRE-like) RNA stem-loops reside in their transcripts. APP and αsyn have a role in iron transport while gene duplications elevate the expression of their products to cause rare familial cases of AD and PDD. Of note, IRE-like sequences are responsive to excesses of brain iron in a potential feedback loop to accelerate neuronal ferroptosis and cognitive declines as well as amyloidosis. This pathogenic feedback is consistent with the translational control of the iron storage protein ferritin. We discuss how the IRE-like RNA motifs in the 5'UTRs of APP, alpha-synuclein and PrP mRNAs represent uniquely folded drug targets for therapies to prevent perturbed iron homeostasis that accelerates AD, PD, PD dementia (PDD) and Lewy body dementia, thus preventing cognitive deficits. Inhibition of alpha-synuclein translation is an option to block manganese toxicity associated with early childhood cognitive problems and manganism while Pb toxicity is epigenetically associated with attention deficit and later-stage AD. Pathologies of heavy metal toxicity centered on an embargo of iron export may be treated with activators of APP and ferritin and inhibitors of alpha-synuclein translation.


Assuntos
Regiões 5' não Traduzidas/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Ferritinas/metabolismo , Ferroptose/fisiologia , Intoxicação por Metais Pesados/metabolismo , Proteínas Reguladoras de Ferro/metabolismo , Transtornos Neurocognitivos/metabolismo , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Peptídeos beta-Amiloides/efeitos dos fármacos , Animais , Ferritinas/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Intoxicação por Metais Pesados/tratamento farmacológico , Intoxicação por Metais Pesados/fisiopatologia , Humanos , Proteínas Reguladoras de Ferro/efeitos dos fármacos , Transtornos Neurocognitivos/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , alfa-Sinucleína/efeitos dos fármacos
5.
J Environ Pathol Toxicol Oncol ; 39(2): 149-157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32749124

RESUMO

Heavy-metal toxicity imposes a potential worldwide threat to the environment and humans. Cadmium, mercury, lead, and arsenic are nonessential toxic heavy metals that are most frequently involved in environmental and health hazards. Conventional chelating agents are unsuitable for subchronic and chronic heavy-metal toxicities. Scientific literature reveals that Spirulina (Arthrospira), a photosynthetic filamentous cyanobacterium that is generally known as blue-green algae, alleviates experimentally induced heavy-metal toxicity. The present review attempts to summarize such studies regarding cadmium, mercury, lead, and arsenic toxicity. A total of 58 preclinical studies demonstrate the alleviative effect of Spirulina against experimental arsenic, cadmium, lead, and mercury toxicities. Five clinical studies reported protective effects of Spirulina against arsenic toxicity in humans. Clinical studies against three heavy metals were not found in the literature. The present literature study appears to show that Spirulina possesses promising heavy-metal toxicity-ameliorative effects that are mainly attributed to its intrinsic antioxidant activity.


Assuntos
Intoxicação por Metais Pesados/prevenção & controle , Metais Pesados/toxicidade , Substâncias Protetoras/farmacologia , Spirulina , Animais , Arsênio/toxicidade , Suplementos Nutricionais , Intoxicação por Metais Pesados/tratamento farmacológico , Humanos
6.
J Int Med Res ; 48(6): 300060520930847, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32552232

RESUMO

OBJECTIVES: To investigate the neuroprotective effects of six natural compounds (caffeine, gallic acid, resveratrol, epigallocatechin gallate [EGCG], L-ascorbic acid and alpha tocopherol [Vitamin E] on heavy metal-induced cell damage in rat PC12 cells. METHODS: In this in vitro experiment, rat PC12 cells were exposed to four heavy metals (CdCl2, HgCl2, CoCl2 and PbCl2) at different concentrations and cell apoptosis, necrosis and oxidative stress were assessed with and without the addition of the six natural compounds. RESULTS: The metals decreased cell viability but the natural compounds attenuated their effects on apoptosis, necrosis and reactive oxygen species (ROS) levels. Mitochondrial protein changes were involved in the regulation. CONCLUSION: Overall, the natural compounds did provide protection against the metal-induced PC12 cell damage. These data suggest that natural compounds may have therapeutic potential against metal-induced neurodegenerative disease.


Assuntos
Antioxidantes/farmacologia , Intoxicação por Metais Pesados/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Cafeína/farmacologia , Catequina/análogos & derivados , Catequina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , China , Ácido Gálico/farmacologia , Metais Pesados/efeitos adversos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo , Resveratrol/farmacologia , alfa-Tocoferol/farmacologia
7.
Mini Rev Med Chem ; 20(15): 1489-1498, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32286942

RESUMO

Zinc poisoning has been reported from many parts of the world. It is one of the global health problems that affect many organs, if exposed by inhalation of zinc vapors or by consumption of contaminated food and water. Long term exposure to zinc compounds from different sources such as air, water, soil, and food, lead to toxic effects on body systems, especially digestive, respiratory, and nerve systems, and also causes cancer. Zinc levels can be determined in blood, urine, hair, and nails. Patients with zinc toxicity need chelating agents, other pharmacological treatment, protective lung ventilation, extracorporeal membrane oxygenation (ECMO), and supportive care.


