Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 149: 109614, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710342

RESUMO

Chemokines are critical molecules involved in immune reaction and immune system homeostasis, and some chemokines play a role in antiviral immunity. It is not known if the C-C motif chemokine ligand 3 (CCL3), a member of the CC chemokine family, possesses antiviral properties in fish. In this study, a ccl3 was cloned from the mandarin fish (Siniperca chuatsi), and it has an open reading frame (ORF) of 276 base pairs, which are predicted to encode a 91-amino acid peptide. Mandarin fish CCL3 revealed conserved sequence features with four cysteine residues and closely relationships with the CCL3s from other vertebrates based on the sequence alignment and phylogenetic analysis. The transcripts of ccl3 were notably enriched in immune-related organs, such as spleen and gills in healthy mandarin fish, and the ccl3 was induced in the isolated mandarin fish brain (MFB) cells following infection with infectious spleen and kidney necrosis virus (ISKNV). Moreover, in MFB cells, overexpression of CCL3 induced immune factors, such as IL1ß, TNFα, MX, IRF1 and IFNh, and exhibited antiviral activity against ISKNV. This study sheds light on the immune role of CCL3 in immune response of mandarin fish, and its antiviral defense mechanism is of interest for further investigation.


Assuntos
Sequência de Aminoácidos , Infecções por Vírus de DNA , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Iridoviridae , Perciformes , Filogenia , Alinhamento de Sequência , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Perciformes/imunologia , Perciformes/genética , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Iridoviridae/fisiologia , Alinhamento de Sequência/veterinária , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Quimiocina CCL3/genética , Quimiocina CCL3/imunologia , Clonagem Molecular , Perfilação da Expressão Gênica/veterinária , Sequência de Bases
2.
Fish Shellfish Immunol ; 149: 109617, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723876

RESUMO

Microbiome in the intestines of aquatic invertebrates plays pivotal roles in maintaining intestinal homeostasis, especially when the host is exposed to pathogen invasion. Decapod iridescent virus 1 (DIV1) is a devastating virus seriously affecting the productivity and success of crustacean aquaculture. In this study, a metagenomic analysis was conducted to investigate the genomic sequences, community structure and functional characteristics of the intestinal microbiome in the giant river prawn Macrobrachiumrosenbergii infected with DIV1. The results showed that DIV1 infection could significantly reduce the diversity and richness of intestinal microbiome. Proteobacteria represented the largest taxon at the phylum level, and at the species level, the abundance of Gonapodya prolifera and Solemya velum gill symbiont increased significantly following DIV1 infection. In the infected prawns, four metabolic pathways related to purine metabolism, pyrimidine metabolism, glycerophospholipid metabolism, and pentose phosphate pathway, and five pathways related to nucleotide excision repair, homologous recombination, mismatch repair, base excision repair, and DNA replication were significantly enriched. Moreover, several immune response related pathways, such as shigellosis, bacterial invasion of epithelial cells, Salmonella infection, and Vibrio cholerae infection were repressed, indicating that secondary infection in M. rosenbergii may be inhibited via the suppression of these immune related pathways. DIV1 infection led to the induction of microbial carbohydrate enzymes such as the glycoside hydrolases (GHs), and reduced the abundance and number of antibiotic-resistant ontologies (AROs). A variety of AROs were identified from the microbiota, and mdtF and lrfA appeared as the dominant genes in the detected AROs. In addition, antibiotic efflux, antibiotic inactivation, and antibiotic target alteration were the main antibiotic resistance mechanisms. Collectively, the data would enable a deeper understanding of the molecular response of intestinal microbiota to DIV1, and offer more insights into its roles in prawn resistance to DIVI infection.


Assuntos
Microbioma Gastrointestinal , Palaemonidae , Animais , Palaemonidae/imunologia , Palaemonidae/virologia , Palaemonidae/microbiologia , Palaemonidae/genética , Metagenômica , Metagenoma , Iridoviridae/fisiologia
3.
Fish Shellfish Immunol ; 149: 109530, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570120

RESUMO

The elongation of very long chain fatty acids (ELOVL) proteins are key rate-limiting enzymes that catalyze fatty acid synthesis to form long chain fatty acids. ELOVLs also play regulatory roles in the lipid metabolic reprogramming induced by mammalian viruses. However, little is known about the roles of fish ELOVLs during virus infection. Here, a homolog of ELOVL7 was cloned from Epinephelus coioides (EcELOVL7a), and its roles in red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV) infection were investigated. The transcription level of EcELOVL7a was significantly increased upon RGNNV and SGIV infection or other pathogen-associated molecular patterns stimulation in grouper spleen (GS) cells. Subcellular localization analysis showed that EcELOVL7a encoded an endoplasmic reticulum (ER) related protein. Overexpression of EcELOVL7a promoted the viral production and virus release during SGIV and RGNNV infection. Furthermore, the lipidome profiling showed that EcELOVL7a overexpression reprogrammed cellular lipid components in vitro, evidenced by the increase of glycerophospholipids, sphingolipids and glycerides components. In addition, VLCFAs including FFA (20:2), FFA (20:4), FFA (22:4), FFA (22:5) and FFA (24:0), were enriched in EcELOVL7a overexpressed cells. Consistently, EcELOVL7a overexpression upregulated the transcription level of the key lipid metabolic enzymes, including fatty acid synthase (FASN), phospholipase A 2α (PLA 2α), and cyclooxygenases -2 (COX-2), LPIN1, and diacylglycerol acyltransferase 1α (DGAT1α). Together, our results firstly provided the evidence that fish ELOVL7a played an essential role in SGIV and RGNNV replication by reprogramming lipid metabolism.


Assuntos
Bass , Infecções por Vírus de DNA , Elongases de Ácidos Graxos , Doenças dos Peixes , Proteínas de Peixes , Metabolismo dos Lipídeos , Replicação Viral , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Bass/imunologia , Bass/genética , Elongases de Ácidos Graxos/genética , Nodaviridae/fisiologia , Regulação da Expressão Gênica , Acetiltransferases/genética , Acetiltransferases/metabolismo , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/virologia , Perfilação da Expressão Gênica/veterinária , Iridoviridae/fisiologia , Iridovirus/fisiologia , Filogenia , Alinhamento de Sequência/veterinária , Sequência de Aminoácidos , Reprogramação Metabólica
4.
Virulence ; 15(1): 2349027, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38680083

RESUMO

Infectious spleen and kidney necrosis virus (ISKNV), a member of the genus Megalocytivirus in the family Iridoviridae, can infect over 50 fish species and cause significant economic losses in Asia. Our previous study showed that hypoxia triggers the hypoxia-inducible factor pathway (HIF-pathway), leading to increased replication of ISKNV through promoting the upregulation of viral hypoxic response genes like orf077r. This study delved into the molecular mechanism of how ISKNV manipulates the HIF-pathway to enhance its replication. In vitro and in vivo experiments confirmed that ISKNV infection activated the HIF-pathway, which in turn promoted ISKNV replication. These findings suggest that ISKNV actively manipulates the HIF-pathway. Co-immunoprecipitation experiments revealed that the ISKNV-encoded protein VP077R interacts with the Von Hippel-Lindau (VHL) protein at the HIF-binding region, competitively inhibiting the interaction of HIF-1α with VHL. This prevents HIF degradation and activates the HIF-pathway. Furthermore, VP077R interacts with factor-inhibiting HIF (FIH), recruiting FIH and S-phase kinase-associated protein 1 (Skp1) to form an FIH - VP077R - Skp1 complex. This complex promotes FIH protein degradation via ubiquitination, further activating the HIF-pathway. These findings indicated that ISKNV takes over the HIF-pathway by releasing two "brakes" on this pathway (VHL and FIH) via VP077R, facilitating virus replication. We speculate that hypoxia initiates a positive feedback loop between ISKNV VP077R and the HIF pathway, leading to the outbreak of ISKNV disease. This work offers valuable insights into the complex interactions between the environment, host, and virus.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Replicação Viral , Animais , Iridoviridae/fisiologia , Iridoviridae/genética , Infecções por Vírus de DNA/virologia , Doenças dos Peixes/virologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Humanos
5.
Virus Res ; 339: 199278, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37984754

RESUMO

Rock bream iridovirus (RBIV), belonging to Megalocytivirus, causes severe mortality in rock bream. Almost all deaths associated with RBIV are accompanied by splenic enlargement and anemia. Although red blood cells (RBCs) are involved in the immune response against viral infections, their involvement in rock bream has not yet been studied in terms of the immune response against RBIV. In this study, the viral replication patterns, blood characteristics and anemia-related factors were evaluated in rock bream post RBIV infection. The virus-infected RBCs of rock bream demonstrated similarities in the expression levels of hemoglobins (HGB) (α and ß), cytokine-dependent hematopoietic cell linker (CLNK) and hematopoietic transcription factor GATA (GATA), with significantly decreasing levels from 4 days post infection (dpi) to 17 (dpi), when the viral replication was at its peak. This suggests that the expression of blood-related genes is inadequate for HGB synthesis and RBC production, thereby causing anemia leading to death. Moreover, the levels of complete blood cell count (CBC) indicators, such as RBCs, HGB and hematocrit (HCT), significantly decreased from 10 to 17 dpi. This phenomenon suggests that blood-related gene expression and/or RBC-, HGB- and HCT-related levels are critical factors in RBIV-induced anemia and disease progression. These results highlight the significance of blood-mediated immune responses against RBIV infection in rock bream. Understanding blood-related gene levels to identify blood-related immune response interactions in rock bream will be useful for development of future strategies in controlling RBIV diseases in rock bream.


