Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(7)2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37510375

RESUMO

Abscisic acid (ABA), a critical phytohormone that regulates plant development and stress response, is sensed by the ABA receptors PYR/PYL/RCAR (PYLs). The PYL genes have been widely studied in multiple plant species, while a systematic analysis of PYL genes in the genus Ipomoea remains unperformed. Here, a total of 13, 14, and 14 PYLs were identified in Ipomoea batatas, Ipomoea trifida, and Ipomoea triloba, respectively. Fragment duplication was speculated to play prominent roles in Ipomoea PYL gene expansions. These Ipomoea PYLs were classified into three subfamilies via phylogenetic analysis, which was supported by exon-intron structures and conserved motif analyses. Additionally, the interspecies collinearity analysis further depicted a potential evolutionary relationship between them. Moreover, qRT-PCR analysis showed that multiple IbPYLs are highly and differentially responsive to abiotic stress treatments, suggesting their potential roles in sweetpotato stress responses. Taken together, these data provide valuable insights into the PYLs in the genus Ipomoea, which may be useful for their further functional analysis of their defense against environmental changes.


Assuntos
Ipomoea batatas , Ipomoea , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Ipomoea/genética , Ipomoea/metabolismo , Filogenia , Estresse Fisiológico/genética , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo
2.
Sci Total Environ ; 872: 162278, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36801319

RESUMO

The ubiquity of plastic pollution has emerged as a perplexing issue for aquatic and terrestrial plants. To assess the toxic effects of polystyrene NPs (PS-NPs, 80 nm), we conducted a hydroponic experiment in which water spinach (Ipomoea aquatica Forsk) was subjected to low (0.5 mg/L), medium (5 mg/L), and high (10 mg/L) concentrations of fluorescent PS-NPs for 10 days to examine their accumulation and transportation in water spinach and associated impacts on growth, photosynthesis, antioxidant defense systems. Laser confocal scanning microscopy (LCSM) observations at 10 mg/L PS-NPs exposure indicated that PS-NPs only adhered to the root surface of water spinach and were not transported upward, indicating that short-term exposure to high concentrations of PS-NPs (10 mg/L) did not cause the internalization of PS-NPs in the water spinach. However, this high concentration of PS-NPs (10 mg/L) discernibly inhibited the growth parameters (fresh weight, root length and shoot length), albeit failed to induce any significant impact on chlorophyll a and chlorophyll b concentrations. Meanwhile, high concentration of PS-NPs (10 mg/L) significantly decreased the SOD and CAT activities in leaves (p < 0.05). At the molecular level, low and medium concentrations of PS-NPs (0.5, 5 mg/L) significantly promoted the expression of photosynthesis (PsbA and rbcL) and antioxidant-related (SIP) genes in leaves (p < 0.05), and high concentration of PS-NPs (10 mg/L) significantly increased the transcription levels of antioxidant-related (APx) genes (p < 0.01). Our results imply that PS-NPs accumulate in the roots of water spinach, compromising the upward transport of water and nutrients and undermining the antioxidant defense system of the leaves at the physiological and molecular levels. These results provide a fresh perspective to examine the implications of PS-NPs on edible aquatic plants, and future efforts should be focused intensively on the impacts of PS-NPs on agricultural sustainability and food security.


Assuntos
Ipomoea , Poliestirenos , Clorofila A/metabolismo , Poliestirenos/toxicidade , Microplásticos/metabolismo , Ipomoea/metabolismo , Antioxidantes/metabolismo
3.
New Phytol ; 238(4): 1351-1361, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36727281

RESUMO

Heritable fungal endosymbiosis is underinvestigated in plant biology and documented in only three plant families (Convolvulaceae, Fabaceae, and Poaceae). An estimated 40% of morning glory species in the tribe Ipomoeeae (Convolvulaceae) have associations with one of two distinct heritable, endosymbiotic fungi (Periglandula and Chaetothyriales) that produce the bioactive metabolites ergot alkaloids, indole diterpene alkaloids, and swainsonine, which have been of interest for their toxic effects on animals and potential medical applications. Here, we report the occurrence of ergot alkaloids, indole diterpene alkaloids, and swainsonine in the Convolvulaceae; and the fungi that produce them based on synthesis of previous studies and new indole diterpene alkaloid data from 27 additional species in a phylogenetic, geographic, and life-history context. We find that individual morning glory species host no more than one metabolite-producing fungal endosymbiont (with one possible exception), possibly due to costs to the host and overlapping functions of the alkaloids. The symbiotic morning glory lineages occur in distinct phylogenetic clades, and host species have significantly larger seed size than nonsymbiotic species. The distinct and widely distributed endosymbiotic relationships in the morning glory family and their alkaloids provide an accessible study system for understanding heritable plant-fungal symbiosis evolution and their potential functions for host plants.


