Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Arh Hig Rada Toksikol ; 75(1): 81-84, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548379

RESUMO

Organophosphorus poisoning is a critical condition that can cause central nervous system depression, respiratory failure, and death early on. As its clinical manifestations closely resemble those of carbamate pesticide poisoning, the aim of this case study is to present a case of misdiagnosis, initially identifying carbofuran poisoning as organophosphate in a patient suspect of a heatstroke. We also present a case of intentional self-poisoning with organophosphate dichlorvos to underline the likelihood of pesticide poisoning in patients exhibiting acute cholinergic symptoms when the ingested substance is not known. In such cases, empirical treatment with atropine and oxime can be started pending timely differential diagnosis to adjust treatment as necessary.


Assuntos
Inseticidas , Intoxicação por Organofosfatos , Praguicidas , Intoxicação , Humanos , Carbamatos/uso terapêutico , Intoxicação por Organofosfatos/diagnóstico , Intoxicação por Organofosfatos/tratamento farmacológico , Diclorvós/uso terapêutico , Intoxicação/terapia
2.
Neuropharmacology ; 249: 109895, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437913

RESUMO

Acute intoxication with organophosphate (OP) cholinesterase inhibitors poses a significant public health risk. While currently approved medical countermeasures can improve survival rates, they often fail to prevent chronic neurological damage. Therefore, there is need to develop effective therapies and quantitative metrics for assessing OP-induced brain injury and its rescue by these therapies. In this study we used a rat model of acute intoxication with the OP, diisopropylfluorophosphate (DFP), to test the hypothesis that T2 measures obtained from brain magnetic resonance imaging (MRI) scans provide quantitative metrics of brain injury and therapeutic efficacy. Adult male Sprague Dawley rats were imaged on a 7T MRI scanner at 3, 7 and 28 days post-exposure to DFP or vehicle (VEH) with or without treatment with the standard of care antiseizure drug, midazolam (MDZ); a novel antiseizure medication, allopregnanolone (ALLO); or combination therapy with MDZ and ALLO (DUO). Our results show that mean T2 values in DFP-exposed animals were: (1) higher than VEH in all volumes of interest (VOIs) at day 3; (2) decreased with time; and (3) decreased in the thalamus at day 28. Treatment with ALLO or DUO, but not MDZ alone, significantly decreased mean T2 values relative to untreated DFP animals in the piriform cortex at day 3. On day 28, the DUO group showed the most favorable T2 characteristics. This study supports the utility of T2 mapping for longitudinally monitoring brain injury and highlights the therapeutic potential of ALLO as an adjunct therapy to mitigate chronic morbidity associated with acute OP intoxication.


Assuntos
Lesões Encefálicas , Intoxicação por Organofosfatos , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Isoflurofato/toxicidade , Organofosfatos , Inibidores da Colinesterase/farmacologia , Intoxicação por Organofosfatos/tratamento farmacológico , Intoxicação por Organofosfatos/patologia , Lesões Encefálicas/induzido quimicamente , Encéfalo , Midazolam/farmacologia
3.
Chem Biol Interact ; 394: 110941, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493910

RESUMO

The current study imposes a new class of organophosphorus (OP)-inhibited cholinesterase reactivators by conceptualizing a family of asymmetric bisoximes with various reactivating scaffolds. Several novel nucleophilic warheads were investigated, putting forward 29 novel reactivating options, by evaluating their nucleophilicity and ability to directly decompose OP compounds. Adopting the so-called zwitterionic strategy, 17 mono-oxime and nine bisoxime reactivators were discovered with major emphasis on the bifunctional-moiety approach. Compounds were compared with clinically used standards and other known experimentally highlighted reactivators. Our results clearly favor the concept of asymmetric bisoximes as leading reactivators in terms of efficacy and versatility. These top-ranked compounds were characterized in detail by reactivation kinetics parameters and evaluated for potential CNS availability. The highlighted molecules 55, 57, and 58 with various reactivating warheads, surpassed the reactivating potency of pralidoxime and several notable uncharged reactivators. The versatility of lead drug candidate 55 was also inspected on OP-inhibited butyrylcholinesterase, revealing a much higher rate compared to existing clinical antidotes.