Assuntos
Anemia , Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Iridovirus , Animais , Iridovirus/genética , Infecções por Vírus de DNA/veterinária , Iridoviridae/fisiologia , Eritrócitos/metabolismo , Filogenia
6.
Front Immunol ; 14: 1268851, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868974

RESUMO

Lymphocystis disease is frequently prevalent and transmissible in various teleost species worldwide due to lymphocystis disease virus (LCDV) infection, causing unsightly growths of benign lymphocystis nodules in fish and resulting in huge economic losses to aquaculture industry. However, the molecular mechanism of lymphocystis formation is unclear. In this study, LCDV was firstly detected in naturally infected flounder (Paralichthys olivaceus) by PCR, histopathological, and immunological techniques. To further understand lymphocystis formation, transcriptome sequencing of skin nodule tissue was performed by using healthy flounder skin as a control. In total, RNA-seq produced 99.36%-99.71% clean reads of raw reads, of which 91.11%-92.89% reads were successfully matched to the flounder genome. The transcriptome data showed good reproducibility between samples, with 3781 up-regulated and 2280 down-regulated differentially expressed genes. GSEA analysis revealed activation of Wnt signaling pathway, Hedgehog signaling pathway, Cell cycle, and Basal cell carcinoma associated with nodule formation. These pathways were analyzed to interact with multiple viral infection and tumor formation pathways. Heat map and protein interaction analysis revealed that these pathways regulated the expression of cell cycle-related genes such as ccnd1 and ccnd2 through key genes including ctnnb1, lef1, tcf3, gli2, and gli3 to promote cell proliferation. Additionally, cGMP-PKG signaling pathway, Calcium signaling pathway, ECM-receptor interaction, and Cytokine-cytokine receptor interaction associated with nodule formation were significantly down-regulated. Among these pathways, tnfsf12, tnfrsf1a, and tnfrsf19, associated with pro-apoptosis, and vdac2, which promotes viral replication by inhibiting apoptosis, were significantly up-regulated. Visual analysis revealed significant down-regulation of cytc, which expresses the pro-apoptotic protein cytochrome C, as well as phb and phb2, which have anti-tumor activity, however, casp3 was significantly up-regulated. Moreover, bcl9, bcl11a, and bcl-xl, which promote cell proliferation and inhibit apoptosis, were significantly upregulated, as were fgfr1, fgfr2, and fgfr3, which are related to tumor formation. Furthermore, RNA-seq data were validated by qRT-PCR, and LCDV copy numbers and expression patterns of focused genes in various tissues were also investigated. These results clarified the pathways and differentially expressed genes associated with lymphocystis nodule development caused by LCDV infection in flounder for the first time, providing a new breakthrough in molecular mechanisms of lymphocystis formation in fish.


Assuntos
Infecções por Vírus de DNA , Linguado , Iridoviridae , Animais , Linguado/genética , Proteínas Hedgehog , Reprodutibilidade dos Testes , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/metabolismo , Perfilação da Expressão Gênica , Iridoviridae/fisiologia
7.
J Virol ; 97(11): e0048023, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37877715

RESUMO

IMPORTANCE: Viruses are able to mimic the physiological or pathological mechanism of the host to favor their infection and replication. Virus-mock basement membrane (VMBM) is a Megalocytivirus-induced extracellular structure formed on the surface of infected cells and structurally and functionally mimics the basement membrane of the host. VMBM provides specific support for lymphatic endothelial cells (LECs) rather than blood endothelial cells to adhere to the surface of infected cells, which constitutes a unique phenomenon of Megalocytivirus infection. Here, the structure of VMBM and the interactions between VMBM components and LECs have been analyzed at the molecular level. The regulatory effect of VMBM components on the proliferation and migration of LECs has also been explored. This study helps to understand the mechanism of LEC-specific attachment to VMBM and to address the issue of where the LECs come from in the context of Megalocytivirus infection.


Assuntos
Membrana Basal , Células Endoteliais , Iridoviridae , Vasos Linfáticos , Membrana Basal/metabolismo , Membrana Basal/virologia , Células Endoteliais/citologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Iridoviridae/fisiologia , Vasos Linfáticos/citologia , Proliferação de Células , Movimento Celular , Vasos Sanguíneos/citologia , Interações entre Hospedeiro e Microrganismos
8.
J Fish Dis ; 46(12): 1403-1411, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37697626