Assuntos
Alcaloides , Convolvulaceae , Alcaloides de Claviceps , Ipomoea , Animais , Convolvulaceae/metabolismo , Convolvulaceae/microbiologia , Swainsonina/metabolismo , Filogenia , Ipomoea/genética , Ipomoea/metabolismo , Ipomoea/microbiologia , Alcaloides de Claviceps/metabolismo , Alcaloides/metabolismo , Alcaloides Diterpenos
4.
Mar Pollut Bull ; 185(Pt A): 114228, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36274557

RESUMO

Ipomoea cairica (L.) Sweet is an invasive plant that cause serious invasion and damage in South China. Phaeocystis globosa is a common harmful algal bloom species on the southeast coast of China. Both species cause great environmental disturbances and serious economic damage to the localregion. This study explored the potential inhibitory effects of I. cairica leaf extracts on P. globosa. The results showed that solitary cells growth was inhibited at extract concentrations higher than 0.25 % (v/v). Although the colony diameter did not change, and the colony number increased rapidly in the first 36 h, we found that cells in the colonies had been damaged using scanning electron microscope and SYTOX-Green staining at 48 h. In addition, the rapid light-response curve of cells treated with extracts decreased, along with down-regulation of photosynthesis-related genes (psbA, psbD, and rbcL), suggesting damage to the photosynthetic system. Finally, the activities of antioxidant enzymes including superoxide dismutase, peroxidase, and catalase increased with increasing treatment time, indicating that cells activate antioxidant enzyme defense systems to alleviate the production of reactive oxygen species (ROS). Increased ROS levels disrupt cell membranes, alter cellular ultrastructures, and ultimately lead to cell death. This study not only achieved the reuse of invasive plant resources, but also demonstrated that I. cairica leaf extract has potential value as an algaecide.


Assuntos
Haptófitas , Ipomoea , Ipomoea/química , Ipomoea/metabolismo , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proliferação Nociva de Algas
5.
Genes (Basel) ; 13(8)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36011339

RESUMO

The sweet potato (Ipomoea batatas (L.) Lam.) is an important and widely grown crop, and the nitrogenase reductase (nifH) gene is the most widely sequenced marker gene used to identify nitrogen-fixing bacteria and archaea. There have been many examples of the isolation of the diazotrophic endophytes in sweet potatoes, and there has been no report on whether sweet potatoes and their wild ancestors harbored nifH genes. In this study, a comprehensive analysis of nifH genes has been conducted on these species by using bioinformatics and molecular biology methods. A total of 20, 19 and 17 nifH genes were identified for the first time in sweet potatoes, I. trifida and I. triloba, respectively. Based on a phylogenetic analysis, all of the nifH genes, except for g10233.t1, itf14g14040.t1 and itb14g15470.t1, were clustered into five independent clades: I, II, III, IV and V. The nifH genes clustered in the same phylogenetic branch showed a more similar distribution of conserved motifs and exons-introns than those of the other ones. All of the identified genes were further mapped on the 15 chromosomes of the sweet potato, I. trifida and I. triloba. No segmental duplication was detected in each genome of three Ipomoea species, and 0, 8 and 7 tandemly duplicated gene pairs were detected in the genome of the sweet potato, I. trifida and I. triloba, respectively. Synteny analysis between the three Ipomoea species revealed that there were 7, 7 and 8 syntenic gene pairs of nifH genes detected between the sweet potato and I. trifida, between the sweet potato and I. triloba and between I. trifida and I. triloba, respectively. All of the duplicated and syntenic nifH genes were subjected to purifying selection inside duplicated genomic elements during speciation, except for the tandemly duplicated gene pair itf11g07340.t2_itf11g07340.t3, which was subjected to positive selection. Different expression profiles were detected in the sweet potato, I. trifida and I. triloba. According to the above results, four nifH genes of the sweet potato (g950, g16683, g27094 and g33987) were selected for quantitative real-time polymerase chain reaction (qRT-PCR) analysis in two sweet potato cultivars (Eshu 15 and Long 9) under nitrogen deficiency (N0) and normal (N1) conditions. All of them were upregulated in the N1 treatment and were consistent with the analysis of the RNA-seq data. We hope that these results will provide new insights into the nifH genes in the sweet potato and its wild ancestors and will contribute to the molecular breeding of sweet potatoes in the future.


Assuntos
Ipomoea batatas , Ipomoea , Ipomoea/genética , Ipomoea/metabolismo , Ipomoea batatas/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia
6.
Genes (Basel) ; 13(6)2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35741805

RESUMO

Expansins play important roles in root growth and development, but investigation of the expansin gene family has not yet been reported in Ipomoea trifida, and little is known regarding storage root (SR) development. In this work, we identified a total of 37 expansins (ItrEXPs) in our previously reported SR-forming I. trifida strain Y22 genome, which included 23 ItrEXPAs, 4 ItrEXPBs, 2 ItrEXLAs and 8 ItrEXLBs. The phylogenetic relationship, genome localization, subcellular localization, gene and protein structure, promoter cis-regulating elements, and protein interaction network were systematically analyzed to reveal the possible roles of ItrEXPs in the SR development of I. trifida. The gene expression profiling in Y22 SR development revealed that ItrEXPAs and ItrEXLBs were down-regulated, and ItrEXPBs were up-regulated while ItrEXLAs were not obviously changed during the critical period of SR expansion, and might be beneficial to SR development. Combining the tissue-specific expression in young SR transverse sections of Y22 and sweetpotato tissue, we deduced that ItrEXLB05, ItrEXLB07 and ItrEXLB08 might be the key genes for initial SR formation and enlargement, and ItrEXLA02 might be the key gene for root growth and development. This work provides new insights into the functions of the expansin gene family members in I. trifida, especially for EXLA and EXLB subfamilies genes in SR development.


Assuntos
Ipomoea batatas , Ipomoea , Diploide , Regulação da Expressão Gênica de Plantas/genética , Ipomoea/genética , Ipomoea/metabolismo , Ipomoea batatas/genética , Filogenia
7.
Pestic Biochem Physiol ; 184: 105111, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715050

RESUMO

Ipomea purpurea (L.) Roth. reduces dry land crop yield and quality in Northeast China, especially in Liaoning Province. Frequent use of thifensulfuron-methyl in recent years has resulted in herbicide resistance in I. purpurea. We evaluated resistance levels of I. purpurea to thifensulfuron-methyl, an acetolactate synthase (ALS) inhibitor, in Liaoning Province and further investigated the resistance mechanisms. The results showed that 15 populations of I. purpurea have evolved up to 5.81-34.44-fold resistance to thifensulfuron-methyl, compared to the susceptible population (S), among which LN3 was the most resistant. DNA sequencing of the ALS gene in susceptible and resistant populations did not reveal any target site mutations that could be associated with resistance to thifensulfuron-methyl in I. purpurea. Additionally, no significant difference was detected between the in vitro ALS activity of LN3 and S. The GR50 of LN3 decreased sharply by 47% when malathion (a P450 inhibitor) was applied with thifensulfuron-methyl. Absorption of thifensulfuron-methyl by LN3 was equal to that of S; however, LN3 metabolized the herbicide significantly faster. This was repressed after the inhibition of P450s activity. Collectively, our results confirmed that I. purpurea in Liaoning Province has developed resistance to thifensulfuron-methyl and implied that the resistance was conferred by the increase in detoxification mediated by P450s. Furthermore, LN3 was sensitive to fluroxypyr, which can be used as an alternative to control I. purpurea.


Assuntos
Acetolactato Sintase , Herbicidas , Ipomoea , Acetolactato Sintase/metabolismo , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Ipomoea/genética , Ipomoea/metabolismo , Proteínas de Plantas/genética , Compostos de Sulfonilureia , Tiofenos
8.
Chemosphere ; 297: 134073, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35227748

RESUMO

The objective of this research was to evaluate the efficacy of cinnamon wood biochar (CWBC) in adsorbing sulfamethoxazole (SUL), which alleviates bioavailability and plant uptake. Batch studies at various pH, contact times, and initial SUL loading were used to study SUL adsorption in CWBC, soil, and 2.5% CWBC amended soil. SUL mitigation from plant uptake were examined using Ipomoea aquatica at different SUL contamination levels in the soil. The kinetic results were described by pseudo-second-order with maximum adsorption capacities (Qmax) of 95.64 and 0.234 mg/g for pristine CWBC and amendment, respectively implying that chemical interactions are rate-determining stages. Hill and Toth's model described the isotherm data for pristine CWBC, soil and CWBC amended soil as Qmax of 113.44, 0.72, and 3.45 mg/g. Column data showed a great mobilization of SUL in loamy sand; however, when CWBC was added to the loamy sand, the mobilization was drastically reduced by 98.8%. The Ipomoea aquatica showed a great potential to SUL uptake and it depended on the contamination level; the SUL accumulation in plant was 9.6-13.8 and 19.1-48 mg/kg when soil was spiked with 5 and 50 mg/kg, respectively. The addition of 2.5% CWBC reduced root and shoot uptake by 30 and 95%, respectively in 5 mg/kg of SUL, whereas with 50 mg/kg of SUL, the root and shoot uptake was reduced by 60 and 61%, respectively. The current study suggested CWBC as a possible adsorbent that may be employed to reduce SUL bioavailability in environmental matrices.


Assuntos
Ipomoea , Poluentes do Solo , Disponibilidade Biológica , Carvão Vegetal , Cinnamomum zeylanicum/metabolismo , Ipomoea/metabolismo , Areia , Solo , Poluentes do Solo/análise , Sulfametoxazol , Madeira/química
9.
Sci Total Environ ; 819: 153242, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35051479

RESUMO

Heavy metal-immobilizing bacteria are normally capable of stabilizing metals and affecting their absorption by plants. However, few studies have elucidated the mechanisms employed by novel heavy metal-immobilizing and plant growth-promoting bacteria to immobilize Cd and Pb and reduce their uptake by vegetables. In this study, polyamine (PA)-producing strains were isolated and their effects on biomass and metal accumulation in water spinach (Ipomoea aquatica Forssk.) and the underlying mechanisms were investigated. Two PA-producing strains, Enterobacter bugandensis XY1 and Serratia marcescens X43, were isolated. Strains XY1 and X43 reduced the aqueous Cd and Pb levels (49%-52%) under 10 mg L-1 Cd and 20 mg L-1 Pb because of metal ion chelation by bacterially produced PAs and cell adsorption. Further evidence showed that Cd and Pb were bound and precipitated on the bacterial cell surface in the form of Cd(OH)2, CdCO3 and PbO. Compared with strain-free water spinach, greens inoculated with strains XY1 and X43 showed 51%-80% lower Cd and Pb contents. The rhizosphere soil pH and PA contents were significantly higher, and lower contents of the rhizosphere soil acid-soluble fractions of Cd (18%-39%) and Pb (31%-37%) were observed compared to the noninoculated control. Moreover, inoculation with XY1 reduced the diversity of the bacterial community, but the relative abundances of plant growth-promoting and PA-producing bacteria in rhizosphere soil were enriched, which enhanced water spinach resistance to Cd and Pb toxicity. Our findings describe novel heavy metal-immobilizing bacteria that could be used to improve the habitat of vegetables and reduce their uptake of heavy metals.


Assuntos
Ipomoea , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Ipomoea/metabolismo , Chumbo/toxicidade , Metais Pesados/análise , Solo/química , Poluentes do Solo/análise
10.
Molecules ; 26(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567661

RESUMO

The study was undertaken to investigate the antioxidant, genotoxic, and cytotoxic potentialities of phyto-fabricated zinc oxide nanoparticles (ZnO-NPs) from Ipomoea obscura (L.) Ker Gawl. aqueous leaf extract. The UV-visible spectral analysis of the ZnO-NPs showed an absorption peak at 304 nm with a bandgap energy of 3.54 eV, which are characteristics of zinc nanoparticles. Moreover, the particles were of nano-size (~24.26 nm) with 88.11% purity and were agglomerated as observed through Scanning Electron Microscopy (SEM). The phyto-fabricated ZnO-NPs offered radical scavenging activity (RSA) in a dose-dependent manner with an IC50 of 0.45 mg mL-1. In addition, the genotoxicity studies of ZnO-NPs carried out on onion root tips revealed that the particles were able to significantly inhibit the cell division at the mitotic stage with a mitotic index of 39.49%. Further, the cytotoxic studies on HT-29 cells showed that the phyto-fabricated ZnO-NPs could arrest the cell division as early as in the G0/G1 phase (with 92.14%) with 73.14% cells showing early apoptotic symptoms after 24 h of incubation. The results of the study affirm the ability of phyto-fabricated ZnO-NPs from aqueous leaf extract of I. obscura is beneficial in the cytotoxic application.