Assuntos
Butirilcolinesterase , Reativadores da Colinesterase , Intoxicação por Organofosfatos , Oximas , Oximas/química , Oximas/farmacologia , Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacologia , Butirilcolinesterase/metabolismo , Butirilcolinesterase/química , Humanos , Intoxicação por Organofosfatos/tratamento farmacológico , Acetilcolinesterase/metabolismo , Antídotos/química , Antídotos/farmacologia , Cinética , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Animais , Compostos Organofosforados/química
4.
Toxicol Lett ; 394: 23-31, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387764

RESUMO

Intoxications with organophosphorus compounds (OPCs) effect a severe impairment of cholinergic neurotransmission that, as a result of overstimulation may lead to desensitization of nicotinic acetylcholine receptors (nAChRs) and finally to death due to respiratory paralysis. So far, therapeutics, that are capable to address and revert desensitized neuromuscular nAChRs into their resting, i.e. functional state are still missing. Still, among a class of compounds termed bispyridinium salts, which are characterized by the presence of two pyridinium subunits, constituents have been identified, that can counteract organophosphate poisoning by resensitizing desensitized nAChRs. According to comprehensive modeling studies this effect is mediated by an allosteric binding site at the nAChR termed MB327-PAM-1 site. For MB327, the most prominent representative of the bispyridinium salts and all other analogues studied so far, the affinity for the aforementioned binding site and the intrinsic activity measured in ex vivo and in in vivo experiments are distinctly too low, to meet the criteria to be fulfilled for therapeutic use. Hence, in order to identify new compounds with higher affinities for the MB327-PAM-1 binding site, as a basic requirement for an enhanced potency, two compound libraries, the ChemDiv library with 60 constituents and the Tocriscreen Plus library with 1280 members have been screened for hit compounds addressing the MB327-PAM-1 binding site, utilizing the [2H6]MB327 MS Binding Assay recently developed by us. This led to the identification of a set of 10 chemically diverse compounds, all of which exhibit an IC50 value of ≤ 10 µM (in the [2H6]MB327 MS Binding Assay), which had been defined as selection criteria. The three most affine ligands, which besides a quinazoline scaffold share similarities with regard to the substitution pattern and the nature of the substituents, are UNC0638, UNC0642 and UNC0646. With binding affinities expressed as pKi values of 6.01 ± 0.10, 5.97 ± 0.05 and 6.23 ± 0.02, respectively, these compounds exceed the binding affinity of MB327 by more than one log unit. This renders them promising starting points for the development of drugs for the treatment of organophosphorus poisoning by addressing the MB327-PAM-1 binding site of the nAChR.


Assuntos
Intoxicação por Organofosfatos , Compostos de Piridínio , Receptores Nicotínicos , Humanos , Receptores Nicotínicos/metabolismo , Sais/metabolismo , Sais/uso terapêutico , Relação Estrutura-Atividade , Sítios de Ligação , Intoxicação por Organofosfatos/tratamento farmacológico , Ligantes
5.
Toxicology ; 503: 153741, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311098

RESUMO

Organophosphate (OP) poisoning is currently treated with atropine, oximes and benzodiazepines. The nicotinic signs, i.e., respiratory impairment, can only be targeted indirectly via the use of oximes as reactivators of OP-inhibited acetylcholinesterase. Hence, compounds selectively targeting nicotinic acetylcholine receptors (nAChRs) might fundamentally improve current treatment options. The bispyridinium compound MB327 has previously shown some therapeutic effect against nerve agents in vitro and in vivo. Nevertheless, compound optimization was deemed necessary, due to limitations (e.g., toxicity and efficacy). The current study investigated a series of 4-tert-butyl bispyridinium compounds and of corresponding bispyridinium compounds without substituents in a rat diaphragm model using an indirect field stimulation technique. The length of the respective linker influenced the ability of the bispyridinium compounds to restore muscle function in rat hemidiaphragms. The current data show structure-activity relationships for a series of bispyridinium compounds and provide insight for future structure-based molecular modeling.


Assuntos
Reativadores da Colinesterase , Agentes Neurotóxicos , Intoxicação por Organofosfatos , Ratos , Animais , Oximas/farmacologia , Oximas/uso terapêutico , Agentes Neurotóxicos/toxicidade , Diafragma , Acetilcolinesterase/metabolismo , Compostos de Piridínio/farmacologia , Compostos de Piridínio/uso terapêutico , Relação Estrutura-Atividade , Intoxicação por Organofosfatos/tratamento farmacológico , Reativadores da Colinesterase/farmacologia , Inibidores da Colinesterase/farmacologia
6.
Disaster Med Public Health Prep ; 18: e32, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38384185

RESUMO

Pralidoxime is the only oxime antidote to organophosphate poisoning stocked in the United Kingdom, produced by rational drug design in the 1950s. Typically, it is used alongside atropine, to reverse the effects of acetylcholinesterase inhibition. However, its efficacy has been questioned by recent meta-analyses of use treating attempted suicides in less economically developed countries, where organophosphate poisoning is more common. This policy analysis assesses the likely efficacy of pralidoxime in the United Kingdom, in scenarios largely different from those evaluated in meta-analyses. In all scenarios, the UK delay in antidote administration poses a major problem, as pralidoxime acts in a time-critical reactivation mechanism before "ageing" of acetylcholinesterase occurs. Additionally, changes in the organophosphates used today versus those pralidoxime was rationally designed to reverse, have reduced efficacy since the 1950s. Finally, the current dosage regimen may be insufficient. Therefore, one must re-evaluate our preparedness and approach to organophosphate poisoning in the United Kingdom.