Assuntos
Intoxicação por Metais Pesados/patologia , Zinco/toxicidade , Corticosteroides/uso terapêutico , Apoptose/efeitos dos fármacos , Quelantes/química , Quelantes/uso terapêutico , Oxigenação por Membrana Extracorpórea , Intoxicação por Metais Pesados/tratamento farmacológico , Humanos , Espécies Reativas de Oxigênio/metabolismo , Zinco/metabolismo
8.
Nat Prod Res ; 34(17): 2528-2532, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30623721

RESUMO

Copaifera langsdorffii L. is one of the most known medicinal species in Brazil. Its leaves are rich in phenolic compounds with potential biological activities as an antioxidant and chelating agent. This paper reports the isolation of four compounds from the hydroalcoholic extract of the leaves of C. langsdorffii and the investigation of their possible cytoprotective effects against heavy metal poisoning. Quercitrin (1), afzelin (2), 3,5-di-O-(3-O-methyl galloyl) quinic acid (3) and 4,5-di-O-(3-O-methyl galloyl) quinic acid (4), were associated with toxic doses of methylmercury and lead and evaluated by Alamar blue cell viability assays in HepG2 and PC12. The compounds displayed significant cytoprotective effect for the HepG2 cell line against both metals. Compounds 1-4 did not protect PC12 cells against methylmercury induced-cytotoxicity, but at lower concentrations, they protected against lead induced-cytotoxicity. The evaluated compounds showed a promising cytoprotection effect against exposure to heavy metals and should be further investigated as protective agents.


Assuntos
Fabaceae/química , Intoxicação por Metais Pesados/tratamento farmacológico , Compostos de Metilmercúrio/antagonistas & inibidores , Extratos Vegetais/farmacologia , Substâncias Protetoras/isolamento & purificação , Animais , Antioxidantes , Brasil , Linhagem Celular , Intoxicação por Metais Pesados/prevenção & controle , Humanos , Chumbo/toxicidade , Intoxicação por Chumbo/tratamento farmacológico , Intoxicação por Chumbo/prevenção & controle , Manosídeos , Intoxicação por Mercúrio/tratamento farmacológico , Intoxicação por Mercúrio/prevenção & controle , Compostos de Metilmercúrio/toxicidade , Fenóis , Folhas de Planta/química , Proantocianidinas , Substâncias Protetoras/farmacologia , Quercetina/análogos & derivados , Ácido Quínico , Ratos
9.
Molecules ; 24(18)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31489907

RESUMO

The present article reviews the clinical use of thiol-based metal chelators in intoxications and overexposure with mercury (Hg), cadmium (Cd), and lead (Pb). Currently, very few commercially available pharmaceuticals can successfully reduce or prevent the toxicity of these metals. The metal chelator meso-2,3-dimercaptosuccinic acid (DMSA) is considerably less toxic than the classical agent British anti-Lewisite (BAL, 2,3-dimercaptopropanol) and is the recommended agent in poisonings with Pb and organic Hg. Its toxicity is also lower than that of DMPS (dimercaptopropane sulfonate), although DMPS is the recommended agent in acute poisonings with Hg salts. It is suggested that intracellular Cd deposits and cerebral deposits of inorganic Hg, to some extent, can be mobilized by a combination of antidotes, but clinical experience with such combinations are lacking. Alpha-lipoic acid (α-LA) has been suggested for toxic metal detoxification but is not considered a drug of choice in clinical practice. The molecular mechanisms and chemical equilibria of complex formation of the chelators with the metal ions Hg2+, Cd2+, and Pb2+ are reviewed since insight into these reactions can provide a basis for further development of therapeutics.


Assuntos
Quelantes/uso terapêutico , Complexos de Coordenação/uso terapêutico , Intoxicação por Metais Pesados/tratamento farmacológico , Animais , Intoxicação por Cádmio/tratamento farmacológico , Quelantes/química , Complexos de Coordenação/química , Humanos , Intoxicação por Chumbo/tratamento farmacológico , Intoxicação por Mercúrio/tratamento farmacológico , Estrutura Molecular
10.
J Trace Elem Med Biol ; 54: 226-231, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31109617

RESUMO

AIM: This review illustrates heavy metals toxicity, currently available therapies and the role and efficacy of chelation therapy for its management. SUMMARY: Heavy metals are necessary for various biological processes, but they become harmful in excess. Specifically, they induce oxidative stress by generating free radicals and reducing antioxidant levels. Heavy metals also alter the confirmation of protein and DNA and inhibit their function. Chelation therapy is commonly used to treat metals toxicity. Chelation is a chemical process that occurs when interaction between a central metal atom/ion and ligand leads to formation of a complex ring-like structure. The ligand has a donor ion/molecule, which has a lone pair of electrons and may be monodentate to polydentate. Each metal has a different reactivity with a ligand, so a specific chelation agent is required for each metal. Combination therapy with a chelating agent and an antioxidant led to improved outcome. CONCLUSION: Heavy metal poisoning is a common health problem because of mining, smelting, industrial, agricultural and sewage waste. Heavy metals can be efficiently excreted from the body following treatment with proper chelation agents.