Assuntos
Ipomoea/metabolismo , Nanopartículas/química , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Compostos de Bifenilo/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/metabolismo , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/toxicidade , Química Verde , Células HT29 , Humanos , Testes de Mutagenicidade , Cebolas/efeitos dos fármacos , Cebolas/genética , Picratos/química , Óxido de Zinco/metabolismo , Óxido de Zinco/toxicidade
11.
J Plant Physiol ; 255: 153276, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33059125

RESUMO

Wild relatives of crops are often rich in genetic resources and provide great possibilities for crop improvement. Ipomoea pes-caprae is one of the wild relatives of sweet potato and has high salt tolerance. Transcriptomes in the treatment and control groups at various times were sequenced to identify salt tolerance genes and salt response pathways. A total of 40,525 genes were obtained, of which 2478 and 3334 were differentially expressed in the roots and leaves of I. pes-caprae under salt stress, respectively. Identification of candidate genes revealed that the mitogen-activated protein kinase (MAPK) signaling pathway of plants and plant hormone signal transduction participates in the salt signal of I. pes-caprae under salt stress. Homology to ABI2 (HAB2) and Clade A protein phosphatases type 2C (HAI1), which encode two protein phosphatases 2C (PP2C) in the abscisic acid (ABA) signal pathway, were continuously up-regulated upon salt stress, indicating their key role in the salt signal transduction pathway of I. pes-caprae. The expression of EIN3-binding F-box protein 1 (EBF1) in the ethylene signaling pathway was also up-regulated, revealing that the salt tolerance of I. pes-caprae was related to the scavenging of reactive oxygen species (ROS). This study provides insights into the mechanism of salt-tolerant plants and the mining of salt-tolerant genes in sweet potato for the innovation of germplasm resources.


Assuntos
Sequência de Bases , Ipomoea/genética , Ipomoea/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino/genética , Tolerância ao Sal/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Salino/fisiologia , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo
12.
Ecotoxicol Environ Saf ; 206: 111184, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32861009

RESUMO

The potential toxicity of Cr to plants poses a severe threat to human health. Biochar and Se can reduce the absorption of Cr and its phytotoxicity in plants, but the associated mechanisms at subcellular levels have not been addressed in depth. A study was designed to investigate the effects of biochar, foliar application of Se, and their combination on the physicochemical and biological properties of the soil, Cr availability, Cr absorption, and Cr subcellular distribution in each part of the plant, and biomass and quality of two water spinach (Ipomoea aquatica) genotypes. The results showed that biochar, Se, and their combination increased the organic matter content and available NPK nutrients in the soil and improved the urease, phosphatase, catalase, and sucrase activities in the soil. Furthermore, they also increased the number of bacteria, actinomycetes, and fungi in the soil, were conducive to dry matter accumulation in I. aquatica, and increased the contents of soluble sugar and soluble protein in its leaves. The Cr contents in the roots and shoots of I. aquatica under different treatments were reduced compared with those in the control group. The content of Cr(VI) in the root-soil of I. aquatica with low Cr accumulation and the contents of Cr in various parts of I. aquatica were lower than those in I. aquatica with high Cr accumulation, and the absorbed Cr was mainly accumulated in the roots. Cr was mainly distributed in the cell walls and soluble fractions of the roots, stems, and leaves of I. aquatica and was less distributed in the organelles. Biochar and Se helped to increase the proportion of Cr in the cell walls of the roots and soluble fractions of the leaves of I. aquatica. The effects of improving the soil properties, passivating and inhibiting Cr absorption by I. aquatica, and reducing the Cr proportion in the organelles of biochar were superior to those of Se application. The foliar application of Se and biochar had no synergistic effect on inhibiting Cr absorption by I. aquatica. Based on these findings, the application of biochar in Cr-contaminated soil or foliar application of Se with low Cr-accumulating plants may be effective means of reducing the Cr absorption by plants and its toxicity to ensure the safe production of agricultural products in Cr-contaminated regions.


Assuntos
Carvão Vegetal/química , Cromo/análise , Ipomoea/efeitos dos fármacos , Selênio/farmacologia , Poluentes do Solo/análise , Transporte Biológico , Biomassa , Cromo/metabolismo , Ipomoea/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Selênio/metabolismo , Solo/química , Poluentes do Solo/metabolismo
13.
Ecotoxicol Environ Saf ; 195: 110486, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32200151

RESUMO

This study aimed at assessing heavy metals (Fe, Mn, Zn, Cu, Cr and Pb) in four perennial halophytes (viz. Heliotropium bacciferum, Halopyrum mucronatum, Ipomoea pes-caprae and Salsola imbricata) growing at two sites on the Karachi coast. Site - II, closer to the Industrial area had higher bioavailability as well as translocation factor (TF) for most of the heavy metals and Na+ where soil sediments had lower pH (approximately 7.5), higher salinity (EC) and organic matter (OM). Site - I which was far from Industrial area had comparatively higher bio-concentration factor (BCF) and lower TF for metal ions and soil pH of 8.1-9. Metal accumulation in plants was both site and species specific. Extractable concentration of shoot Pb in all tested halophytes was above normal of the threshold values (i.e., >0.3 mg kg-1) while Mn (<50 mg kg-1) and Cu (<40 mg kg-1) were within permissible limits. Salsola imbricata had highest Na+ at both sites (site - I = 73; site - II = 98 mg kg-1) with and 10 mg kg-1 extractable shoot Pb at site - I. Ipomea pes-caprae also accumulated shoot Pb higher than normal (site - I = 3.3; site - II = 0.8 mg kg-1) with lowest Na+ content. Heliotropium bacciferum had higher extractable Pb (site - I = 10.5; II = 2.75) with >20 mg kg-1 Na+ in shoot while maintaining > 1 TF for Pb, Cu, Mn and Zn at site - I and all tested metals at site - II. Halopyrum mucronatum had highest shoot Fe (644 mg kg-1), Zn (63 mg kg-1) and Cr (9.2 mg kg-1) at site - II and above threshold values of Pb at both sites (site - I = 8.2; site - II = 2.5 mg kg-1) which makes this species an ideal bio-indicator candidate while other species could be potentially used for Pb phytoremediation.


Assuntos
Bioacumulação , Monitoramento Ambiental/métodos , Metais Pesados/análise , Plantas Tolerantes a Sal/metabolismo , Poluentes do Solo/análise , Solo/química , Biodegradação Ambiental , Disponibilidade Biológica , Ipomoea/crescimento & desenvolvimento , Ipomoea/metabolismo , Metais Pesados/metabolismo , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Poluentes do Solo/metabolismo
14.
Chemosphere ; 247: 125916, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32069716

RESUMO

Arsenic (As) and cadmium (Cd) are ubiquitous in the environment and they are both toxic to humans. When present in soils, they can enter food chain, thereby threatening human health. Water spinach (Ipomoea aquatica) is an important leafy vegetable, which is widely consumed in Asian countries. However, it is efficient in taking up As and Cd from soils and accumulating them in the edible parts. Therefore, it is of significance to reduce its As and Cd content, especially in contaminated soil. In this study, pot experiments were conducted to investigate the ability of As-hyperaccumulator Pteris vittata in reducing As and Cd uptake by water spinach under different phosphorus treatments. P. vittata was grown for 60 d in a contaminated-soil amended with P fertilizer (+P) or phosphate rock (+PR), followed by water spinach cultivation for another 30 d. Plant biomass, As and Cd contents in plants and soils, and soil pH were analyzed. We found that, P. vittata coupled with PR decreased the As concentration in water spinach shoots by 42%, probably due to As uptake by P. vittata. Moreover, P. vittata decreased the Cd accumulation in water spinach by 24-44%, probably due to pH increase of 0.47-0.61 after P. vittata cultivation. Taking together, the results showed that P. vittata coupled with PR decreased the As and Cd content in water spinach, which is of significance for improving food safety and protecting human health.


Assuntos
Arsênio/metabolismo , Biodegradação Ambiental , Cádmio/metabolismo , Ipomoea/metabolismo , Fosfatos/química , Pteris/química , Poluentes do Solo/metabolismo , Arsênio/análise , Biomassa , Cádmio/análise , Fertilizantes , Fósforo , Folhas de Planta/química , Solo/química , Poluentes do Solo/análise , Verduras , Água
15.
J Agric Food Chem ; 68(10): 3006-3016, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-31986035

RESUMO

An increase in crop competitiveness relative to weed interference has the potential to reduce crop yield losses. In this study, the effects of phytoalexin resveratrol were examined in Zea mays L. (corn) and in the weed species Ipomoea grandifolia (Dammer) O'Donell (morning glory). At a concentration range from 220 to 2200 µM resveratrol exerted a stimulus on Z. mays seedling growth that was more pronounced at low concentrations; in the weed species I. grandifolia, resveratrol exerted inhibitory action on seedling growth in all of the assayed concentration range. In I. grandifolia, resveratrol also inhibited the respiratory activity of the primary roots. In mitochondria isolated from Z. mays roots, resveratrol at concentrations above 440 µM inhibited the respiration coupled to ADP phosphorylation and the activities of NADH-oxidase, succinate-oxidase, and ATPsynthase. These effects were not reproduced in Z. mays grown in the presence of resveratrol as the respiratory activities of the roots were not affected. The finding that the resveratrol exerts beneficial effects on growth of Z. mays seedlings and inhibits the growth of I. grandifolia heightens the potential of resveratrol application for crop protection.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Ipomoea/efeitos dos fármacos , Resveratrol/farmacologia , Zea mays/efeitos dos fármacos , Ipomoea/crescimento & desenvolvimento , Ipomoea/metabolismo , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Plantas Daninhas/metabolismo , Resveratrol/análise , Sesquiterpenos/análise , Sesquiterpenos/farmacologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Fitoalexinas
16.
Chemosphere ; 246: 125798, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31927376

RESUMO

Availability of cadmium (Cd) and nitrate and their transfer to green leafy vegetables is highly dependent on physical, chemical and biochemical conditions of the soil. The phenotypic characteristics, accumulation of hazardous materials and rhizosphere properties of two ecotypes of water spinach in response to water stress were investigated. Flooding significantly enhanced plant growth and decreased Cd and nitrate concentrations in the shoot and root of both ecotypes of water spinach. Flooding extensively changed the physicochemical properties and biological processes in the rhizosphere, including increased pH and activities of urease and acid phosphatase, and decreased availability of Cd and nitrate and activity of nitrate reductase. Furthermore, flooding increased rhizosphere bacteria community diversity (including richness and evenness) and changed their community structure. Denitrifying bacteria (Clostridiales, Azoarcus and Pseudomonas), toxic metal resistant microorganisms (Rhodosporillaceae, Rhizobiales and Geobacter) were enriched in the rhizosphere under flooding conditions, and the plant growth-promoting taxa (Sphingomonadaceae) were preferentially colonized in the high accumulator (HA) rhizosphere region. These results indicated that flooding treatments result in biochemical and microbiological changes in soil, especially in the rhizosphere and reduced the availability of Cd and nitrate to plants, thus decreasing their uptake by water spinach. It is, therefore, possible to promote crop growth and reduce the accumulation of hazardous materials in vegetable crops like water spinach by controlling soil moisture conditions.


Assuntos
Agricultura/métodos , Cádmio/metabolismo , Ipomoea/metabolismo , Nitratos/metabolismo , Poluentes do Solo/metabolismo , Bactérias , Transporte Biológico , Cádmio/análise , Ecótipo , Poluição Ambiental , Rizosfera , Solo/química , Poluentes do Solo/análise , Verduras , Água
17.
Genes Genomics ; 42(3): 325-335, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31894476

RESUMO

BACKGROUND: DEAD-box protein family is the largest subfamily of RNA helicases and plays an important role in RNA metabolism and plant growth, development, and stress responses. Although DEAD-box genes have been characterized in various major crop plants, their identification and characterization in Convolvulaceae is still in infancy. Sweet potato (Ipomoea batatas, in Convolvulaceae) is the seventh most important crop in the world. Ipomoea trifida is one of the ancestors of sweet potato and is an effective resource for sweet potato cross-breeding. OBJECTIVE: Identification and characterisation of DEAD-box transcription factors in sweet potato wild ancestor I. trifida genome. METHOD: A systematic genome-wide analysis was conducted to identify the DEAD-box transcription factors in the I. trifida genome. RESULTS: We identified 17 ItfDEAD-box genes which distributed unevenly on the nine chromosomes of I. trifida and encoded 29 DEAD transcripts. The phylogenetic analysis classified the DEAD-box proteins into nine groups named I-IX. Homology model prediction of ItfDEAD-box proteins obtained 14 models which lay a preliminary foundation for the further functional exploration of the ItfDEAD-box proteins. The tissue-specific and abiotic stress-responsive expression profiles of ItfDEAD-box genes were analyzed in different tissues and under abiotic stress responses by RNA-seq data and confirmed by quantitative PCR analysis. Some genes were significantly up- or down-regulated by different abiotic stress, suggesting that ItfDEAD-box plays a crucial role in stress responses in I. trifida. CONCLUSION: The identification and gene expression of the ItfDEAD-box gene family might shed light on the function exploration of DEAD-box gene in I. trifida and promote the molecular breeding of sweet potato.


Assuntos
RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Ipomoea/metabolismo , Estresse Fisiológico/genética , Mapeamento Cromossômico , Resposta ao Choque Frio/genética , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Bases de Dados Genéticas , Secas , Genes de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Resposta ao Choque Térmico/genética , Ipomoea/enzimologia , Ipomoea/genética , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Modelos Moleculares , Especificidade de Órgãos/genética , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA-Seq , Estresse Salino/genética
18.
Phytochemistry ; 170: 112221, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31790908

RESUMO

The ICChI is a 35-kDa, glycosylated protein isolated from the latex of the weed Ipomoea carnea. It displays chitinase and lysozyme activity, which could be important for the defense against pathogenic fungi, insects and bacteria. The ICChI enzyme was crystallized, and a diffraction data set was collected from a single crystal to 1.42 Å resolution. The crystals belong to the primitive tetragonal space group P43212, with unit-cell parameters a = b = 57.9, c = 172.0 Å, and α = ß = Î³ = 90°. The structure was elucidated by molecular replacement method using a mixed model of three homologous structures from the N-terminal sequence of ICChI. The refined model consists of 272 amino acid residues and has a Rfactor of 18.93% and Rfree of 22.42%. The protein consists of a single globular domain with a (α/ß)8 triosephosphate isomerase barrel fold. Three of the consensus sites for N-glycosylation viz., Asn45, Asn172, and Asn194 containing carbohydrate moieties N-Acetylglucosamine (NAG), mannose, fucose, and xylose. The putative catalytic residues are Asp125, Glu127, and Tyr184. The crystal structure may provide fundamental information of GH18 family chitinases.


Assuntos
Quitinases/metabolismo , Ipomoea/química , Muramidase/metabolismo , Compostos Fitoquímicos/metabolismo , Proteínas de Plantas/metabolismo , Polissacarídeos/metabolismo , Quitinases/química , Ipomoea/metabolismo , Modelos Moleculares , Muramidase/química , Compostos Fitoquímicos/química , Proteínas de Plantas/química , Polissacarídeos/química
19.
BMC Genomics ; 20(1): 911, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31783728

RESUMO

BACKGROUND: GRAS gene is an important transcription factor gene family that plays a crucial role in plant growth, development, adaptation to adverse environmental condition. Sweet potato is an important food, vegetable, industrial raw material, and biofuel crop in the world, which plays an essential role in food security in China. However, the function of sweet potato GRAS genes remains unknown. RESULTS: In this study, we identified and characterised 70 GRAS members from Ipomoea trifida, which is the progenitor of sweet potato. The chromosome distribution, phylogenetic tree, exon-intron structure and expression profiles were analysed. The distribution map showed that GRAS genes were randomly located in 15 chromosomes. In combination with phylogenetic analysis and previous reports in Arabidopsis and rice, the GRAS proteins from I. trifida were divided into 11 subfamilies. Gene structure showed that most of the GRAS genes in I. trifida lacked introns. The tissue-specific expression patterns and the patterns under abiotic stresses of ItfGRAS genes were investigated via RNA-seq and further tested by RT-qPCR. Results indicated the potential functions of ItfGRAS during plant development and stress responses. CONCLUSIONS: Our findings will further facilitate the functional study of GRAS gene and molecular breeding of sweet potato.


Assuntos
Ipomoea/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Mapeamento Cromossômico , Éxons , Genes de Plantas , Íntrons , Ipomoea/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Transcriptoma
20.
J Chem Ecol ; 45(10): 879-887, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31686336

RESUMO

Many species of morning glories (Convolvulaceae) form symbioses with seed-transmitted Periglandula fungal endosymbionts, which produce ergot alkaloids and may contribute to defensive mutualism. Allocation of seed-borne ergot alkaloids to various tissues of several Ipomoea species has been demonstrated, including roots of I. tricolor. The goal of this study was to determine if infection of I. tricolor by the Periglandula sp. endosymbiont affects Southern root-knot nematode (Meloidogyne incognita) gall formation and host plant biomass. We hypothesized that I. tricolor plants infected by Periglandula (E+) would develop fewer nematode-induced galls compared to non-symbiotic plants (E-). E+ or E- status of plant lines was confirmed by testing methanol extracts from individual seeds for endosymbiont-produced ergot alkaloids. To test the effects of Periglandula on nematode colonization, E+ and E- I. tricolor seedlings were grown in soil infested with high densities of M. incognita nematodes (N+) or no nematodes (N-) for four weeks in the greenhouse before harvesting. After harvest, nematode colonization of roots was visualized microscopically, and total gall number and plant biomass were quantified. Four ergot alkaloids were detected in roots of E+ plants, but no alkaloids were found in E- plants. Gall formation was reduced by 50% in E+ plants compared to E- plants, independent of root biomass. Both N+ plants and E+ plants had significantly reduced biomass compared to N- and E- plants, respectively. These results demonstrate Periglandula's defensive role against biotic enemies, albeit with a potential trade-off with host plant growth.


Assuntos
Alcaloides de Claviceps/química , Hypocreales/metabolismo , Ipomoea/parasitologia , Tylenchoidea/fisiologia , Animais , Biomassa , Cromatografia Líquida de Alta Pressão , Alcaloides de Claviceps/análise , Ipomoea/química , Ipomoea/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Tumores de Planta/parasitologia , Sementes/química , Sementes/metabolismo , Solo/parasitologia , Espectrometria de Massas por Ionização por Electrospray , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...