Assuntos
Reativadores da Colinesterase , Intoxicação por Organofosfatos , Compostos de Pralidoxima , Humanos , Antídotos/uso terapêutico , Intoxicação por Organofosfatos/tratamento farmacológico , Acetilcolinesterase/uso terapêutico , Reativadores da Colinesterase/uso terapêutico , Reativadores da Colinesterase/farmacologia
7.
Arch Toxicol ; 98(4): 1177-1189, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38305864

RESUMO

Recent experimental evidence suggests combined treatment with midazolam and allopregnanolone is more effective than midazolam alone in terminating seizures triggered by acute organophosphate (OP) intoxication. However, there are concerns that combined midazolam and allopregnanolone increases risk of adverse cardiovascular events. To address this, we used telemetry devices to record cardiovascular responses in adult male Sprague-Dawley rats acutely intoxicated with diisopropylfluorophosphate (DFP). Animals were administered DFP (4 mg/kg, sc), followed immediately by atropine (2 mg/kg, i.m.) and 2-PAM (25 mg/kg, i.m.). At 40 min post-exposure, a subset of animals received midazolam (0.65 mg/kg, im); at 50 min, these rats received a second dose of midazolam or allopregnanolone (12 mg/kg, im). DFP significantly increased blood pressure by ~ 80 mmHg and pulse pressure by ~ 34 mmHg that peaked within 12 min. DFP also increased core temperature by ~ 3.5 °C and heart rate by ~ 250 bpm that peaked at ~ 2 h. Heart rate variability (HRV), an index of autonomic function, was reduced by ~ 80%. All acute (within 15 min of exposure) and two-thirds of delayed (hours after exposure) mortalities were associated with non-ventricular cardiac events within 10 min of cardiovascular collapse, suggesting that non-ventricular events should be closely monitored in OP-poisoned patients. Compared to rats that survived DFP intoxication without treatment, midazolam significantly improved recovery of cardiovascular parameters and HRV, an effect enhanced by allopregnanolone. These data demonstrate that midazolam improved recovery of cardiovascular and autonomic function and that the combination of midazolam and allopregnanolone may be a better therapeutic strategy than midazolam alone.


Assuntos
Midazolam , Intoxicação por Organofosfatos , Humanos , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Midazolam/farmacologia , Midazolam/uso terapêutico , Pregnanolona/farmacologia , Isoflurofato/farmacologia , Organofosfatos , Encéfalo , Intoxicação por Organofosfatos/tratamento farmacológico
8.
J Pharmacol Exp Ther ; 388(2): 313-324, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37770202

RESUMO

Sex differences are common in human epilepsy. Although men are more susceptible to seizure than women, the mechanisms underlying sex-specific vulnerabilities to seizure are unclear. The organophosphate (OP) diisopropylfluorophosphate (DFP) is known to cause neurotoxicity and status epilepticus (SE), a serious neurologic condition that causes prolonged seizures and brain damage. Current therapies for OP poisoning and SE do not consider neuronal variations between male and female brains. Therefore, we investigated sex-dependent differences in electrographic seizure activity and neuronal injury using the DFP model of refractory SE in rats. Electroencephalogram recordings were used to monitor DFP-induced SE, and the extent of brain injury was determined using fluoro-jade-B staining to detect cellular necrosis. After DFP exposure, we observed striking sex-dependent differences in SE and seizure activity patterns as well as protective responses to midazolam treatment. Following acute DFP exposure, male animals displayed more severe SE with intense epileptiform spiking and greater mortality than females. In contrast, we observed significantly more injured cells and cellular necrosis in the hippocampus and other brain regions in females than in males. We also observed extensive neuronal injury in the somatosensory cortex of males. The anticonvulsant effect of midazolam against SE was limited in this model and found to be similar in males and females. However, unlike males, females exhibited substantially more protection against neuronal damage after midazolam treatment. Overall, these results demonstrate significant sex-dependent differences in DFP-induced refractory SE and neuronal damage patterns, suggesting that it may be possible to develop sex-specific neuroprotective strategies for OP intoxication and refractory SE. SIGNIFICANCE STATEMENT: Sex-dependent differences in neurotoxicity and status epilepticus (SE) are key biological variables after organophosphate (OP) exposure. Here, we investigated sex-dependent differences in SE and brain injury after acute diisopropylfluorophosphate exposure. Male rats had more severe SE and less survival than females, while females had more neuronal damage. Females had more neuroprotection to midazolam than males, while both sexes had similar but partial anticonvulsant effects. These findings suggest that a sex-specific therapeutic approach may prevent neurological complications of OP-induced SE.


Assuntos
Lesões Encefálicas , Intoxicação por Organofosfatos , Estado Epiléptico , Humanos , Feminino , Masculino , Ratos , Animais , Benzodiazepinas/farmacologia , Anticonvulsivantes/efeitos adversos , Midazolam/farmacologia , Isoflurofato/farmacologia , Organofosfatos/farmacologia , Caracteres Sexuais , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Encéfalo , Intoxicação por Organofosfatos/tratamento farmacológico , Lesões Encefálicas/tratamento farmacológico , Necrose/tratamento farmacológico
9.
J Pharmacol Exp Ther ; 388(2): 399-415, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38071567

RESUMO

Organophosphates (OPs) and nerve agents are potent neurotoxic compounds that cause seizures, status epilepticus (SE), brain injury, or death. There are persistent long-term neurologic and neurodegenerative effects that manifest months to years after the initial exposure. Current antidotes are ineffective in preventing these long-term neurobehavioral and neuropathological changes. Additionally, there are few effective neuroprotectants for mitigating the long-term effects of acute OP intoxication. We have pioneered neurosteroids as novel anticonvulsants and neuroprotectants for OP intoxication and seizures. In this study, we evaluated the efficacy of two novel synthetic, water-soluble neurosteroids, valaxanolone (VX) and lysaxanolone (LX), in combating the long-term behavioral and neuropathological impairments caused by acute OP intoxication and SE. Animals were exposed to the OP nerve agent surrogate diisopropylfluorophosphate (DFP) and were treated with VX or LX in addition to midazolam at 40 minutes postexposure. The extent of neurodegeneration, along with various behavioral and memory deficits, were assessed at 3 months postexposure. VX significantly reduced deficits of aggressive behavior, anxiety, memory, and depressive-like traits in control (DFP-exposed, midazolam-treated) animals; VX also significantly prevented the DFP-induced chronic loss of NeuN(+) principal neurons and PV(+) inhibitory neurons in the hippocampus and other regions. Additionally, VX-treated animals exhibited a reduced inflammatory response with decreased GFAP(+) astrogliosis and IBA1(+) microgliosis in the hippocampus, amygdala, and other regions. Similarly, LX showed significant improvement in behavioral and memory deficits, and reduced neurodegeneration and cellular neuroinflammation. Together, these results demonstrate the neuroprotectant effects of the novel synthetic neurosteroids in mitigating the long-term neurologic dysfunction and neurodegeneration associated with OP exposure. SIGNIFICANCE STATEMENT: Survivors of nerve agents and organophosphate (OP) exposures suffer from long-term neurological deficits. Currently, there is no specific drug therapy for mitigating the impact of OP exposure. However, novel synthetic neurosteroids that activate tonic inhibition provide a viable option for treating OP intoxication. The data from this study indicates the neuroprotective effects of synthetic, water-soluble neurosteroids for attenuation of long-term neurological deficits after OP intoxication. These findings establish valaxanolone and lysaxanolone as potent and efficacious neuroprotectants suitable for injectable dosing.


Assuntos
Agentes Neurotóxicos , Fármacos Neuroprotetores , Neuroesteroides , Intoxicação por Organofosfatos , Compostos Organotiofosforados , Estado Epiléptico , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Neuroesteroides/uso terapêutico , Isoflurofato/farmacologia , Midazolam/farmacologia , Doenças Neuroinflamatórias , Encéfalo , Agentes Neurotóxicos/farmacologia , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia , Convulsões/tratamento farmacológico , Intoxicação por Organofosfatos/tratamento farmacológico , Organofosfatos/farmacologia , Transtornos da Memória/patologia
10.
Toxicol Lett ; 392: 75-83, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160862

RESUMO

Precision-cut lung slices (PCLS) are a suitable model for analyzing the acetylcholinesterase (AChE) activity and subsequent effects after exposure to organophosphorus (OP) compounds. In this study, the AChE activity was determined in intact PCLS for the first time. Since the current standard therapy for OP poisoning (atropine + oxime + benzodiazepine) lacks efficiency, reliable models to study novel therapeutic substances are needed. Models should depict pathophysiological mechanisms and help to evaluate the beneficial effects of new therapeutics. Here PCLS were exposed to three organophosphorus nerve agents (OPNAs): sarin (GB), cyclosarin (GF), and VX. They were then treated with three reactivators: HI-6, obidoxime (OBI), and a non-oxime (NOX-6). The endpoints investigated in this study were the AChE activity and the airway area (AA) change. OPNA exposure led to very low residual AChE activities. Depending on the reactivator properties different AChE reactivation results were measured. GB-inhibited PCLS-AChE was reactivated best, followed by VX and GF. To substantiate these findings and to understand the connection between the molecular and the functional levels in a more profound way the results were correlated to the AA changes. These investigations underline the importance of reactivator use and point to the possibilities for future improvements in the treatment of OPNA-exposed victims.


Assuntos
Reativadores da Colinesterase , Intoxicação por Organofosfatos , Compostos Organotiofosforados , Humanos , Acetilcolinesterase , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/uso terapêutico , Inibidores da Colinesterase , Compostos Organofosforados/toxicidade , Oximas/farmacologia , Oximas/uso terapêutico , Intoxicação por Organofosfatos/tratamento farmacológico , Pulmão
11.
Artigo em Inglês | MEDLINE | ID: mdl-37943072

RESUMO

OBJECTIVE: To discuss the clinical presentation and successful treatment of a suspected case of intermediate syndrome due to organophosphate (OP) poisoning in a dog. CASE SUMMARY: Two dogs presented with acute cholinergic signs after ingesting an OP insecticide containing 50% acephate. Clinical signs consistent with acute cholinergic crisis resolved in both dogs within 24 hours postingestion. One dog developed an onset of neurological signs consistent with intermediate syndrome approximately 24 hours postingestion. This patient's clinical signs resolved with the use of pralidoxime chloride. NEW OR UNIQUE INFORMATION PROVIDED: OP poisoning most commonly presents as an acute cholinergic crisis, with rare instances of animals developing intermediate syndrome. Few reports of successful treatment and recovery from intermediate syndrome exist in the veterinary literature, particularly with instances in which 2 dogs within the same exposure setting were treated for acute cholinergic signs and only 1 progressed to an intermediate syndrome. This report also highlights the importance of early intervention with pralidoxime chloride prior to the onset of aging.


Assuntos
Doenças do Cão , Inseticidas , Intoxicação por Organofosfatos , Intoxicação , Cães , Animais , Intoxicação por Organofosfatos/tratamento farmacológico , Intoxicação por Organofosfatos/veterinária , Compostos de Pralidoxima/uso terapêutico , Inseticidas/uso terapêutico , Colinérgicos/uso terapêutico , Intoxicação/tratamento farmacológico , Intoxicação/veterinária , Doenças do Cão/induzido quimicamente , Doenças do Cão/tratamento farmacológico
12.
Bioorg Chem ; 141: 106858, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37774432

RESUMO

A series of new uncharged conjugates of adenine, 3,6-dimetyl-, 1,6-dimethyl- and 6-methyluracil with 1,2,4-triazole-3-hydroxamic and 1,2,3-triazole-4-hydroxamic acid moieties were synthesized and studied as reactivators of organophosphate-inhibited cholinesterase. It is shown that triazole-hydroxamic acids can reactivate acetylcholinesterase (AChE) inhibited by paraoxon (POX) in vitro, offering reactivation constants comparable to those of pralidoxime (2-PAM). However, in contrast to 2-PAM, triazole-hydroxamic acids demonstrated the ability to reactivate AChE in the brain of rats poisoned with POX. At a dose of 200 mg/kg (i.v.), the lead compound 3e reactivated 22.6 ± 7.3% of brain AChE in rats poisoned with POX. In a rat model of POX-induced delayed neurodegeneration, compound 3e reduced the neuronal injury labeled with FJB upon double administration 1 and 3 h after poisoning. Compound 3e was also shown to prevent memory impairment of POX-poisoned rats as tested in a Morris water maze.


Assuntos
Reativadores da Colinesterase , Intoxicação por Organofosfatos , Ratos , Animais , Acetilcolinesterase , Reativadores da Colinesterase/farmacologia , Inibidores da Colinesterase/farmacologia , Intoxicação por Organofosfatos/tratamento farmacológico , Ácidos Hidroxâmicos , Paraoxon/farmacologia , Oximas/farmacologia
13.
Niger J Clin Pract ; 26(6): 686-693, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37470640

RESUMO

Background: Organophosphate (Op)-containing herbicides continue to be widely used in the world. Although its usage and intoxication are widespread, the studies on organophosphate-induced neurotoxicity and treatment protocols are very few in the literature. Aims: This study aimed to investigate any potential effects of caffeic acid phenyl ester with/without intralipid on neurotoxicity produced by acute intoxication of glyphosate isopropylamine in an experimental rat model. Materials And Methods: Forty-nine wistar albino rats were randomly allotted into seven experimental groups: I, control; II, intralipid (IL); III, caffeic acid phenyl esther (CAPE); IV, glyphosate isopropylamine (GI); V, GI + IL; VI, GI + CAPE; and VII, GI + IL + CAPE. Total antioxidant and oxidant status levels were gauged, and the oxidative stress index was calculated in the serum samples. On the other hand, the tissues were analyzed with hematoxylin-eosin (HE) staining protocol and counted up by immunohistochemical method. Statistical evaluations were conducted using SPSS 11.5 for Windows (SPSS, Chicago, IL, USA). Results: Compared to the control, IL, and GI + IL + CAPE groups, the GI group significantly decreased the total antioxidant levels in brain tissues. In a supportive nature, a significant increase in the oxidative site index (OSI) in the GI group compared to other groups. Especially standing out point of these findings is the significant difference between the GI + IL + CAPE and the GI group. Parallelly, histopathological analysis extended severe neurotoxicity in the GI group. Neurotoxic status was reduced significantly in the GI + CAPE + IL group. The histopathologic examinations confirmed biochemical results. The results also revealed that CAPE and IL, probably their antioxidant effects, have a rehabilitative effect on neurotoxicity caused by GI. Conclusion: Therefore, CAPE and IL may function as potential cleansing and scavenger agents for supportive therapy regarding tissue damage or facilitate the therapeutic effects of the routine treatment of the patient with GI poisoning.


Assuntos
Intoxicação por Organofosfatos , Álcool Feniletílico , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Intoxicação por Organofosfatos/tratamento farmacológico , Álcool Feniletílico/farmacologia , Álcool Feniletílico/uso terapêutico , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , Estresse Oxidativo , Ratos Wistar , Organofosfatos/toxicidade
14.
PLoS One ; 18(4): e0284786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37083685

RESUMO

Organophosphate intoxication via acetylcholinesterase inhibition executes neurotoxicity via hyper stimulation of acetylcholine receptors. Here, we use the organophosphate paraoxon-ethyl to treat C. elegans and use its impact on pharyngeal pumping as a bio-assay to model poisoning through these neurotoxins. This assay provides a tractable measure of acetylcholine receptor mediated contraction of body wall muscle. Investigation of the time dependence of organophosphate treatment and the genetic determinants of the drug-induced inhibition of pumping highlight mitigating modulation of the effects of paraoxon-ethyl. We identified mutants that reduce acetylcholine receptor function protect against the consequence of intoxication by organophosphates. Data suggests that reorganization of cholinergic signalling is associated with organophosphate poisoning. This reinforces the under investigated potential of using therapeutic approaches which target a modulation of nicotinic acetylcholine receptor function to treat the poisoning effects of this important class of neurotoxins.


Assuntos
Intoxicação por Organofosfatos , Receptores Nicotínicos , Animais , Intoxicação por Organofosfatos/tratamento farmacológico , Paraoxon/uso terapêutico , Paraoxon/toxicidade , Inibidores da Colinesterase/uso terapêutico , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Acetilcolinesterase/metabolismo , Receptores Nicotínicos/genética , Neurotoxinas , Organofosfatos/toxicidade , Organofosfatos/uso terapêutico
15.
Toxicol Lett ; 373: 160-171, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36503818

RESUMO

Organophosphorus compounds (OPCs) are highly toxic compounds that can block acetylcholine esterase (AChE) and thereby indirectly lead to an overstimulation of muscarinic and nicotinic acetylcholine receptors (nAChRs). The current treatment with atropine and AChE reactivators (oximes) is insufficient to prevent toxic effects, such as respiratory paralysis, after poisonings with various OPCs. Thus, alternative treatment options are required to increase treatment efficacy. Novel therapeutics, such as the bispyridinium non-oxime MB327, have been found to reestablish neuromuscular transmission by interacting directly with nAChR, probably via allosteric mechanisms. To rationally design new, more potent drugs addressing nAChR, knowledge of the binding mode of MB327 is fundamental. However, the binding pocket of MB327 has remained elusive. Here, we identify a new potential allosteric binding pocket (MB327-PAM-1) of MB327 located at the transition of the extracellular to the transmembrane region using blind docking experiments and molecular dynamics simulations. MB327 forms striking interactions with the receptor at this site. The interacting amino acids are highly conserved among different subunits and different species. Correspondingly, MB327 can interact with several nAChR subtypes from different species. We predict by rigidity analysis that MB327 exerts an allosteric effect on the orthosteric binding pocket and the transmembrane domain after binding to MB327-PAM-1. Furthermore, free ligand diffusion MD simulations reveal that MB327 also has an affinity to the orthosteric binding pocket, which agrees with recently published results that related bispyridinium compounds show inhibitory effects via the orthosteric binding site. The newly identified binding site allowed us to predict structural modifications of MB327, resulting in the more potent resensitizers PTM0062 and PTM0063.


Assuntos
Intoxicação por Organofosfatos , Receptores Nicotínicos , Humanos , Intoxicação por Organofosfatos/tratamento farmacológico , Receptores Nicotínicos/metabolismo , Compostos de Piridínio/farmacologia , Sítios de Ligação , Oximas/uso terapêutico
16.
Arch Toxicol ; 97(1): 39-72, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36335468

RESUMO

Organophosphorus compounds (OP) are a constant problem, both in the military and in the civilian field, not only in the form of acute poisoning but also for their long-lasting consequences. No antidote has been found that satisfactorily protects against the toxic effects of organophosphates. Likewise, there is no universal cure to avert damage after poisoning. The key mechanism of organophosphate toxicity is the inhibition of acetylcholinesterase. The overstimulation of nicotinic or muscarinic receptors by accumulated acetylcholine on a synaptic cleft leads to activation of the glutamatergic system and the development of seizures. Further consequences include generation of reactive oxygen species (ROS), neuroinflammation, and the formation of various other neuropathologists. In this review, we present neuroprotection strategies which can slow down the secondary nerve cell damage and alleviate neurological and neuropsychiatric disturbance. In our opinion, there is no unequivocal approach to ensure neuroprotection, however, sooner the neurotoxicity pathway is targeted, the better the results which can be expected. It seems crucial to target the key propagation pathways, i.e., to block cholinergic and, foremostly, glutamatergic cascades. Currently, the privileged approach oriented to stimulating GABAAR by benzodiazepines is of limited efficacy, so that antagonizing the hyperactivity of the glutamatergic system could provide an even more efficacious approach for terminating OP-induced seizures and protecting the brain from permanent damage. Encouraging results have been reported for tezampanel, an antagonist of GluK1 kainate and AMPA receptors, especially in combination with caramiphen, an anticholinergic and anti-glutamatergic agent. On the other hand, targeting ROS by antioxidants cannot or already developed neuroinflammation does not seem to be very productive as other processes are also involved.


Assuntos
Síndromes Neurotóxicas , Intoxicação por Organofosfatos , Humanos , Acetilcolinesterase/metabolismo , Espécies Reativas de Oxigênio , Organofosfatos , Doenças Neuroinflamatórias , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle , Intoxicação por Organofosfatos/tratamento farmacológico , Intoxicação por Organofosfatos/prevenção & controle , Convulsões , Inibidores da Colinesterase/toxicidade
17.
Eur J Med Chem ; 246: 114949, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36462442

RESUMO

A series of new compounds in which uracil and 3,6-dimethyluracil moieties are bridged with different spacers were prepared and evaluated in vitro for the acetyl- and butyrylcholinesterase (AChE and BChE) inhibitory activities. These bisuracils are shown to be very effective inhibitors of AChE, inhibiting the enzyme at nano- and lower molar concentrations with extremely high selectivity for AChE vs. BChE. Kinetic analysis showed that the lead compound 2h acts as a slow-binding inhibitor of AChE and possess a long drug-target residence time (τ = 1/koff = 18.6 ± 7.5 min). Moreover, compound 2h ameliorated muscle weakness in myasthenia gravis rat model with a lower effective dose and longer lasting effect than pyridostigmine bromide. Besides, it was shown that compound 2h has an effect of increasing efficiency of antidotal therapy as a pretreatment for poisoning by organophosphates.


Assuntos
Miastenia Gravis , Intoxicação por Organofosfatos , Ratos , Animais , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/química , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Intoxicação por Organofosfatos/tratamento farmacológico , Uracila/farmacologia , Uracila/uso terapêutico , Cinética , Miastenia Gravis/induzido quimicamente , Miastenia Gravis/tratamento farmacológico
18.
Drug Deliv ; 30(1): 20-27, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36452996

RESUMO

Organophosphorus agents, also known as nerve agents, are very dangerous chemicals that were used as chemical warfare agents. HI-6 is one of the most promising reactivators which is effective in reactivating AChE inhibited by many nerve agents. However, the fast in-vivo clearance of HI-6 became a large barrier for first aid use under some sophisticated circumstances. In this study, PEGylated liposomes loading HI-6 were prepared and evaluated in vitro and in vivo. For PEG-LP-HI-6, the optimal formulation's loading efficiency and encapsulation efficiency were 6.47 ± 0.10% and 71.2 ± 1.15%, respectively. According to the pharmacokinetic results, compared with free HI-6 and LP-HI-6, the intravenous injection of PEG-LP-HI-6 significantly extended t1/2 (1.47 ± 0.29 h), MRT (1.44 ± 0.07 h), and improved the AUC of HI-6 in vivo. Drug concentrations in the CNS also increased after the intravenous administration of PEG-LP-HI-6. For in vivo treatment study, twenty minutes after poison exposure, the survival rate of animals in saline, free HI-6, LP-HI-6 and PEG-LP-HI-6 groups were 0, 0, 30% and 70%, respectively. Compared with the non-PEGylated liposomes group and free HI-6, PEG-LP-HI-6 could prolong the survival time of experimental animals and alleviate the neurotoxic symptoms, which demonstrated great potential as a first-aid strategy for acute organophosphorus agent poisoning.


Assuntos
Agentes Neurotóxicos , Intoxicação por Organofosfatos , Animais , Lipossomos , Primeiros Socorros , Intoxicação por Organofosfatos/tratamento farmacológico
19.
Drug Chem Toxicol ; 46(5): 915-930, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35938408

RESUMO

Acute organophosphate pesticide poisoning causes considerable worldwide mortality and morbidity. In this study, serine was attached to the polyethylene glycol-bisaldehyde (PEG) as a novel antidote for diazinon (DZ) poisoning. Serine and PEG were conjugated with a reductive amination reaction. PEG-serine NPs (PEG-NPs) were purified and their structure was analyzed by 1H NMR, 13 C NMR, IR, and particle size was determined via dynamic light scattering. In vitro studies, including hemolysis assay and cytotoxicity on SK-BR-3 and HFFF2 cell lines, were performed. In vivo studies of PEG-NPs were evaluated on DZ-exposed mice. PEG-NPs were administered (i.p.) 20 min after a single dose of DZ (LD50; 166 mg/kg). Atropine (20 mg/kg, i.p.) with pralidoxime (20 mg/kg, i.p.) was used as the standard therapy compared to PEG-NPs. NMR and IR data confirmed that the conjugation of PEG to serine occurred successfully. The average NP size was 22.1 ± 1.8 nm. The hemolysis of the PEG-NPs was calculated at 0.867%, 50% inhibitory concentration (IC50) was calculated 36 ± 4.5, and 41 ± 3.4 mg/mL on SK-BR-3 and HFFF2 cell lines, respectively. Percentage of surviving significantly improved by 12.5, 25, and 25% through the usage of PEG-NPs at doses of 100, 200, and 400 mg/kg, respectively, when compared with the DZ group. Cholinesterase enzyme activity, lipid peroxidation, and mitochondrial function significantly improved through PEG-NPs when compared with the DZ group. PEG conjugated serine is very biocompatible with low toxicity and can reduce the acute toxicity of DZ as a new combination therapy.


Assuntos
Nanopartículas , Intoxicação por Organofosfatos , Animais , Camundongos , Antídotos/farmacologia , Polietilenoglicóis/química , Intoxicação por Organofosfatos/tratamento farmacológico , Hemólise , Nanopartículas/química
20.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499322

RESUMO

For the first time, the efficacy of post-exposure treatment of organophosphate (OP) poisoning was increased by transdermal delivery of acetylcholinesterase (AChE) reactivator pyridine-2-aldoxime methochloride (2-PAM) as a preventive countermeasure. By selecting the optimal ratio of components, classical transfersomes (based on soybean phosphatidylcholine and Tween 20) and modified transfersomes (based on soybean phosphatidylcholine, Tween 20 and pyrrolidinium cationic surfactants with different hydrocarbon tail lengths) were obtained for 2-PAM encapsulation. Transfersomes modified with tetradecylpyrrolidinium bromide showed the best results in encapsulation efficiency and sustained release of 2-PAM from vesicles. Using Franz cells, it was found that the incorporation of surfactants into PC liposomes results in a more prolonged release of 2-PAM through the rat skin. Transfersomes containing 2-PAM, after exhaustive physical and chemical characterization, were embedded in a gel based on Carbopol® 940. A significantly high degree of erythrocyte AChE reactivation (23 ± 7%) was shown for 2-PAM in unmodified transfersomes in vivo. Preliminary transdermal administration of 2-PAM 24 h before emergency post-exposure treatment of OP poisoning leads to an increase in the survival rate of rats from 55% to 90%.


Assuntos
Intoxicação por Organofosfatos , Animais , Ratos , Administração Cutânea , Intoxicação por Organofosfatos/tratamento farmacológico , Acetilcolinesterase/metabolismo , Antídotos , Tensoativos/uso terapêutico , Fosfatidilcolinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...