Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 790
Filtrar
1.
J Diabetes Res ; 2024: 1222395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725443

RESUMO

This study is aimed at assessing the impact of soluble dietary fiber inulin on the treatment of diabetes-related chronic inflammation and kidney injury in mice with type 2 diabetes (T2DM). The T2DM model was created by feeding the Institute of Cancer Research (ICR) mice a high-fat diet and intraperitoneally injecting them with streptozotocin (50 mg/kg for 5 consecutive days). The thirty-six ICR mice were divided into three dietary groups: the normal control (NC) group, the T2DM (DM) group, and the DM + inulin diet (INU) group. The INU group mice were given inulin at the dose of 500 mg/kg gavage daily until the end of the 12th week. After 12 weeks, the administration of inulin resulted in decreased serum levels of fasting blood glucose (FBG), low-density lipoprotein cholesterol (LDL-C), blood urea nitrogen (BUN), and creatinine (CRE). The administration of inulin not only ameliorated renal injury but also resulted in a reduction in the mRNA expressions of inflammatory factors in the spleen and serum oxidative stress levels, when compared to the DM group. Additionally, inulin treatment in mice with a T2DM model led to a significant increase in the concentrations of three primary short-chain fatty acids (SCFAs) (acetic acid, propionic acid, and butyric acid), while the concentration of advanced glycation end products (AGEs), a prominent inflammatory factor in diabetes, exhibited a significant decrease. The results of untargeted metabolomics indicate that inulin has the potential to alleviate inflammatory response and kidney damage in diabetic mice. This beneficial effect is attributed to its impact on various metabolic pathways, including glycerophospholipid metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, and tryptophan metabolism. Consequently, oral inulin emerges as a promising treatment option for diabetes and kidney injury.


Assuntos
Glicemia , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Inflamação , Inulina , Rim , Metabolômica , Camundongos Endogâmicos ICR , Estresse Oxidativo , Animais , Inulina/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Camundongos , Masculino , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Estresse Oxidativo/efeitos dos fármacos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/patologia , Ácidos Graxos Voláteis/metabolismo , Dieta Hiperlipídica , Nitrogênio da Ureia Sanguínea
2.
Food Funct ; 15(9): 4763-4772, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38590256

RESUMO

Inulins, galacto-oligosaccharides (GOS) and polyphenols are considered to stimulate the growth of Akkermansia muciniphila (A. muciniphila) in the gut. We performed a meta-analysis of six microbiome studies (821 stool samples from 451 participants) to assess the effects of inulin, GOS, and polyphenols on the abundance of A. muciniphila in the gut. The intervention of GOS increased the relative abundance of A. muciniphila in healthy participants. Additionally, metabolic pathways associated with carbohydrate metabolism and short-chain fatty acid release were enriched following the GOS intervention. Furthermore, after the GOS intervention, the coexisting microbial communities of A. muciniphila, such as Eubacterium hallii and Bacteroides, exhibited an enhanced correlation with A. muciniphila. In conclusion, our findings suggest that GOS may promote the growth of A. muciniphila in the gut by modulating the gut microbiota composition.


Assuntos
Akkermansia , Microbioma Gastrointestinal , Inulina , Oligossacarídeos , Polifenóis , Microbioma Gastrointestinal/efeitos dos fármacos , Polifenóis/farmacologia , Inulina/farmacologia , Humanos , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo , Fezes/microbiologia , Verrucomicrobia , Prebióticos , Galactose
3.
Food Funct ; 15(9): 4832-4851, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38623620

RESUMO

This study aimed to assess the impact of Lactobacillaceae (L or H represents a low or high dose), inulin (I), and polydextrose (P) combined with aerobic exercise (A) on the composition of the gut microbiota and metabolic profiles in db/db mice. After a 12-week intervention, LIP, LIPA, and HIPA groups exhibited significant improvements in hyperglycemia, glucose tolerance, insulin resistance, inflammatory response, and short-chain fatty acid (SCFA) and blood lipid levels compared to type 2 diabetes mice (MC). After treatment, the gut microbiota composition shifted favorably in the treatment groups which significantly increased the abundance of beneficial bacteria, such as Bacteroides, Blautia, Akkermansia, and Faecalibaculum, and significantly decreased the abundance of Proteus. Metabolomics analysis showed that compared to the MC group, the contents of 5-hydroxyindoleacetic acid, 3-hydroxysebacic acid, adenosine monophosphate (AMP), xanthine and hypoxanthine were significantly decreased, while 3-ketosphinganine, sphinganine, and sphingosine were significantly increased in the LIP and LIPA groups, respectively. Additionally, LIP and LIPA not only improved sphingolipid metabolism and purine metabolism pathways but also activated AMP-activated protein kinase to promote ß-oxidation by increasing the levels of SCFAs. Faecalibaculum, Blautia, Bacteroides, and Akkermansia exhibited positive correlations with sphingosine, 3-ketosphinganine, and sphinganine, and exhibited negative correlations with hypoxanthine, xanthine and AMP. Faecalibaculum, Blautia, Bacteroides, and Akkermansia may have the potential to improve sphingolipid metabolism and purine metabolism pathways. These findings suggest that the synergism of Lactobacillaceae, inulin, polydextrose, and aerobic exercise provides a promising strategy for the prevention and management of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hiperglicemia , Inulina , Lactobacillaceae , Condicionamento Físico Animal , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Inulina/farmacologia , Hiperglicemia/metabolismo , Masculino , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Lactobacillaceae/metabolismo , Glucanos/metabolismo , Metaboloma , Camundongos Endogâmicos C57BL , Ácidos Graxos Voláteis/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação
4.
Res Vet Sci ; 172: 105252, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38564887