Assuntos
Quelantes/uso terapêutico , Intoxicação por Metais Pesados/tratamento farmacológico , Metais Pesados/toxicidade , Arsênio/sangue , Cádmio/sangue , Cobre/sangue , Humanos , Ferro/sangue , Chumbo/sangue
11.
J Sci Food Agric ; 99(1): 183-190, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29851070

RESUMO

BACKGROUND: The present study aimed to evaluate the nutritional, physiological and biochemical effects of dietary supplementation of an association of probiotic bacteria in rats intoxicated with chromium (VI). Ninety-six male rats, recently weaned, were randomly divided into eight groups (n = 12): Control, DK12, DK24 and DK36 (0, 0.12, 0.24 and 0.36 g kg-1 of K2 Cr2 O7 incorporated in the basal feed, respectively) and groups Prob, DK12 + Prob, DK24 + Prob and DK36 + Prob received a progressive dose of 0, 0.12, 0.24 and 0.36 g kg-1 of K2 Cr2 O7 incorporated in the basal feed and supplemented with 0.02 g kg-1 of an association of probiotic bacteria (Lactobacillus acidophilus, Enterococcus faecium, Bifidobacterium thermophilum and Bifidobacterium longum). RESULTS: After 90 days, we observed significant (P < 0.05) and dose-dependent alterations from incorporation of increasing doses of chromium (VI) related to nutritional, physiological and biochemical parameters. These changes were attenuated (P < 0.05) with probiotic supplementation. CONCLUSION: Supplementation with probiotics in the diet beneficially modified the nutritional and physiological parameters, as well as hepatic, renal, glycemic and lipid profiles, of animals intoxicated with increasing doses of K2 Cr2 O7 . © 2018 Society of Chemical Industry.


Assuntos
Intoxicação por Metais Pesados/tratamento farmacológico , Lactobacillaceae/fisiologia , Dicromato de Potássio/toxicidade , Probióticos/administração & dosagem , Animais , Avaliação Pré-Clínica de Medicamentos , Intoxicação por Metais Pesados/etiologia , Intoxicação por Metais Pesados/patologia , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Probióticos/análise , Distribuição Aleatória , Ratos , Ratos Wistar
13.
Int J Toxicol ; 33(4): 288-296, 2014 07.
Artigo em Inglês | MEDLINE | ID: mdl-24808049

RESUMO

Using rats fed 22 g/d of a control diet containing 0.005% zinc (Zn) or 2 Zn-excess diets containing 0.05% or 0.2% Zn for 4 weeks, we examined the mechanisms involved in the deterioration of renal function induced by Zn-excess intake. An increase in Zn intake elevated mean blood pressure (BP) and reduced renal blood flow (RBF) and inulin clearance in a dose-dependent manner. This decline in inulin clearance may be derived from a fall in RBF. Administration of the nitric oxide (NO) synthase inhibitor, Nω-nitro-l-arginine methyl ester, markedly increased mean BP and significantly decreased RBF in the 3 groups of rats. Administration of the exogenous superoxide radical (OO-) scavenger, tempol, significantly decreased mean BP and substantially increased RBF in all groups of rats. These observations suggest that both an elevation in systemic BP and a reduction in RBF seen in the 2 Zn-excess diet groups result from a decrease in the action of the vasodilator, NO, through the formation of peroxynitrite based on the nonenzymatic reaction of NO and increased OO- Indeed, the activity of the endogenous OO- scavenger, copper/Zn-superoxide dismutase, was significantly reduced in the vessel wall of rats fed 2 Zn-excess diets versus a control diet. 8-Hydroxy-2'-deoxyguanosine formation caused by OO- generation was notably elevated in the kidneys of rats fed 2 Zn-excess diets relatively to rats fed a control diet. Thus, Zn-excess intake leads to the aggravation of renal function concomitantly with an increase in systemic BP predominantly through the oxidative stress caused by OO.


Assuntos
Suplementos Nutricionais/intoxicação , Intoxicação por Metais Pesados/fisiopatologia , Hipertensão Renovascular/etiologia , Rim/fisiopatologia , Estresse Oxidativo , Insuficiência Renal/etiologia , Zinco/intoxicação , 8-Hidroxi-2'-Desoxiguanosina , Animais , Aorta Torácica , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores/urina , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Inibidores Enzimáticos/efeitos adversos , Sequestradores de Radicais Livres/uso terapêutico , Intoxicação por Metais Pesados/tratamento farmacológico , Intoxicação por Metais Pesados/metabolismo , Intoxicação por Metais Pesados/patologia , Hipertensão Renovascular/fisiopatologia , Hipertensão Renovascular/prevenção & controle , Inulina/sangue , Inulina/farmacocinética , Inulina/urina , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Taxa de Depuração Metabólica/efeitos dos fármacos , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória , Ratos Sprague-Dawley , Insuficiência Renal/fisiopatologia , Insuficiência Renal/prevenção & controle , Superóxido Dismutase-1/antagonistas & inibidores , Superóxido Dismutase-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA