Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Trop Anim Health Prod ; 55(6): 428, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044408

RESUMO

Antioxidants are considered functional additives against oxidative stress since they avoid nutritional decline in the meat. The main objective of the present study is to evaluate the effect of sweet potato flour (SPF) as a natural antioxidant on carcass yield and physicochemical characteristics of Creole chickens of Mexico (CChM) and Cobb 500 broilers. In total, 210 chickens (105 CChM and 105 Cobb 500 chickens) were randomly assigned to three treatments: 0, 500, and 1000 mg of SPF kg-1 of feed. The Cobb 500 chickens showed higher carcass yield (hot and cold), breast, and breast fillet, whereas the CChM had higher thigh yield (P ≤ 0.05). The yield on the previously mentioned variables was not affected by the inclusion levels of SPF. The initial pH differed because of the effect of the chicken's genotype and the addition of SPF, which was higher on Cobb 500 chicken and on those that were not supplemented with SPF. The birds' skin that consumed SPF presented higher yellowness after 24 h (P ≤ 0.05). CChM manifested a higher dry matter and protein content and a lower content of ash and fat (P ≤ 0.05). In conclusion, Cobb 500 chickens present a higher carcass yield and its components, in addition to a less acid pH; however, CChM offer a higher nutritional contribution, whereas the 500 and 1000 mg addition of SPF increases the skin yellowness, which makes it an alterorganic as a pigment on broiler chicken production.


Assuntos
Antioxidantes , Ipomoea batatas , Animais , Antioxidantes/metabolismo , Galinhas/metabolismo , Dieta/veterinária , Ipomoea batatas/química , Ipomoea batatas/metabolismo , Farinha , México , Ração Animal/análise , Carne/análise
2.
PLoS One ; 18(11): e0288481, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37922280

RESUMO

Abscisic acid (ABA) signaling in plants is essential to several aspects of plant development, such as tolerance to environmental stresses and growth. ABA signaling is also important for storage organ formation in crops, such as sweet potato. However, the repertoire of I. batatas ABA signaling gene families has not yet been fully characterized, so that it is unclear which members of these families are necessary for tuberization. Therefore, genome-wide identification of the sweet potato ABF/ AREB/ ABI5, SnRK2, and PYL gene families was performed, along with phylogenetic, motif, cis-regulatory element (CRE), and expression analyses. Nine ABF, eight SnRK2, and eleven PYL gene family members were identified, and there was high sequence conservation among these proteins that were revealed by phylogenetic and motif analyses. The promoter sequences of these genes had multiple CREs that were involved in hormone responses and stress responses. In silico and qRT-PCR expression analyses revealed that these genes were expressed in various tissues and that IbABF3, IbABF4, IbDPBF3, IbDPBF4, IbPYL4, IbSnRK2.1, and IbSnRK2.2 were significantly expressed during storage root development. These results are an important reference that can be used for functional validation studies to better understand how ABA signaling elicits storage root formation at the molecular level.


Assuntos
Ácido Abscísico , Ipomoea batatas , Ácido Abscísico/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Filogenia , Plantas/metabolismo , Desenvolvimento Vegetal , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant Physiol ; 191(1): 496-514, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36377782

RESUMO

Plant flavonoids are valuable natural antioxidants. Sweet potato (Ipomoea batatas) leaves are rich in flavonoids, regenerate rapidly, and can adapt to harsh environments, making them an ideal material for flavonoid biofortification. Here, we demonstrate that the B-box (BBX) family transcription factor IbBBX29 regulates the flavonoid contents and development of sweet potato leaves. IbBBX29 was highly expressed in sweet potato leaves and significantly induced by auxin (IAA). Overexpression of IbBBX29 contributed to a 21.37%-70.94% increase in leaf biomass, a 12.08%-21.85% increase in IAA levels, and a 31.33%-63.03% increase in flavonoid accumulation in sweet potato, whereas silencing this gene produced opposite effects. Heterologous expression of IbBBX29 in Arabidopsis (Arabidopsis thaliana) led to a dwarfed phenotype, along with enhanced IAA and flavonoid accumulation. RNA-seq analysis revealed that IbBBX29 modulates the expression of genes involved in the IAA signaling and flavonoid biosynthesis pathways. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay indicated that IbBBX29 targets key genes of IAA signaling and flavonoid biosynthesis to activate their expression by binding to specific T/G-boxes in their promoters, especially those adjacent to the transcription start site. Moreover, IbBBX29 physically interacted with developmental and phenylpropanoid biosynthesis-related proteins, such as AGAMOUS-LIKE 21 protein IbAGL21 and MYB308-like protein IbMYB308L. Finally, overexpressing IbBBX29 also increased flavonoid contents in sweet potato storage roots. These findings indicate that IbBBX29 plays a pivotal role in regulating IAA-mediated leaf development and flavonoid biosynthesis in sweet potato and Arabidopsis, providing a candidate gene for flavonoid biofortification in plants.