RESUMO

Inulin has potential benefits for alleviating intestinal stress syndrome, constipation, and immunomodulation. However, its effects on cat gastrointestinal tract remain unexplored. Eight healthy adult British short-haired cat were administered 50 mg/kg/d inulin with a basal diet for 21 days, while fecal samples were collected to measure indole and 3-methylindole levels, immune index detection, and fecal microbial diversity on days 0, 7, 14, and 21. The results showed that adding inulin to the diet of cat could cause the increase of sIgA on day 14 (P < 0.05) and enhance their immune performance. In addition, it will also affect the fecal microbiota of the cat. Collinsella abundance was significantly increased, which could indulge ursodeoxycholic acid production. Feeding inulin had no significant effect on the levels of indole and 3-methylindole (P > 0.05). The above results showed that inulin supplementation in cat diet could improve cat health by enhancing immunity and increasing intestinal beneficial flora.


Assuntos
Dieta , Fezes , Microbioma Gastrointestinal , Inulina , Animais , Inulina/farmacologia , Inulina/administração & dosagem , Fezes/microbiologia , Gatos , Dieta/veterinária , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Indóis/farmacologia , Ração Animal/análise , Feminino , Escatol , Suplementos Nutricionais , Imunoglobulina A
5.
Int J Biol Macromol ; 267(Pt 2): 131656, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636749

RESUMO

The gut microbiota plays a significant role in the pathogenesis and remission of inflammatory bowel disease. However, conventional antibiotic therapies may alter microbial ecology and lead to dysbiosis of the gut microbiome, which greatly limits therapeutic efficacy. To address this challenge, novel nanomicelles that couple inulin with levofloxacin via disulfide bonds for the treatment of salmonellosis were developed in this study. Owing to their H2S-responsiveness, the nanomicelles can target the inflamed colon and rapidly release levofloxacin to selectively fight against enteric pathogens. Moreover, the embedded inulin can serve as prebiotic fiber to increase the amount of Bifidobacteria and Lactobacilli in mice with salmonellosis, thus maintaining the intestinal mechanical barrier and regulating the balance of the intestinal flora. Therefore, multifunctional nanomicelles had a better curative effect than pure levofloxacin on ameliorating inflammation in vivo. The pathogen-targeted glycovesicle represents a promising drug delivery platform to maximize the efficacy of antibacterial drugs for the treatment of inflammatory bowel disease.


Assuntos
Antibacterianos , Microbioma Gastrointestinal , Inulina , Infecções por Salmonella , Animais , Inulina/farmacologia , Inulina/química , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Infecções por Salmonella/tratamento farmacológico , Infecções por Salmonella/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Levofloxacino/farmacologia , Micelas , Portadores de Fármacos/química , Nanopartículas/química
6.
Gut Microbes ; 16(1): 2347021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685762

RESUMO

Inulin, an increasingly studied dietary fiber, alters intestinal microbiota. The aim of this study was to assess whether inulin decreases intestinal colonization by multidrug resistant E. coli and to investigate its potential mechanisms of action. Mice with amoxicillin-induced intestinal dysbiosis mice were inoculated with extended spectrum beta-lactamase producing E. coli (ESBL-E. coli). The combination of inulin and pantoprazole (IP) significantly reduced ESBL-E. coli fecal titers, whereas pantoprazole alone did not and inulin had a delayed and limited effect. Fecal microbiome was assessed using shotgun metagenomic sequencing and qPCR. The efficacy of IP was predicted by increased abundance of 74 taxa, including two species of Adlercreutzia. Preventive treatments with A. caecimuris or A. muris also reduced ESBL-E. coli fecal titers. Fecal microbiota of mice effectively treated by IP was enriched in genes involved in inulin catabolism, production of propionate and expression of beta-lactamases. They also had increased beta-lactamase activity and decreased amoxicillin concentration. These results suggest that IP act through production of propionate and degradation of amoxicillin by the microbiota. The combination of pantoprazole and inulin is a potential treatment of intestinal colonization by multidrug-resistant E. coli. The ability of prebiotics to promote propionate and/or beta-lactamase producing bacteria may be used as a screening tool to identify potential treatments of intestinal colonization by multidrug resistant Enterobacterales.


Assuntos
Amoxicilina , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Fezes , Microbioma Gastrointestinal , Inulina , Pantoprazol , Animais , Inulina/farmacologia , Inulina/metabolismo , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Fezes/microbiologia , Amoxicilina/farmacologia , Pantoprazol/farmacologia , beta-Lactamases/metabolismo , beta-Lactamases/genética , Disbiose/microbiologia , Disbiose/tratamento farmacológico , Antibacterianos/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Feminino , Prebióticos/administração & dosagem
7.
PeerJ ; 12: e17110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525281

RESUMO

Background: The prevalence of inflammatory bowel diseases is increasing, especially in developing countries, with adoption of Western-style diet. This study aimed to investigate the effects of two emulsifiers including lecithin and carboxymethyl cellulose (CMC) on the gut microbiota, intestinal inflammation and the potential of inulin as a means to protect against the harmful effects of emulsifiers. Methods: In this study, male C57Bl/6 mice were divided into five groups (n:6/group) (control, CMC, lecithin, CMC+inulin, and lecithin+inulin). Lecithin and CMC were diluted in drinking water (1% w/v) and inulin was administered daily at 5 g/kg for 12 weeks. Histological examination of the ileum and colon, serum IL-10, IL-6, and fecal lipocalin-2 levels were analyzed. 16S rRNA gene V3-V4 region amplicon sequencing was performed on stool samples. Results: In the CMC and lecithin groups, shortening of the villus and a decrease in goblet cells were observed in the ileum and colon, whereas inulin reversed this effect. The lipocalin level, which was 9.7 ± 3.29 ng in the CMC group, decreased to 4.1 ± 2.98 ng with the administration of inulin. Bifidobacteria and Akkermansia were lower in the CMC group than the control, while they were higher in the CMC+inulin group. In conclusion, emulsifiers affect intestinal health negatively by disrupting the epithelial integrity and altering the composition of the microbiota. Inulin is protective on their harmful effects. In addition, it was found that CMC was more detrimental to microbiota composition than lecithin.


Assuntos
Microbioma Gastrointestinal , Inulina , Masculino , Camundongos , Animais , Inulina/farmacologia , Lecitinas/farmacologia , RNA Ribossômico 16S/genética , Dieta Ocidental
8.
Chin J Nat Med ; 22(3): 249-264, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38553192

RESUMO

Inulin-type fructan CP-A, a predominant polysaccharide in Codonopsis pilosula, demonstrates regulatory effects on immune activity and anti-inflammation. The efficacy of CP-A in treating ulcerative colitis (UC) is, however, not well-established. This study employed an in vitro lipopolysaccharide (LPS)-induced colonic epithelial cell model (NCM460) and an in vivo dextran sulfate sodium (DSS)-induced colitis mouse model to explore CP-A's protective effects against experimental colitis and its underlying mechanisms. We monitored the clinical symptoms in mice using various parameters: body weight, disease activity index (DAI), colon length, spleen weight, and histopathological scores. Additionally, molecular markers were assessed through enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence (IF), immunohistochemistry (IHC), and Western blotting assays. Results showed that CP-A significantly reduced reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-α), and interleukins (IL-6, IL-1ß, IL-18) in LPS-induced cells while increasing IL-4 and IL-10 levels and enhancing the expression of Claudin-1, ZO-1, and occludin proteins in NCM460 cells. Correspondingly, in vivo findings revealed that CP-A administration markedly improved DAI, reduced colon shortening, and decreased the production of myeloperoxidase (MPO), malondialdehyde (MDA), ROS, IL-1ß, IL-18, and NOD-like receptor protein 3 (NLRP3) inflammasome-associated genes/proteins in UC mice. CP-A treatment also elevated glutathione (GSH) and superoxide dismutase (SOD) levels, stimulated autophagy (LC3B, P62, Beclin-1, and ATG5), and reinforced Claudin-1 and ZO-1 expression, thereby aiding in intestinal epithelial barrier repair in colitis mice. Notably, the inhibition of autophagy via chloroquine (CQ) diminished CP-A's protective impact against colitis in vivo. These findings elucidate that CP-A's therapeutic effect on experimental colitis possibly involves mitigating intestinal inflammation through autophagy-mediated NLRP3 inflammasome inactivation. Consequently, inulin-type fructan CP-A emerges as a promising drug candidate for UC treatment.


Assuntos
Codonopsis , Colite Ulcerativa , Colite , Camundongos , Animais , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inulina/metabolismo , Inulina/farmacologia , Inulina/uso terapêutico , Interleucina-18 , Codonopsis/metabolismo , Proteínas NLR/metabolismo , Frutanos/metabolismo , Frutanos/farmacologia , Frutanos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos/farmacologia , Claudina-1/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Autofagia , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo , Colo/patologia
9.
Mol Nutr Food Res ; 68(7): e2400033, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483096

RESUMO

SCOPE: Consumption of inulin could affect the intestinal microbiota composition. Hereby, it is aimed to investigate the intestinal microbial community restoration process when the inulin supplementation is terminated (i.e., the secondary effect). METHODS AND RESULTS: The current study investigates the response and restoration of intestinal microbiota to/after high (Inulin-H) and low (Inulin-L) dosage of inulin supplementation or sequential antibiotics and inulin (Anti-Inulin-L) supplementation, based on analysis of 16S rRNA gene sequences in C57BL/6 mice. The number of significantly changed genera in response to inulin is highest in Anti-Inulin-L (n = 66) group, followed by Inulin-H (n = 51) and Inulin-L (n = 38) group. After inulin supplementation stops, microbiota of all studied groups tend to recover to their original states, with highest percentage of inulin-responding microbes stay significantly different at Anti-Inulin-L (93.94%) group, followed by Inulin-H (74.51%) and Inulin-L (44.12%) groups. Of note, the relative abundance of some non-inulin-responding taxa significantly increases during restoration. CONCLUSION: Sequential antibiotics and inulin supplementation induce greatest changes in the intestinal microbial composition, followed by high and low dosage of inulin. Additionally, the changes induce by supplemented inulin in the intestinal microbial community, provide a chance for some microbes to outcompete the other microbes during the spontaneous restoration.


Assuntos
Microbioma Gastrointestinal , Inulina , Camundongos , Animais , Inulina/farmacologia , RNA Ribossômico 16S/genética , Camundongos Endogâmicos C57BL , Suplementos Nutricionais , Antibacterianos/farmacologia
10.
Carbohydr Polym ; 332: 121918, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431396

RESUMO

Vegetables, cereals and fruit are foods rich in fibre with beneficial and nutritional effects as their consumption reduces the onset of degenerative diseases, especially cardiovascular ones. Among fibres, inulin, oligofructose or fructooligosaccharide (FOS) are the best-studied. Inulin is a generic term to cover all linear ß(2-1) fructans, with a variable degree of polymerization. In this review a better understanding of the importance of the degree of polymerization of inulin as a dietary fibre, functions, health benefits, classifications, types and its applications in the food industry was considered in different fortified foods. Inulin has been used to increase the nutritional and healthy properties of the product as a sweetener and as a substitute for fats and carbohydrates, improving the nutritional value and decreasing the glycemic index, with the advantage of not compromising taste and consistency of the product. Bifidogenic and prebiotic effects of inulin have been well established, inulin-type fructans are fermented by the colon to produce short-chain fatty acids, with important local and systemic actions. Addition of inulin with different degrees of polymerization to daily foods for the production of fortified pasta and bread was reviewed, and the impact on sensorial, technological and organoleptic characteristics even of gluten-free bread was also reported.


Assuntos
Grão Comestível , Inulina , Inulina/farmacologia , Polimerização , Frutanos/farmacologia , Fibras na Dieta/farmacologia
11.
Nutr Diabetes ; 14(1): 9, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448413

RESUMO

BACKGROUND AND OBJECTIVE: Large intestinal fermentation of dietary fiber may control meal-related glycemia and appetite via the production of short-chain fatty acids (SCFA) and the secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). We investigated whether this mechanism contributes to the efficacy of the Roux-en-Y gastric bypass (RYGB) by assessing the effect of oligofructose-enriched inulin (inulin) vs. maltodextrin (MDX) on breath hydrogen (a marker of intestinal fermentation), plasma SCFAs, gut hormones, insulin and blood glucose concentrations as well as appetite in RYGB patients. METHOD: Eight RYGB patients were studied on two occasions before and ~8 months after surgery using a cross-over design. Each patient received 300 ml orange juice containing 25 g inulin or an equicaloric load of 15.5 g MDX after an overnight fast followed by a fixed portion snack served 3 h postprandially. Blood samples were collected over 5 h and breath hydrogen measured as well as appetite assessed using visual analog scales. RESULTS: Surgery increased postprandial secretion of GLP-1 and PYY (P ≤ 0.05); lowered blood glucose and plasma insulin increments (P ≤ 0.05) and reduced appetite ratings in response to both inulin and MDX. The effect of inulin on breath hydrogen was accelerated after surgery with an increase that was earlier in onset (2.5 h vs. 3 h, P ≤ 0.05), but less pronounced in magnitude. There was, however, no effect of inulin on plasma SCFAs or plasma GLP-1 and PYY after the snack at 3 h, neither before nor after surgery. Interestingly, inulin appeared to further potentiate the early-phase glucose-lowering and second-meal (3-5 h) appetite-suppressive effect of surgery with the latter showing a strong correlation with early-phase breath hydrogen concentrations. CONCLUSION: RYGB surgery accelerates large intestinal fermentation of inulin, however, without measurable effects on plasma SCFAs or plasma GLP-1 and PYY. The glucose-lowering and appetite-suppressive effects of surgery appear to be potentiated with inulin.


Assuntos
Derivação Gástrica , Insulinas , Humanos , Inulina/farmacologia , Apetite , Projetos Piloto , Glicemia , Estudos Cross-Over , Estudos Prospectivos , Peptídeo YY , Peptídeo 1 Semelhante ao Glucagon , Percepção
12.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473746

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the digestive tract and is closely associated with the homeostasis of the gut microbiota. Inulin, as a natural prebiotic, displays anti-inflammatory activity and maintains equilibrium of the intestinal microbiota. In this study, our research aimed to explore the potential of inulin in enhancing intestinal immunity and reducing inflammation in stress-recurrent IBD. In this study, a co-culture intestinal epithelium model and a stress-recurrent IBD mouse model was used to examine the protective effects of inulin. It was observed that inulin digesta significantly reduced pro-inflammatory cytokine expression (CXCL8/IL8 and TNFA) and increased MUC2 expression in intestinal epithelial cells. In vivo, our findings showed that Inulin intake significantly prevented IBD symptoms. This was substantiated by a decrease in serum inflammatory markers (IL-6, CALP) and a downregulation of inflammatory cytokine (Il6) in colon samples. Additionally, inulin intake led to an increase in short-chain fatty acids (SCFAs) in cecal contents and a reduction in the expression of endoplasmic reticulum (ER) stress markers (CHOP, BiP). Our results highlight that inulin can improve stress-recurrent IBD symptoms by modulating microbiota composition, reducing inflammation, and alleviating ER stress. These findings suggested the therapeutic potential of inulin as a dietary intervention for ameliorating stress-recurrent IBD.


Assuntos
Doenças Inflamatórias Intestinais , Inulina , Camundongos , Animais , Inulina/farmacologia , Colo/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo
13.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473955

RESUMO

Within the framework of plant biostimulation, a pivotal role is played by the achievement of low-cost, easily prepared nanoparticles for priming purposes. Therefore, in this report, two different synthetic strategies are described to engineer zinc oxide nanoparticles with an inulin coating. In both protocols, i.e., two-step and gel-like one-pot protocols, nanoparticles with a highly pure ZnO kernel are obtained when the reaction is carried out at T ≥ 40 °C, as ascertained by XRD and ATR/FTIR studies. However, a uniformly dispersed, highly homogeneous coating is achieved primarily when different temperatures, i.e., 60 °C and 40 °C, are employed in the two phases of the step-wise synthesis. In addition, a different binding mechanism, i.e., complexation, occurs in this case. When the gel-like process is employed, a high degree of coverage by the fructan is attained, leading to micrometric coated aggregates of nanometric particles, as revealed by SEM investigations. All NPs from the two-step synthesis feature electronic bandgaps in the 3.25-3.30 eV range in line with previous studies, whereas the extensive coating causes a remarkable 0.4 eV decrease in the bandgap. Overall, the global analysis of the investigations indicates that the samples synthesized at 60 °C and 40 °C are the best suited for biostimulation. Proof-of-principle assays upon Vicia faba seed priming with Zn5 and Zn5@inu indicated an effective growth stimulation of seedlings at doses of 100 mgKg-1, with concomitant Zn accumulation in the leaves.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Óxido de Zinco/química , Inulina/farmacologia , Nanopartículas/química , Plântula , Nanopartículas Metálicas/química , Antibacterianos/farmacologia
14.
Meat Sci ; 213: 109496, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38537508

RESUMO

Forty LW × L pigs (20 boars and 20 gilts) (51.1 ± 0.41 kg) were allocated to a 2 × 2 × 2 factorial design with the respective factors being supplemental organic iron (Fe, 0 and 500 mg/kg), inulin (In, 0 and 50 g/kg) and sex (boars and gilts). After 5 weeks the animals were transported to an abattoir before slaughter and collection of samples. Serum iron was increased by supplemental Fe (28.4 v. 30.9 µmol/L, P = 0.05), although there was an interaction (P = 0.03) such that pigs fed diets with In had lower serum Fe concentrations than those without In (26.8 v. 32.3 µmol/L). Boars had lower (P < 0.01) haemoglobin (116 vs 125), haematocrit (36.7 v. 39.7%) and erythrocyte (6.6 v. 7.1 × 106/mL) concentrations than gilts. Dietary In increased liveweight gain (795 v. 869 g/d, P < 0.02) and carcass weight (62.9 v. 65.2 kg, P < 0.02). Dietary Fe or In supplementation did not improve muscle Longissimus thoracis et lumborum (LTL) total Fe concentration (P > 0.05). Muscle non-heme Fe concentration was higher in Fe-supplemented pigs (P < 0.04) and gilts (P < 0.05) than their counterparts. Muscle heme Fe concentration was greater (3.04 vs 2.51, P < 0.05) in boars than in gilts. The LTL marbling score was greater (P < 0.01) for In-supplemented pigs, and the response was more notable when Fe and In were fed together. These data show that dietary supplementation of Fe increased serum Fe and muscle non-heme Fe concentrations. Supplementation of In at 5% in the diet of finisher pigs improved liveweight gain and the marbling score of pork.


Assuntos
Ração Animal , Dieta , Suplementos Nutricionais , Inulina , Ferro da Dieta , Ferro , Músculo Esquelético , Animais , Masculino , Feminino , Ferro da Dieta/administração & dosagem , Ferro da Dieta/análise , Ferro/análise , Inulina/farmacologia , Inulina/administração & dosagem , Ração Animal/análise , Dieta/veterinária , Músculo Esquelético/química , Sus scrofa/crescimento & desenvolvimento , Tecido Adiposo/química , Tecido Adiposo/metabolismo , Carne de Porco/análise , Hematócrito/veterinária , Fenômenos Fisiológicos da Nutrição Animal , Suínos , Carne Vermelha/análise , Hemoglobinas/análise
15.
J Microbiol Biotechnol ; 34(3): 689-699, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38346819

RESUMO

Colitis is a major gastrointestinal disease that threatens human health. In this study, a synbiotic composed of inulin and Pediococcus acidilactici (P. acidilactici) was investigated for its ability to alleviate dextran sulfate sodium (DSS)-induced colitis. The results revealed that the synbiotic, composed of inulin and P. acidilactici, attenuated the body weight loss and disease activity index (DAI) score in mice with DSS-mediated colitis. Determination of biochemical indicators found that the synbiotic increased anti-oxidation and alleviated inflammation in mice. Additionally, histopathological examination revealed that colonic goblet cell loss and severe mucosal damage in the model group were significantly reversed by the combination of inulin and P. acidilactici. Moreover, synbiotic treatment significantly reduced the levels of IL-1ß, TNF-α, and IL-6 in the serum of mice. Thus, a synbiotic composed of inulin and P. acidilactici has preventive and therapeutic effects on DSSinduced colitis in mice.


Assuntos
Colite Ulcerativa , Colite , Pediococcus acidilactici , Simbióticos , Humanos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Inulina/farmacologia , Sulfato de Dextrana/toxicidade , Colite/induzido quimicamente , Colo/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
16.
Brain Behav ; 14(1): e3387, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376033

RESUMO

INTRODUCTION: Gut microbiota dysbiosis is a key factor of the pathogenesis of post-stroke depression (PSD). PSD is associated with increased hippocampal neuronal apoptosis and decreased synaptic connectivity. Inulin can be involved in hippocampal neuron protection through the microbiome-gut-brain axis. However, the neuroprotective effects of inulin in PSD are still to be further investigated. METHODS: By utilizing the GEO public database, we identify differentially expressed genes in the hippocampus following inulin intake. This can help us discover key signaling pathways through functional enrichment analysis. Furthermore, we validate the expression levels of signaling molecules in a rat model of PSD and examine the effects of inulin on behavioral changes and body weight. Additionally, conducting a microbiome analysis to identify significantly different microbial populations and perform correlation analysis. RESULTS: The intake of inulin significantly up-regulated mitogen-activated protein kinase signaling pathway in the hippocampus. Inulin changed in the gut microbiota structure, leading to an increase in the abundance of Lactobacillus and Clostridium_sensu_stricto_1 in the intestines of PSD rats, while decreasing the abundance of Ruminococcus UCG_005, Prevotella_9, Oscillospiraceae, and Clostridia UCG_014. Furthermore, the inulin diet elevated levels of insulin-like growth factor 1 in the serum, which showed a positive correlation with the abundance of Lactobacillus. Notably, the consumption of inulin-enriched diet increased activity levels and preference for sugar water in PSD rats, while also reducing body weight. CONCLUSION: These findings highlight the potential therapeutic benefits of inulin in the management of depression and emphasize the importance of maintaining a healthy gut microbiota for PSD.


Assuntos
Microbioma Gastrointestinal , Inulina , Sistema de Sinalização das MAP Quinases , Animais , Ratos , Peso Corporal , Fator de Crescimento Insulin-Like I/metabolismo , Inulina/farmacologia , Transdução de Sinais
17.
Environ Pollut ; 346: 123659, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417603

RESUMO

Organophosphorus flame retardants (OPFRs), such as 2-ethylhexyl diphenyl phosphate (EHDPHP), are ubiquitously used, leading to pervasive environmental contamination and human health risks. While associations between EHDPHP and health issues such as disruption of hormones, neurotoxic effects, and toxicity to reproduction have been recognized, exposure to EHDPHP during perinatal life and its implications for the intestinal health of dams and their pups have largely been unexplored. This study investigated the intestinal toxicity of EHDPHP and the potential for which inulin was effective. Dams were administered either an EHDPHP solution or a corn oil control from gestation day 7 (GD7) to postnatal day 21 (PND21), with inulin provided in their drinking water. Our results indicate that inulin supplementation mitigates damage to the intestinal epithelium caused by EHDPHP, restores mucus-secreting cells, suppresses intestinal hyperpermeability, and abates intestinal inflammation by curtailing lipopolysaccharide leakage through reshaping of the gut microbiota. A reduction in LPS levels concurrently inhibited the inflammation-associated TLR4/NF-κB pathway. In conclusion, inulin administration may ameliorate intestinal toxicity caused by EHDPHP in dams and pups by reshaping the gut microbiota and suppressing the LPS/TLR4/NF-κB pathway. These findings underscore the efficacy of inulin as a therapeutic agent for managing health risks linked to EHDPHP exposure.


Assuntos
Compostos de Bifenilo , Microbioma Gastrointestinal , Fosfatos , Gravidez , Feminino , Humanos , Fosfatos/farmacologia , NF-kappa B , Lipopolissacarídeos , Inulina/farmacologia , Receptor 4 Toll-Like/metabolismo , Inflamação
18.
Am J Clin Nutr ; 119(2): 496-510, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309832

RESUMO

BACKGROUND: Inulin-type fructans (ITF) are the leading prebiotics in the market. Available evidence provides conflicting results regarding the beneficial effects of ITF on cardiovascular disease risk factors. OBJECTIVES: This study aimed to evaluate the effects of ITF supplementation on cardiovascular disease risk factors in adults. METHODS: We searched MEDLINE, EMBASE, Emcare, AMED, CINAHL, and the Cochrane Library databases from inception through May 15, 2022. Eligible randomized controlled trials (RCTs) administered ITF or placebo (for example, control, foods, diets) to adults for ≥2 weeks and reported one or more of the following: low, very-low, or high-density lipoprotein cholesterol (LDL-C, VLDL-C, HDL-C); total cholesterol; apolipoprotein A1 or B; triglycerides; fasting blood glucose; body mass index; body weight; waist circumference; waist-to-hip ratio; systolic or diastolic blood pressure; or hemoglobin A1c. Two reviewers independently and in duplicate screened studies, extracted data, and assessed risk of bias. We pooled data using random-effects model, and assessed the certainty of evidence (CoE) using the Grading of Recommendations, Assessment, Development and Evaluation approach. RESULTS: We identified 1767 studies and included 55 RCTs with 2518 participants in meta-analyses. The pooled estimate showed that ITF supplementation reduced LDL-C [mean difference (MD) -0.14 mmol/L, 95% confidence interval (95% CI: -0.24, -0.05), 38 RCTs, 1879 participants, very low CoE], triglycerides (MD -0.06 mmol/L, 95% CI: -0.12, -0.01, 40 RCTs, 1732 participants, low CoE), and body weight (MD -0.97 kg, 95% CI: -1.28, -0.66, 36 RCTs, 1672 participants, low CoE) but little to no significant effect on other cardiovascular disease risk factors. The effects were larger when study duration was ≥6 weeks and in pre-obese and obese participants. CONCLUSION: ITF may reduce low-density lipoprotein, triglycerides, and body weight. However, due to low to very low CoE, further well-designed and executed trials are needed to confirm these effects. PROSPERO REGISTRATION NUMBER: CRD42019136745.


Assuntos
Doenças Cardiovasculares , Inulina , Adulto , Humanos , Inulina/farmacologia , Inulina/uso terapêutico , Doenças Cardiovasculares/prevenção & controle , Frutanos/farmacologia , Frutanos/uso terapêutico , LDL-Colesterol , Ensaios Clínicos Controlados Aleatórios como Assunto , Peso Corporal , Obesidade , Triglicerídeos
19.
Int J Biol Macromol ; 262(Pt 2): 129207, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185305

RESUMO

Nanozymes with oxidase or peroxidase-mimicking activity have emerged as a promising alternative for disinfecting resistant pathogens. However, further research and clinical applications of nanozymes are hampered by their low in vivo biosafety and biocompatibility. In this study, inulin-confined gold nanoparticles (IN@AuNP) are synthesized as an antibacterial agent via a straightforward in situ reduction of Au3+ ions by the hydroxyl groups in inulin. The IN@AuNP exhibits both peroxidase-mimicking and oxidase-mimicking catalytic activities, of which the maximum reaction velocity (Vmax) for H2O2 is 2.66 times higher than that of horseradish peroxidase. IN@AuNP can catalyze the production of reactive oxygen species (ROS), resulting in effective antibacterial behavior against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Abundant hydroxyl groups retained in inulin endow the nanozyme with high adhesion to bacteria, reducing the distance between the captured bacteria and ROS, achieving an antibacterial ratio of 100 % within 1 h. Importantly, due to the natural biosafety and non-absorption of the dietary fiber inulin, as well as the inability of inulin-trapped AuNP to diffuse, the IN@AuNP exhibits high biosafety and biocompatibility under physiological conditions. This work is expected to open a new avenue for nanozymes with great clinical application value.


Assuntos
Inulina , Nanopartículas Metálicas , Inulina/farmacologia , Antibacterianos/farmacologia , Ouro/farmacologia , Espécies Reativas de Oxigênio , Adesivos , Peróxido de Hidrogênio , Contenção de Riscos Biológicos , Peroxidases , Escherichia coli
20.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G216-G227, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193197

RESUMO

Ulcerative colitis (UC) is an inflammatory disease with abdominal pain, diarrhea, and bloody stool as the main symptoms. Several studies have confirmed that polysaccharides are effective against UC. It is commonly accepted that the traditional benefits of Radix Codonopsis can be attributed to its polysaccharide contents, and inulin-type fructan CP-A is the main active monomer in the polysaccharide components. Herein, we established a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced UC rat model and lipopolysaccharide (LPS)-induced colonic epithelial cell model (NCM460) to investigate the effect of CP-A on UC. Untargeted metabolomics studies were conducted to identify differential metabolites using ultra-high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF/MS) and enrich metabolic pathways in rat serum. The in vivo assays demonstrated that CP-A reduces colonic macroscopic injury, disease activity index (DAI), histopathological score, interleukin (IL)-8, and tumor necrosis factor-α (TNF-α) levels, as well as the expression of intercellular adhesion molecules. On the other hand, CP-A increases IL-10 and transforming growth factor-ß (TGF-ß) levels. The in vitro experiments indicated that CP-A treatment could reduce nitric oxide (NO) and IL-1ß after LPS stimulation. The metabolomics results suggested that CP-A therapy for UC may be related to the mammalian target of rapamycin (mTOR) signaling pathway. The in vitro and in vivo validation of the pathway showed similar results, indicating that CP-A alleviates UC by preventing the activation of mTOR/p70S6K signaling pathway. These findings offer a fresh approach to treating UC and a theoretical foundation for the future advancement of CP-A.NEW & NOTEWORTHY We report that an inulin-type fructan from Codonopsis pilosula CP-A exhibits a therapeutic effect on experimental colitis. Its mechanism may be to alleviate intestinal inflammation by preventing the activation of mammalian target of rapamycin (mTOR)/p70S6K signaling pathway. These findings offer a fresh approach to treating ulcerative colitis (UC) and a theoretical foundation for the future advancement of CP-A.


Assuntos
Codonopsis , Colite Ulcerativa , Colite , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Inulina/farmacologia , Frutanos/efeitos adversos , Frutanos/química , Codonopsis/química , Proteínas Quinases S6 Ribossômicas 70-kDa/uso terapêutico , Ácidos Sulfônicos/efeitos adversos , Lipopolissacarídeos , Polissacarídeos , Serina-Treonina Quinases TOR , Colite/induzido quimicamente , Colite/tratamento farmacológico , Modelos Animais de Doenças , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...