RESUMO

This study investigated the kinetics of red sea bream iridovirus and host gene expression during infection in rock bream (Oplegnathus fasciatus), a species highly sensitive to the virus. After intraperitoneal injection of the viral solution at 104 TCID50/fish, the viral genome copy number in the spleen was 104.7 ± 0.2 and 105.9 ± 0.4 copies/µg DNA at 3 and 5 days post-injection (dpi), respectively. Using transcriptomic analyses via MiSeq, viral gene transcripts were detected at 3 and 5 dpi. Six genes including RING-finger domain-containing protein and laminin-type epidermal growth factor-like domain genes were significantly expressed at 5 dpi. Further, 334 host genes were differentially expressed compared with those before infection. Genes were clustered into four groups based on their expression profiles. Interferon-stimulated genes were more prevalent in groups showing upregulation at 5 dpi and 3 and 5 dpi. In contrast, the group showing downregulation at 3 dpi included inflammation-related genes, such as granzyme and eosinophil peroxidase genes. Downregulation of certain inflammation-related genes may contribute to the susceptibility of this fish to the virus.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Iridovirus , Perciformes , Dourada , Animais , Iridoviridae/fisiologia , Baço , Perciformes/genética , Inflamação , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/veterinária , Proteínas de Peixes/genética , Filogenia
9.
Front Immunol ; 14: 1209926, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346045

RESUMO

Lymphocystis disease is one of the main viral pathologies affecting cultured gilthead seabream (Sparus aurata) in the Mediterranean region. Recently, we have developed a DNA vaccine based on the major capsid protein (MCP) of the Lymphocystis disease virus 3 (LCDV-Sa). The immune response triggered by either LCDV-Sa infection or vaccination have been previously studied and seem to be highly related to the modulation of the inflammatory and the IFN response. However, a comprehensive evaluation of immune-related gene expression in vaccinated fish after viral infection to identify immunogenes involved in vaccine-induced protection have not been carried out to date. The present study aimed to fulfill this objective by analyzing samples of head-kidney, spleen, intestine, and caudal fin from fish using an OpenArray® platform containing targets related to the immune response of gilthead seabream. The results obtained showed an increase of deregulated genes in the hematopoietic organs between vaccinated and non-vaccinated fish. However, in the intestine and fin, the results showed the opposite trend. The global effect of fish vaccination was a significant decrease (p<0.05) of viral replication in groups of fish previously vaccinated, and the expression of the following immune genes related to viral recognition (tlr9), humoral and cellular response (rag1 and cd48), inflammation (csf1r, elam, il1ß, and il6), antiviral response (isg15, mx1, mx2, mx3), cell-mediated cytotoxicity (nccrp1), and apoptosis (prf1). The exclusive modulation of the immune response provoked by the vaccination seems to control the progression of the infection in the experimentally challenged gilthead seabream.


Assuntos
Infecções por Vírus de DNA , Iridoviridae , Dourada , Animais , Iridoviridae/fisiologia , DNA , Imunidade
10.
Fish Shellfish Immunol ; 128: 360-370, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35868476

RESUMO

Interleukin-1 beta (IL-1ß) is transcribed by monocytes, macrophages, and dendritic cells in response to activation of toll-like receptors (TLRs) by pathogen-associated molecular patterns (PAMPs) or cytokine signalling and causes a rapid inflammatory response to infection. IL-8, also known as chemokine C-X-C motif ligand (CXCL)-8, is regulated by IL-1ß and affects the chemotaxis of macrophages and neutrophils upon pathogen infection. In healthy red sea bream, rsbIL-1ß is most highly distributed in the liver, and rsbIL-8 is most highly distributed in the head kidney. In response to RSIV infection, rsbIL-1ß and rsbIL-8 mRNA are significantly upregulated in the kidney and spleen. This may be because the primary infection targets of RSIV are the kidney and spleen. In the gills, both genes were significantly upregulated at 7 days after RSIV infection and may be accompanied by a cytokine storm. In the liver, both genes were significantly downregulated at most observation points, which may be because the immune cells such as macrophages and dendritic cells expressing rsbIL-1ß or rsbIL-8 migrated to other tissues because the degree of RSIV infection was relatively low. Using a GFP fusion protein, it was confirmed that rsbIL-1ß and rsbIL-8 were localized to the cytoplasm of Pagrus major fin (PMF) cells. RsbIL-1ß overexpression induced the expression of interferon gamma (IFN-γ), myxovirus-resistance protein (Mx) 1, IL-8, IL-10, TNF-α, and MyD88, while rsbIL-8 overexpression induced the expression of IFN-γ, Mx1, rsbIL-1ß and TNF-α. In addition, overexpression of both genes significantly reduced the genome copies of RSIV and significantly reduced the viral titers. Therefore, rsbIL-1ß and rsbIL-8 in red sea bream play an antiviral role against RSIV through their normal signalling.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Iridovirus , Perciformes , Dourada , Animais , Antivirais , Interferon gama , Interleucina-10 , Interleucina-1beta/genética , Interleucina-8 , Iridoviridae/fisiologia , Ligantes , Fator 88 de Diferenciação Mieloide , Moléculas com Motivos Associados a Patógenos , Perciformes/genética , RNA Mensageiro , Fator de Necrose Tumoral alfa
11.
J Fish Dis ; 45(10): 1439-1449, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35762824

RESUMO

Chinese perch (Siniperca chuatsi), an important fish for the aquaculture industry of China, is often affected by viral diseases. A stable and sensitive cell line can play an important role in virus identification and isolation, functional gene identification, virus pathogenic mechanism and antiviral immunity study. In the present study, a new cell line (S. chuatsi skin cell, SCSC) derived from the skin of S. chuatsi was established. The SCSC mainly consisted of fibroblastic-like cells, which grew well in M199 medium supplemented with 10% foetal bovine serum at 25°C. Chromosome analysis revealed that the SCSC (44%) has a diploid chromosome number of 2n = 48. The SCSC can be transfected and expressed exogenous gene efficiently. It also showed high sensitivity to several aquatic animal viruses from different families including Rhabdoviridae, Iridoviridae and Reoviridae. In addition, RT-PCR showed that S. chuatsi rhabdovirus (SCRV) started genome replication as early as 3 h post infection in the cells, which also induced the up-regulation of a variety of immune-related genes including these related to interleukin family, pattern recognition receptors, JAK-STAT pathway and interferon regulatory factors. In summary, current study provided a new tool in research of fish viruses and its interaction with host.


Assuntos
Doenças dos Peixes , Iridoviridae , Percas , Rhabdoviridae , Animais , Linhagem Celular , Iridoviridae/fisiologia , Janus Quinases , Rhabdoviridae/fisiologia , Fatores de Transcrição STAT , Transdução de Sinais
12.
Fish Shellfish Immunol ; 122: 191-205, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35158068

RESUMO

Mandarin fish (Siniperca chuatsi) been seriously harmed by infectious spleen and kidney necrosis virus (ISKNV) in recent years, but the early immune response mechanism of infection is still unknown. Here, we performed RNA sequencing on the spleens of mandarin fish infected with ISKNV at 0, 12, 24, 48, and 72 h post-infection (hpi) using short-read Illumina RNA sequencing and long-read Pacific Biosciences isoform sequencing to generate a full-length transcriptome. The immune responses of mandarin fish infected with ISKNV at the molecular level were characterized by RNA-seq analysis and weighted gene co-expression network analysis (WGCNA). A total of 26,528 full-length transcript sequences were obtained. There were 2,729 (1,680 up-regulated and 1,112 down-regulated), 1,874 (1,136 up-regulated and 738 down-regulated), 2,032 (1,158 up-regulated and 847 down-regulated), and 4,176 (2,233 up-regulated and 1,943 down-regulated) differentially expressed genes (DEGs) in mandarin fish at 12, 24, 48, and 72 hpi, compared with uninfected fish, respectively. A total of four modules of co-expressed DEGs identified by WGCNA were significantly positively correlated to the four time points after infection, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the immune-related DEGs in all these modules were mainly enriched in Phagosome, Endocytosis, Herpes simplex infection, and Cytokine-cytokine receptor interaction pathways. Further analysis showed that oher signaling pathways, including CAMs, NOD-like receptor and ER protein processing, Intestinal immune network for IgA production, TLR pathway, and Apoptosis significantly enriched in four modules corresponding to 12, 24, 48, and 72 hpi respectively, had specifically participated in the immune response. Hub genes identified based on the high-degree nodes in the WGCN, including CAM3, IL-8, CCL21, STING, SNX1, PFR and TBK1, and some DEGs such as MHCI, MHCII, TfR, STING, TNF α, TBK1, IRF1, and NF-kB, BCR, IgA and Bcl-XL had involved in dynamic molecular response of mandarin fish to ISKNV infection. In sum, this study provides a set of full-length transcriptome of the spleen tissue of mandarin fish for the first time and revealed a group of immune genes and pathways involved in different temporal responses to ISKNV infection, which has implications for resource conservation and aiding the development of strategies to prevent virus early infection for mandarin fish.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Perciformes , Animais , Proteínas de Peixes/genética , Perfilação da Expressão Gênica/veterinária , Imunidade Inata/genética , Iridoviridae/fisiologia , Transcriptoma
13.
Fish Shellfish Immunol ; 122: 153-161, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35150827

RESUMO

Successful viral infection and multiplication chiefly rely on virus subversion mechanisms against host anti-viral immune responses. In this study, in order to reveal the anti-viral immune-related pathways suppressed by megalocytivirus infection, transcriptome analysis was performed on the head-kidney of turbot (Scophthalmus maximus) infected with lethal dose of RBIV-C1 at 3, 6 and 9 days post challenge (dpc). The results showed that, compared to unchallenged groups, 190, 1220, and 3963 DEGs were detected in RBIV-C1 infected groups at 3, 6 and 9 dpc, respectively, of which, DEGs of complement components and pattern recognition proteins were up-regulated at 3 dpc and down-regulated at 6 and 9 dpc, DEGs of cytokines were up-regulated at 6 dpc and down-regulated at 9 dpc. Expression trend analysis revealed that DEGs of profiles 9 and 13 featured decreased expression patterns and were significantly enriched into 10 immune-related pathways, i.e., complement and coagulation cascades, cytokine-cytokine receptor interaction, chemokine signaling pathway, B/T cell receptor signaling pathway, antigen processing and presentation, and so on. Further co-expression network analysis (WGCNA) revealed positive correlated innate immune related pathways at 3 and 6 dpc, and negative correlated innate and adaptive immune related pathways at 9 dpc. This study revealed a set of anti-viral immune genes/pathways that would also be potential targets subverted by RBIV-C1 for immune evasion, which can serve as a valuable resource for future studies on the molecular mechanisms of anti-viral immune defense of turbot and immune escape of megalocytivirus.


Assuntos
Doenças dos Peixes , Linguados , Iridoviridae , Animais , Antivirais , Linguados/genética , Perfilação da Expressão Gênica/veterinária , Evasão da Resposta Imune , Iridoviridae/fisiologia , Transcriptoma
14.
Microbiol Spectr ; 10(1): e0231021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019690

RESUMO

Under oxidative stress, viruses prefer glycolysis as an ATP source, and glutamine is required as an anaplerotic substrate to replenish the TCA cycle. Infectious spleen and kidney necrosis virus (ISKNV) induces reductive glutamine metabolism in the host cells. Here we report that ISKNV infection the increased NAD+/NADH ratio and the gene expression of glutaminase 1 (GLS1), glutamate dehydrogenase (GDH), and isocitrate dehydrogenase (IDH2) resulted in the phosphorylation and activation of mammalian target of rapamycin (mTOR) in CPB cells. Inhibition of mTOR signaling attenuates ISKNV-induced the upregulation of GLS1, GDH, and IDH2 genes expression, and exhibits significant antiviral activity. Moreover, the expression of silent information regulation 2 homolog 3 (SIRT3) in mRNA level is increased to enhance the reductive glutamine metabolism in ISKNV-infected cells. And those were verified by the expression levels of metabolic genes and the activities of metabolic enzymes in SIRT3-overexpressed or SIRT3-knocked down cells. Remarkably, activation of mTOR signaling upregulates the expression of the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) gene, leading to increased expression of SIRT3 and metabolic genes. These results indicate that mTOR signaling manipulates reductive glutamine metabolism in ISKNV-infected cells through PGC-1α-dependent regulation of SIRT3. Our findings reveal new insights on ISKNV-host interactions and will contribute new cellular targets to antiviral therapy. IMPORTANCE Infectious spleen and kidney necrosis virus (ISKNV) is the causative agent of farmed fish disease that has caused huge economic losses in fresh and marine fish aquaculture. The redox state of cells is shaped by virus into a favorable microenvironment for virus replication and proliferation. Our previous study demonstrated that ISKNV replication induced glutamine metabolism reprogramming, and it is necessary for the ISKNV multiplication. In this study, the mechanistic link between the mTOR/PGC-1α/SIRT3 pathway and reductive glutamine metabolism in the ISKNV-infected cells was provided, which will contribute new insights into the pathogenesis of ISKNV and antiviral treatment strategies.


Assuntos
Doenças dos Peixes/metabolismo , Proteínas de Peixes/metabolismo , Glutamina/metabolismo , Iridoviridae/fisiologia , Estresse Oxidativo , PPAR gama/metabolismo , Sirtuína 3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Glutaminase/genética , Glutaminase/metabolismo , Iridoviridae/genética , NAD/metabolismo , PPAR gama/genética , Percas/genética , Percas/metabolismo , Percas/virologia , Fosforilação , Transdução de Sinais , Sirtuína 3/genética , Serina-Treonina Quinases TOR/genética , Replicação Viral
15.
Front Immunol ; 12: 723401, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489973

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that regulate diverse biological processes including immunity. In a previous high-throughput RNA sequencing study, a novel miRNA, pol-miR-novel_642, was identified from Japanese flounder (Paralichthys olivaceus), a farmed fish species with important economic value. In this study, we investigated the regulatory mechanism and the function of pol-miR-novel_642 and its target gene. We found that pol-miR-novel_642 targeted, in a sequence-specific manner, a flounder gene encoding an uncharacterized protein that is a structural homologue of murine granulocyte colony stimulating factor 3 (CSF3). The expression of pol-miR-novel_642 and its target gene (named PoCSF3-1) was regulated, in different manners, by the bacterial pathogen Edwardsiella tarda and the viral pathogen megalocytivirus. Overexpression of pol-miR-novel_642 or interference with PoCSF3-1 expression in flounder cells strongly potentiated E. tarda infection. Consistently, in vivo knockdown of PoCSF3-1 enhanced bacterial dissemination in flounder tissues but blocked viral replication, whereas in vivo overexpression of PoCSF3-1 inhibited bacterial dissemination and facilitated viral infection. Overexpression/knockdown of PoCSF3-1 and pol-miR-novel_642 also affected the activation of autophagy. Recombinant PoCSF3-1 (rPoCSF3-1) interacted with and inhibited the growth of Gram-negative bacteria in a manner relying on a PoCSF3-1-characteristic structural motif that is absent in mouse CSF3. rPoCSF3-1 also regulated the proliferation, inflammatory response, and immune defense of flounder head kidney leukocytes in a structure-dependent fashion. Together, these results reveal the function of a novel miRNA-CSF3 regulatory system of flounder, and add new insights into the role and mechanism of fish miRNA and CSF3 in antimicrobial immunity.


Assuntos
Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Proteínas de Peixes/genética , Fator Estimulador de Colônias de Granulócitos/genética , Iridoviridae/fisiologia , MicroRNAs/genética , Animais , Autofagia , Linhagem Celular , Infecções por Enterobacteriaceae/transmissão , Proteínas de Peixes/metabolismo , Linguado/fisiologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Fator Estimulador de Colônias de Granulócitos/metabolismo , Replicação Viral
16.
Viruses ; 13(9)2021 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-34578446

RESUMO

In aquaculture, disease management and pathogen control are key for a successful fish farming industry. In past years, European catfish farming has been flourishing. However, devastating fish pathogens including limiting fish viruses are considered a big threat to further expanding of the industry. Even though mainly the ranavirus (Iridoviridea) and circovirus (Circoviridea) infections are considered well- described in European catfish, more other agents including herpes-, rhabdo or papillomaviruses are also observed in the tissues of catfish with or without any symptoms. The etiological role of these viruses has been unclear until now. Hence, there is a requisite for more detailed information about the latter and the development of preventive and therapeutic approaches to complete them. In this review, we summarize recent knowledge about viruses that affect the European catfish and describe their origin, distribution, molecular characterisation, and phylogenetic classification. We also highlight the knowledge gaps, which need more in-depth investigations in the future.


Assuntos
Peixes-Gato/virologia , Infecções por Circoviridae/veterinária , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/virologia , Infecções por Rhabdoviridae/veterinária , Animais , Infecções por Circoviridae/virologia , Circovirus/classificação , Circovirus/genética , Circovirus/fisiologia , Infecções por Vírus de DNA/patologia , Infecções por Vírus de DNA/virologia , Herpesviridae/classificação , Herpesviridae/genética , Herpesviridae/fisiologia , Herpesviridae/ultraestrutura , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Iridoviridae/classificação , Iridoviridae/genética , Iridoviridae/fisiologia , Iridoviridae/ultraestrutura , Papillomaviridae/classificação , Papillomaviridae/genética , Papillomaviridae/patogenicidade , Papillomaviridae/ultraestrutura , Infecções por Papillomavirus/veterinária , Infecções por Papillomavirus/virologia , Rhabdoviridae/classificação , Rhabdoviridae/genética , Rhabdoviridae/fisiologia , Rhabdoviridae/ultraestrutura , Infecções por Rhabdoviridae/virologia
17.
Dev Comp Immunol ; 123: 104170, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34144120

RESUMO

MicroRNAs (miRNAs) are evolutionary conserved, non-coding small RNAs that have been shown to regulate diverse biological processes including immunity. In a previous study, a novel miRNA of Japanese flounder (Paralichthys olivaceus), pol-miR-novel_395, was found to be responsive in expression to the infection of the bacterial pathogen Edwardsiella tarda. In the present study, we examined the regulation and immune effect of pol-miR-novel_395 and its target gene. We found that pol-miR-novel_395 expression was regulated by E. tarda and megalocytivirus, and pol-miR-novel_395 targeted the gene of PUF60 (poly (U)-binding-splicing factor 60 kDa) of flounder (named PoPUF60). Constitutive expression of PoPUF60 occurred in relatively high levels in the heart and liver of flounder. Bacterial infection upregulated PoPUF60 expression, whereas viral infection downregulated PoPUF60 expression. Interference with PoPUF60 expression or overexpression of pol-miR-novel_395 in flounder cells strongly potentiated E. tarda infection. Consistently, in vivo knockdown of PoPUF60 enhanced bacterial dissemination in the tissues of flounder but blocked viral replication, whereas in vivo overexpression of PoPUF60 inhibited bacterial dissemination but facilitated viral replication. Additionally, pol-miR-novel_395 and PoPUF60 were involved in the process of autophagy and apoptosis. Collectively, these results indicated that PoPUF60 and pol-miR-novel_395 play an important role in pathogen infection, autophagy, and apoptosis.


Assuntos
Infecções por Vírus de DNA/imunologia , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Proteínas de Peixes/metabolismo , Linguado/imunologia , Iridoviridae/fisiologia , MicroRNAs/genética , Miocárdio/metabolismo , Animais , Apoptose , Autofagia , Proteínas de Peixes/genética , Linguado/genética , Regulação da Expressão Gênica , Imunidade Inata , Fatores de Processamento de RNA/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Replicação Viral
18.
J Invertebr Pathol ; 183: 107619, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34004165

RESUMO

From citizen science data we report the first records of blue to violet-colored oniscideans (Oniscidea: Isopoda), indicating potential invertebrate iridescent virus (IIV; Betairidovirinae: Iridoviridae) infection: in Africa, South America, and Oceania; and of the new hosts Armadillidium nasatum and Balloniscus sellowii. DNA sequencing of indigo Porcellio scaber confirms the presence of Invertebrate iridescent virus 31 in Australia. Beyond the Oniscidea, new, putative IIV hosts are identified: hoverfly pupae (Eristalinae), a tortrix moth larva (Phaecasiophora niveiguttana), and a millipede (Harpaphe haydeniana). In addition, the purported positive correlation between virion diameter and wavelength of iridescence is analyzed qualitatively for the first time.


Assuntos
Ciência do Cidadão/estatística & dados numéricos , Iridoviridae/fisiologia , Isópodes/virologia , Animais , Artrópodes/virologia , Dípteros/virologia , Lepidópteros/virologia , Vitória
19.
Fish Shellfish Immunol ; 113: 139-147, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33848638

RESUMO

In fish, interleukin-6 (IL-6) is a very important immune-regulatory cytokine that plays a polyfunctional role in inflammation, metabolism, regeneration, and neural processes. IL-6 signal transducer (IL-6ST) is a specific receptor for IL-6 and expressed mainly in immune cells and hepatocytes. In this study, the complete cDNA and genomic DNA sequences of mandarin fish (Siniperca chuatsi) IL-6 and IL-6ST genes were identified and analyzed. Quantitative real-time PCR showed that IL-6 and IL-6ST were chiefly expressed in the immune organs. After challenge with infectious spleen and kidney necrosis virus (ISKNV), the expression levels of IL-6 were significantly up-regulated after 6 h and 24 h in the head kidney and spleen, respectively (p < 0.01), the peak value for both reached at 72 h, IL-6ST increased significantly after 120 h with a peak at 168 h in the head kidney (p < 0.01) and improved markedly at 168 h in the spleen (p < 0.01). Besides, IL-6 and IL-6ST have been identified 3 and 8 single nucleotide polymorphisms (SNPs), respectively. Statistical analysis showed that one SNP locus (1625C/T) in the coding region of IL-6 was significantly related to the resistance of mandarin fish against ISKNV. The 1625C→T locus in the coding region of IL-6 is a synonymous mutation; compared with the susceptible group, the frequency of allele T in the disease resistance group was significantly higher, which may be due to the rare codon produced by the mutation affecting translation. The involvement of IL-6 and IL-6ST in response to ISKNV infection in mandarin fish clearly indicate that the role of SNP markers in IL-6 was associated with the ISKNV resistance, which was demonstrated for the first time in our results. Thus, the current study may provide fundamental information for further breeding of mandarin fish with resistance to ISKNV infection.


Assuntos
Receptor gp130 de Citocina/imunologia , Resistência à Doença/genética , Doenças dos Peixes/imunologia , Imunidade Inata/genética , Interleucina-6/imunologia , Iridoviridae/fisiologia , Perciformes/imunologia , Animais , Receptor gp130 de Citocina/genética , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , DNA Complementar , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Interleucina-6/genética , Perciformes/genética , Polimorfismo de Nucleotídeo Único/imunologia , Distribuição Aleatória , Transcriptoma
20.
J Fish Dis ; 44(8): 1131-1145, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33835515

RESUMO

Whiteleg shrimp is a widely cultured crustacean, but frequent disease outbreaks have decreased production and caused significant losses. Toll-like receptors (TLRs) comprise a large innate immune family that is involved in the innate immune response. However, understanding of their regulatory mechanism is limited. In this study, PacBio sequencing and Illumina sequencing were applied to the gill and hepatopancreas tissues of whiteleg shrimp and an integrated transcript gene set was established. The upregulation of Toll1, Toll2 and Toll3 transcripts in the hepatopancreas tissue of whiteleg shrimp after iridescent virus infection implies that these proteins are involved in the immune response to the virus; simultaneously, the TRAF6 and relish transcripts in the Toll pathway were also upregulated, implying that the Toll pathway was activated. We predicted the three-dimensional structure of the five Toll proteins in whiteleg shrimp and humans and constructed a phylogenetic tree of the Toll protein family. In addition, there was a large discrepancy of Toll1 between invertebrates and vertebrates, presumably because of the loss of Toll1 protein sequence during the evolution process from invertebrates to vertebrates. Our research will improve the cognition of Toll protein family in invertebrates in terms of evolution, structure and function and provide theoretical guidance for researchers in this field.


Assuntos
Proteínas de Artrópodes/genética , Evolução Molecular , Iridoviridae/fisiologia , Penaeidae/genética , Receptores Toll-Like/genética , Animais , Proteínas de Artrópodes/metabolismo , Penaeidae/virologia , Análise de Sequência de DNA , Análise de Sequência de Proteína , Receptores Toll-Like/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...