Assuntos
Arabidopsis , Ipomoea batatas , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
4.
J Nutr ; 150(12): 3094-3102, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33188398

RESUMO

BACKGROUND: Sweetpotato and potato are fast-maturing staple crops and widely consumed in low- and middle-income countries. Conventional breeding to biofortify these crops with iron could improve iron intakes. To our knowledge, iron absorption from sweetpotato and potato has not been assessed. OBJECTIVE: The aim was to assess iron absorption from regular and iron-biofortified orange-fleshed sweetpotato in Malawi and yellow-fleshed potato and iron-biofortified purple-fleshed potato in Peru. METHODS: We conducted 2 randomized, multiple-meal studies in generally healthy, iron-depleted women of reproductive age. Malawian women (n = 24) received 400 g regular or biofortified sweetpotato test meals and Peruvian women (n = 35) received 500 g regular or biofortified potato test meals. Women consumed the meals at breakfast for 2 wk and were then crossed over to the other variety. We labeled the test meals with 57Fe or 58Fe and measured cumulative erythrocyte incorporation of the labels 14 d after completion of each test-meal sequence to calculate iron absorption. Iron absorption was compared by paired-sample t tests. RESULTS: The regular and biofortified orange-fleshed sweetpotato test meals contained 0.55 and 0.97 mg Fe/100 g. Geometric mean (95% CI) fractional iron absorption (FIA) was 5.82% (3.79%, 8.95%) and 6.02% (4.51%, 8.05%), respectively (P = 0.81), resulting in 1.9-fold higher total iron absorption (TIA) from biofortified sweetpotato (P < 0.001). The regular and biofortified potato test meals contained 0.33 and 0.69 mg Fe/100 g. FIA was 28.4% (23.5%, 34.2%) from the regular yellow-fleshed and 13.3% (10.6%, 16.6%) from the biofortified purple-fleshed potato meals, respectively (P < 0.001), resulting in no significant difference in TIA (P = 0.88). CONCLUSIONS: FIA from regular yellow-fleshed potato was remarkably high, at 28%. Iron absorbed from both potato test meals covered 33% of the daily absorbed iron requirement for women of reproductive age, while the biofortified orange-fleshed sweetpotato test meal covered 18% of this requirement. High polyphenol concentrations were likely the major inhibitors of iron absorption. These trials were registered at www.clinicaltrials.gov as NCT03840031 (Malawi) and NCT04216030 (Peru).


Assuntos
Biofortificação , Ipomoea batatas/metabolismo , Ferro/administração & dosagem , Solanum tuberosum/metabolismo , Adulto , Transporte Biológico , Dieta , Feminino , Análise de Alimentos , Alimentos Fortificados , Humanos , Ipomoea batatas/química , Ferro/química , Ferro/metabolismo , Malaui , Peru , Solanum tuberosum/química , Adulto Jovem
5.
J Food Sci ; 85(3): 816-823, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32088926

RESUMO

The objective of this study was to evaluate the interaction of pro-vitamin A-rich sweet potato on iron bioavailability of biofortified cowpeas, using in vitro Caco-2 cells and in vivo depletion-repletion rat model. Mixtures of conventional rice with cultivars of iron-biofortified (Aracê, Xiquexique, and Tumucumaque) or conventional (Guariba) cowpeas with or without sweet potato biofortified with pro-vitamin A carotenoids were evaluated. The ratio of ferritin/total protein in Caco-2 cells was used as the index of cellular Fe uptake in the in vitro assay. The animal study evaluated the hemoglobin gain, the relative biological value, and the gene expression of transferrin and ferritin proteins by reverse transcription polymerase chain reaction. In the in vitro study, Xiquexique cowpea presented higher bioavailability of iron in the absence of sweet potato, and no difference was observed between the other cultivars of cowpea with and without sweet potato. The in vivo bioavailability (relative biological value of hemoglobin regeneration efficiency) differed statistically only between Guariba groups added to sweet potato and Tumucumaque. Ferritin mRNA expression did not differ between the test and control (ferrous sulfate) groups. Regarding the transferrin mRNA expression, there was a difference between the test and control groups except for the Xiquexique group. The association of rice and beans with sweet potato rich in carotenoids favored the gene expression of proteins involved in the iron metabolism, as well as its bioavailability, corroborating beneficial effects of this mixture. Xiquexique cowpea was shown to be the most promising compared to the other cultivars, exhibiting higher iron content in the digestible fraction, better in vitro bioavailability of iron, and transferrin gene expression. PRACTICAL APPLICATION: Data from the study indicated greater in vitro bioavailability of iron for Xiquexique cowpea and sweet potato mixtures, in addition to the greater regeneration efficiency of hemoglobin in vivo as the bioavailability of iron among biofortified beans, highlighting the promising benefits of biofortification.


Assuntos
Ipomoea batatas/metabolismo , Ferro/metabolismo , Vigna/metabolismo , Vitamina A/metabolismo , Animais , Biofortificação , Disponibilidade Biológica , Células CACO-2 , Carotenoides/análise , Carotenoides/metabolismo , Ferritinas/análise , Ferritinas/metabolismo , Alimentos Fortificados/análise , Hemoglobinas/análise , Hemoglobinas/metabolismo , Humanos , Ipomoea batatas/química , Ferro/química , Ratos , Ratos Wistar , Vigna/química , Vitamina A/química
6.
J Agric Food Chem ; 61(39): 9488-94, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24053411

RESUMO

Native to tropical America, Ipomoea batatas has been cultivated for over 5000 years in Mexico. The yellow-skinned tuber crop variety, with an orange flesh, has a higher nutritional value than potato. Raw sweet potato can cause a purge due to its resin glycoside content. Purification of the chloroform-soluble resin glycosides from the roots of this variety was accomplished by preparative-scale HPLC, which allowed for the collection of six oligosaccharides, batatin VII (1) and batatinosides VII-IX (2-4), all of novel structure, together with the known resin glycosides pescaprein I and batatinoside IV. High-field NMR spectroscopy and FAB mass spectrometry were used to characterize each structure, identifying operculinic acid A for compounds 2 and 4, and simonic acid B for 3, as their pentasaccharide glycosidic cores. Batatin VII (1) represents a dimer of the know batatinoside IV, consisting of two units of simonic acid B.


Assuntos
Produtos Agrícolas/química , Glicosídeos/química , Ipomoea batatas/química , Raízes de Plantas/química , Resinas Vegetais/química , Produtos Agrícolas/metabolismo , Carboidratos da Dieta/análise , Carboidratos da Dieta/isolamento & purificação , Glicosídeos/isolamento & purificação , Ipomoea batatas/metabolismo , México , Estrutura Molecular , Pigmentos Biológicos/metabolismo , Raízes de Plantas/metabolismo
7.
Bioresour Technol ; 136: 377-84, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23567705

RESUMO

The energy consumption for different operative conditions and configurations of the bioethanol production industrial process from an experimental variety of sweet potato (Ipomea batatas) K 9807.1 was evaluated. A process simulation model was developed using SuperPro Designer® software. The model was based on experimental data gathered from our laboratory experiments and technology and equipment suppliers. The effects of the dry matter ratio of sweet potato to water, the fermentation efficiency, and sweet potato sugar content, on the energy consumption (steam and electricity) were respectively evaluated. All factors were significant. The best ratio of dry matter to total water to work with fresh sweet potato was 0.2 kg dry sweet potato/kg water, as for greater ratios was not found a significant reduction in energy consumption. Also, the drying of the sweet potato previous its processing was studied. It presented an energy consumption greater than the energetic content of the bioethanol produced.


Assuntos
Biocombustíveis , Etanol/metabolismo , Ipomoea batatas/metabolismo , Análise de Variância , Fermentação , Farinha , Modelos Teóricos , Termodinâmica , Fatores de Tempo
8.
Artigo em Inglês | MEDLINE | ID: mdl-24779784

RESUMO

Different parts of plant foods are generally discarded by consumers such as peel, stalk and leaves, which could however possess a nutritional value. However, few studies have analysed the composition of these marginal foods. The phenolic compound, flavonoid, polyamine, nitrate and pesticide contents of parts of vegetables that are usually discarded--but which were cultivated according to conventional and non-conventional procedures--were analysed to provide suggestions on how to improve the consumption of these parts and to reduce the production of urban solid waste. Few, but significant, differences between the two manuring procedures were observed. Higher nitrate content and the presence of organochlorine pesticides were found in conventional cultivated papaya peel, lemon balm leaves, jack fruit pulp, and beet stalk and peel. Discarded parts of plant foods such as stalk, leaves and peels can be used as a source of antioxidant compounds, such as phenolic compounds.


Assuntos
Antioxidantes/análise , Produtos Agrícolas/química , Fertilizantes , Contaminação de Alimentos/prevenção & controle , Alimentos Orgânicos/análise , Nitratos/análise , Resíduos de Praguicidas/análise , Resíduos/análise , Antioxidantes/economia , Antioxidantes/metabolismo , Artocarpus/química , Artocarpus/crescimento & desenvolvimento , Artocarpus/metabolismo , Beta vulgaris/química , Beta vulgaris/crescimento & desenvolvimento , Beta vulgaris/metabolismo , Brasil , Carica/química , Carica/crescimento & desenvolvimento , Carica/metabolismo , Produtos Agrícolas/economia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Cymbopogon/química , Cymbopogon/crescimento & desenvolvimento , Cymbopogon/metabolismo , Poluentes Ambientais/análise , Poluentes Ambientais/metabolismo , Fertilizantes/efeitos adversos , Flavonoides/análise , Flavonoides/economia , Flavonoides/metabolismo , Alimentos Orgânicos/economia , Hidrocarbonetos Clorados/análise , Hidrocarbonetos Clorados/metabolismo , Ipomoea batatas/química , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/metabolismo , Esterco , Nitratos/metabolismo , Agricultura Orgânica/métodos , Resíduos de Praguicidas/metabolismo , Fenóis/análise , Fenóis/economia , Fenóis/metabolismo , Resíduos/economia
9.
Rev. colomb. biotecnol ; 13(1): 148-155, jul. 2011. tab, ilus, graf
Artigo em Espanhol | LILACS | ID: lil-600586

RESUMO

El cultivo del boniato presenta una gran importancia, ya que se puede emplear en la alimentación humana y animal, así como en la industria; el mismo produce raíces reservantes de gran valor calórico y nutritivo con alto contenido de carbohidratos. Entre las raíces y tubérculos cultivados es el segundo en importancia y representa más del 80% de la producción mundial. El empleo de las técnicas in vitro constituye una poderosa herramienta en la explotación comercial, propiciando el empleo de la micropropagación en diferentes especies. Para desarrollar el presente trabajo se recolectaron raíces tuberosas pertenecientes al clon Inivit B 93-1. Se procedió a la formación de callos potencialmente embriogénicos, para lo cual se emplearon explantes de limbos foliares, desinfectados con hipoclorito de sodio (1%) y sembrados en el medio de cultivo propuesto por Murashige y Skoog (1962), vitaminas MS (10,0 ml/l-1), mioinositol (100 mg/l-1), sacarosa (3%), gelrite (0,2%), 2,4-D (0,25-2,5 mg/l-1) y 6-BAP (0,25-1,0 mg/l-1), el pH fue ajustado a 5,8 ± 0,01 mantenidos en la oscuridad durante treinta días, lográndose los mejores resultados con el uso del 2,4-D (0,50 mg/l-1) y 6-BAP (0,25 mg/l-1), y en los mismos se evaluó la dinámica del crecimiento y se lograron los mejores resultados entre los 28 y 32 días después de la siembra, para lo cual los resultados obtenidos servirán de base a otros estudios y permitirán evaluar, controlar y desarrollar estrategias para la conservación y el uso de los recursos naturales, dando cumplimiento al objetivo referente a estudiar la dinámica del crecimiento en la formación de callos potencialmente embriogénicos en el cultivo del boniato.


The cultivation of the sweet potato presents a great importance, since you can use in the human feeding, animal as well as in the industry, the same one produces roots reservantes of great caloric and nutritious value with high content of carbohydrates. Between the roots and cultivated tubers it is the second in importance and it represents more than 80% of the world production. The employment of the techniques in vitro constitutes a powerful tool in the commercial, propitiated exploitation the employment of the micropropagación in different species. It is for it that you/they were gathered to develop the present work tuberous roots of the clon INIVIT B 93-1. Was realized the formation of callus with embryogenic structures, explantes of leaves were used, disinfected with hipoclorito of sodium (1%) and inoculated in the tissue culture medium proposed by Murashige and Skoog (1962), vitamins MS (10.0 ml/l-1), myoinositol (100 mg/l-1), sucrose (3%), gelryte (0.2%), 2,4-D (0.25-2.5 mg/l-1) and 6-BAP (0.25-1.0 mg/l-1), the pH was adjusted 5.8 ± 0.01 maintained in the darkness during thirty days, being achieved the best results with the use of the 2,4-D (0.50 mg/l-1) and 6-BAP (0,25 mg/l-1) and was evaluated the grow dynamic and obtained the better resulted between 28 and 32 days after culture, for that which the obtained results will serve from base to other studies and they will allow to evaluate, to control and to develop strategies for the conservation and use of the natural resources, giving execution to the objective with respect to studying the dynamics of the growth potentially in the formation of tripes embriogénicos in the cultivation of the sweet potato.


Assuntos
Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/embriologia , Ipomoea batatas/enzimologia , Ipomoea batatas/fisiologia , Ipomoea batatas/genética , Ipomoea batatas/imunologia , Ipomoea batatas/metabolismo , Ipomoea batatas/microbiologia , Ipomoea batatas/parasitologia , Ipomoea batatas/química
10.
Biometals ; 20(1): 37-42, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16758116

RESUMO

The levels of three essential minerals Ca, Fe and Mg and the extent of their availability were assessed in four commonly eaten Caribbean tuber crops [dasheen (Xanthosoma spp.), Irish potato (Solanum tuberosum), sweet potato (Ipomoea batatas) and yellow yam (Dioscorea cayenensis)] in their processed and unprocessed states. Calcium was highest in cooked dasheen (5150+/-50 mg/kg) while Magnesium was highest in uncooked Irish potato (3600+/-200 mg/kg). There was no significant loss of calcium from the food samples upon cooking. All the uncooked food samples displayed higher levels minerals assessed compared to the cooked samples except for cooked Irish potato that recorded the level of iron (182.25+/-8.75 mg/kg). Availability of these minerals in the cooked and uncooked tubers crops upon digestion also showed a similar pattern. In conclusion, the consumption of these tuber crops in the Caribbean may not be responsible for the reported cases of iron deficiency in the region. However, the availability of minerals from these tuber crops when consumed with other foods (the usual practice in the Caribbean) needs further investigation.


Assuntos
Dioscorea/metabolismo , Manipulação de Alimentos , Ipomoea batatas/metabolismo , Minerais/análise , Solanum tuberosum/metabolismo , Cálcio/análise , Região do Caribe , Análise de Alimentos , Ferro/análise , Magnésio/análise , Valor Nutritivo
11.
Chemosphere ; 63(4): 642-51, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16364403

RESUMO

Hairy root cultures of Daucus carota L., Ipomoea batatas L. and Solanum aviculare Forst were investigated for their susceptibility to the highly toxic pollutants phenol and chlorophenols and for the involvement of inherent peroxidases in the removal of phenols from liquid media. Roots of D. carota grew normally in medium containing 1000 micromol l(-1) of phenol, whilst normal growth of roots of I. batatas and S. aviculare was only possible at levels up to 500 micromol l(-1). In the presence of chlorophenols, normal root growth was possible only in concentrations not exceeding 50 micromol l(-1), except for I. batatas which was severely affected at all concentrations. Despite the reduction in biomass, the growth of S. aviculare cultures was sustained in medium containing up to 2000 micromol l(-1) of phenol or 2-chlorophenol, and up to 500 micromol l(-1) of 2,6-dichlorophenol. The amounts of phenol removed by the roots within 72 h of treatment were 72.7%, 90.7% and 98.6% of the initial concentration for D. carota, I. batatas and S. aviculare, respectively. For the removal of 2,6-dichlorophenol the values were, respectively, 83.0%, 57.7% and 73.1%. Phenols labelled with 14C were absorbed by the root tissues and condensed with highly polar cellular substances as well as being incorporated into the cell walls or membranes. The results suggest that S. aviculare, an ornamental plant, would be best suited for remediation trials under field conditions.


Assuntos
Clorofenóis/metabolismo , Daucus carota/metabolismo , Ipomoea batatas/metabolismo , Fenol/metabolismo , Solanum/metabolismo , Clorofenóis/toxicidade , Técnicas de Cultura , Daucus carota/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ipomoea batatas/efeitos dos fármacos , Peroxidase/metabolismo , Fenol/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Solanum/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA