Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
J Transl Med ; 21(1): 897, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072965

RESUMO

BACKGROUND: The alkaloid camptothecin analog SN38 is a potent antineoplastic agent, but cannot be used directly for clinical application due to its poor water solubility. Currently, the prodrug approach on SN38 has resulted in 3 FDA-approved cancer therapeutics, irinotecan, ONIVYDE, and Trodelvy. However, only 2-8% of irinotecan can be transformed enzymatically in vivo into the active metabolite SN38, which severely limits the drug's efficacy. While numerous drug delivery systems have been attempted to achieve effective SN38 delivery, none have produced drug products with antitumor efficacy better than irinotecan in clinical trials. Therefore, novel approaches are urgently needed for effectively delivering SN38 to cancer cells with better efficacy and lower toxicity. METHODS: Based on the unique properties of human serum albumin (HSA), we have developed a novel single protein encapsulation (SPE) technology to formulate cancer therapeutics for improving their pharmacokinetics (PK) and antitumor efficacy and reducing their side effects. Previous application of SPE technology to doxorubicin (DOX) formulation has led to a promising drug candidate SPEDOX-6 (FDA IND #, 152154), which will undergo a human phase I clinical trial. Using the same SPE platform on SN38, we have now produced two SPESN38 complexes, SPESN38-5 and SPESN38-8. We conducted their pharmacological evaluations with respect to maximum tolerated dose, PK, and in vivo efficacy against colorectal cancer (CRC) and soft tissue sarcoma (STS) in mouse models. RESULTS: The lyophilized SPESN38 complexes can dissolve in aqueous media to form clear and stable solutions. Maximum tolerated dose (MTD) of SPESN38-5 is 250 mg/kg by oral route (PO) and 55 mg/kg by intravenous route (IV) in CD-1 mice. SPESN38-8 has the MTD of 45 mg/kg by IV in the same mouse model. PK of SPESN38-5 by PO at 250 mg/kg gave mouse plasma AUC0-∞ of 0.05 and 4.5 nmol × h/mL for SN38 and SN38 glucuronidate (SN38G), respectively, with a surprisingly high molar ratio of SN38G:SN38 = 90:1. However, PK of SPESN38-5 by IV at 55 mg/kg yielded much higher mouse plasma AUC0-∞ of 19 and 28 nmol × h/mL for SN38 and SN38G, producing a much lower molar ratio of SN38G:SN38 = 1.5:1. Antitumor efficacy of SPESN38-5 and irinotecan (control) was evaluated against HCT-116 CRC xenograft tumors. The data indicates that SPESN38-5 by IV at 55 mg/kg is more effective in suppressing HCT-116 tumor growth with lower systemic toxicity compared to irinotecan at 50 mg/kg. Additionally, SPESN38-8 and DOX (control) by IV were evaluated in the SK-LMS-1 STS mouse model. The results show that SPESN38-8 at 33 mg/kg is highly effective for inhibiting SK-LMS-1 tumor growth with low toxicity, in contrast to DOX's insensitivity to SK-LMS-1 with high toxicity. CONCLUSION: SPESN38 complexes provide a water soluble SN38 formulation. SPESN38-5 and SPESN38-8 demonstrate better PK values, lower toxicity, and superior antitumor efficacy in mouse models, compared with irinotecan and DOX.


Assuntos
Antineoplásicos Fitogênicos , Antineoplásicos , Neoplasias Colorretais , Humanos , Camundongos , Animais , Irinotecano/uso terapêutico , Irinotecano/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Modelos Animais de Doenças , Água , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/farmacocinética
2.
Pharm Res ; 40(11): 2627-2638, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37667147

RESUMO

PURPOSE: Our previous screening studies identified Oroxylin A (OXA) as a strong inhibitor on the carboxyolesterase mediated hydrolysis of irinotecan to SN-38. The current study employed a whole-body physiologically based pharmacokinetic (PBPK) modeling approach to investigate the underlying mechanisms of the carboxylesterase-mediated pharmacokinetics interactions between irinotecan and OXA in rats. METHODS: Firstly, rats received irinotecan intravenous treatment at 35 µmol/kg without or with oral OXA pretreatment (2800 µmol/kg) daily for 5 days. On day 5, blood and tissues were collected for analyses of irinotecan/SN-38 concentrations and carboxylesterase expression. In addition, effects of OXA on the enzyme kinetics of irinotecan hydrolysis and unbound fractions of irinotecan and SN-38 in rat plasma, liver and intestine were also determined. Finally, a PBPK model that integrated the physiological parameters, enzyme kinetics, and physicochemical properties of irinotecan and OXA was developed. RESULTS: Our PBPK model could accurately predict the pharmacokinetic profiles of irinotecan/SN-38, with AUC0-6h and Cmax values within ±27% of observed values. When OXA was included as a carboxylesterase inhibitor, the model could also predict the irinotecan/SN-38 plasma concentrations within twofold of those observed. In addition, the PBPK model indicated inhibition of carboxylesterase-mediated hydrolysis of irinotecan in the intestinal mucosa as the major underlying mechanism for the pharmacokinetics interactions between irinotecan and OXA. CONCLUSION: A whole-body PBPK model was successfully developed to not only predict the impact of oral OXA pretreatment on the pharmacokinetics profiles of irinotecan but also reveal its inhibition on the intestinal carboxylesterase as the major underlying mechanism.


Assuntos
Flavonoides , Fígado , Ratos , Animais , Irinotecano/farmacocinética , Fígado/metabolismo , Intestinos , Camptotecina/farmacocinética
3.
Molecules ; 28(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37049985

RESUMO

There have been many attempts in pharmaceutical industries and academia to improve the pharmacokinetic characteristics of anti-tumor small-molecule drugs by conjugating them with large molecules, such as monoclonal antibodies, called ADCs. In this context, albumin, one of the most abundant proteins in the blood, has also been proposed as a large molecule to be conjugated with anti-cancer small-molecule drugs. The half-life of albumin is 3 weeks in humans, and its distribution to tumors is higher than in normal tissues. However, few studies have been conducted for the in vivo prepared albumin-drug conjugates, possibly due to the lack of robust bioanalytical methods, which are critical for evaluating the ADME/PK properties of in vivo prepared albumin-drug conjugates. In this study, we developed a bioanalytical method of the albumin-conjugated MAC glucuronide phenol linked SN-38 ((2S,3S,4S,5R,6S)-6-(4-(((((((S)-4,11-diethyl-4-hydroxy-3,14-dioxo-3,4,12,14-tetrahydro-1H-pyrano [3',4':6,7] indolizino [1,2-b] quinolin-9-yl)oxy)methyl)(2 (methylsulfonyl)ethyl)carbamoyl)oxy)methyl)-2-(2-(3-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-N-methylpropanamido)acetamido)phenoxy)-3,4,5-trihydroxytetra-hydro-2H-pyran-2-carboxylic acid) as a proof-of-concept. This method is based on immunoprecipitation using magnetic beads and the quantification of albumin-conjugated drug concentration using LC-qTOF/MS in mouse plasma. Finally, the developed method was applied to the in vivo intravenous (IV) mouse pharmacokinetic study of MAC glucuronide phenol-linked SN-38.


Assuntos
Albuminas , Imunoprecipitação , Irinotecano , Espectrometria de Massa com Cromatografia Líquida , Animais , Humanos , Camundongos , Albuminas/química , Albuminas/farmacocinética , Glucuronidase/metabolismo , Glucuronídeos/química , Glucuronídeos/metabolismo , Imunoprecipitação/métodos , Irinotecano/sangue , Irinotecano/química , Irinotecano/metabolismo , Irinotecano/farmacocinética , Espectrometria de Massa com Cromatografia Líquida/métodos , Magnetismo , Fenol/química
4.
Br J Cancer ; 126(4): 640-651, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34703007

RESUMO

BACKGROUND: Irinotecan (CPT-11) is an anticancer agent widely used to treat adult solid tumours. Large interindividual variability in the clearance of irinotecan and SN-38, its active and toxic metabolite, results in highly unpredictable toxicity. METHODS: In 217 cancer patients treated with intravenous irinotecan single agent or in combination, germline DNA was used to interrogate the variation in 84 genes by next-generation sequencing. A stepwise analytical framework including a population pharmacokinetic model with SNP- and gene-based testing was used to identify demographic/clinical/genetic factors that influence the clearance of irinotecan and SN-38. RESULTS: Irinotecan clearance was influenced by rs4149057 in SLCO1B1, body surface area, and co-administration of 5-fluorouracil/leucovorin/bevacizumab. SN-38 clearance was influenced by rs887829 in UGT1A1, pre-treatment total bilirubin, and EGFR rare variant burden. Within each UGT1A1 genotype group, elevated pre-treatment total bilirubin and/or presence of at least one rare variant in EGFR resulted in significantly lower SN-38 clearance. The model reduced the interindividual variability in irinotecan clearance from 38 to 34% and SN-38 clearance from 49 to 32%. CONCLUSIONS: This new model significantly reduced the interindividual variability in the clearance of irinotecan and SN-38. New genetic factors of variability in clearance have been identified.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Glucuronosiltransferase/genética , Irinotecano/farmacocinética , Neoplasias/genética , Análise de Sequência de DNA/métodos , Administração Intravenosa , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Ensaios Clínicos como Assunto , Receptores ErbB/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Irinotecano/efeitos adversos , Transportador 1 de Ânion Orgânico Específico do Fígado , Masculino , Pessoa de Meia-Idade , Neoplasias/tratamento farmacológico , Variantes Farmacogenômicos , Polimorfismo de Nucleotídeo Único
5.
Eur J Clin Pharmacol ; 78(1): 53-64, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34480602

RESUMO

BACKGROUND: Body surface area (BSA)-based dosing of irinotecan (IR) does not account for its pharmacokinetic (PK) and pharmacodynamic (PD) variabilities. Functional hepatic nuclear imaging (HNI) and excretory/metabolic/PD pharmacogenomics have shown correlations with IR disposition and toxicity/efficacy. This study reports the development of a nonlinear mixed-effect population model to identify pharmacogenomic and HNI-related covariates that impact on IR disposition to support dosage optimization. METHODS: Patients had advanced colorectal cancer treated with IR combination therapy. Baseline blood was analysed by Affymetrix DMET™ Plus Array and, for PD, single nucleotide polymorphisms (SNPs) by Sanger sequencing. For HNI, patients underwent 99mTc-IDA hepatic imaging, and data was analysed for hepatic extraction/excretion parameters. Blood was taken for IR and metabolite (SN38, SN38G) analysis on day 1 cycle 1. Population modelling utilised NONMEM version 7.2.0, with structural PK models developed for each moiety. Covariates include patient demographics, HNI parameters and pharmacogenomic variants. RESULTS: Analysis included (i) PK data: 32 patients; (ii) pharmacogenomic data: 31 patients: 750 DMET and 22 PD variants; and (iii) HNI data: 32 patients. On initial analysis, overall five SNPs were identified as significant covariates for CLSN38. Only UGT1A3_c.31 T > C and ABCB1_c.3435C > T were included in the final model, whereby CLSN38 reduced from 76.8 to 55.1%. CONCLUSION: The identified UGT1A3_c.31 T > C and ABCB1_c.3435C > T variants, from wild type to homozygous, were included in the final model for SN38 clearance.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Glucuronosiltransferase/genética , Irinotecano/farmacocinética , Fígado/metabolismo , Inibidores da Topoisomerase I/farmacocinética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Austrália , Neoplasias Colorretais/patologia , Genótipo , Humanos , Irinotecano/uso terapêutico , Fígado/diagnóstico por imagem , Modelos Biológicos , Metástase Neoplásica , Farmacogenética , Variantes Farmacogenômicos , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Inibidores da Topoisomerase I/uso terapêutico
6.
J Nanobiotechnology ; 19(1): 421, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906155

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs), as an important component of stroma, not only supply the "soils" to promote tumor invasion and metastasis, but also form a physical barrier to hinder the penetration of therapeutic agents. Based on this, the combinational strategy that action on both tumor cells and CAFs simultaneously would be a promising approach for improving the antitumor effect. RESULTS: In this study, the novel multifunctional liposomes (IRI-RGD/R9-sLip) were designed, which integrated the advantages including IRI and scFv co-loading, different targets, RGD mediated active targeting, R9 promoting cell efficient permeation and lysosomal escape. As expected, IRI-RGD/R9-sLip showed enhanced cytotoxicity in different cell models, effectively increased the accumulation in tumor sites, as well as exhibited deep permeation ability both in vitro and in vivo. Notably, IRI-RGD/R9-sLip not only exhibited superior in vivo anti-tumor effect in both CAFs-free and CAFs-abundant bearing mice models, but also presented excellent anti-metastasis efficiency in lung metastasis model. CONCLUSION: In a word, the novel combinational strategy by coaction on both "seeds" and "soils" of the tumor provides a new approach for cancer therapy, and the prepared liposomes could efficiently improve the antitumor effect with promising clinical application prospects.


Assuntos
Fibroblastos Associados a Câncer/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Irinotecano , Lipossomos , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Cocultura , Neoplasias Colorretais/patologia , Feminino , Irinotecano/química , Irinotecano/farmacocinética , Irinotecano/farmacologia , Lipossomos/química , Lipossomos/farmacocinética , Lipossomos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/farmacocinética
7.
CPT Pharmacometrics Syst Pharmacol ; 10(12): 1550-1563, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34750990

RESUMO

Liposomal irinotecan is a liposomal formulation of irinotecan, which prolongs circulation of irinotecan and its active metabolite SN-38. A population pharmacokinetic (PK) model was developed based on data from seven studies (N = 440). Adequacy of the model was assessed using multiple methods, including visual predictive check. Associations between PK exposure and the incidence of diarrhea (grade ≥3) and neutropenia adverse events (AEs) (grade ≥3) at first event in patients with metastatic pancreatic ductal adenocarcinoma (mPDAC) were investigated using logistic regression based on data from two studies (the phase III NAPOLI-1 [N = 260] and phase I/II NCT02551991 [N = 56] trials). The PKs of total irinotecan was described by a two-compartment model with first-order elimination, with SN-38 formed directly by a first-order constant from the central compartment of irinotecan or after using a transit compartment. Clearance was 17.9 L/week (0.107 L/h) and 19,800 L/week (118 L/h) for total irinotecan and SN-38, respectively. The UGT1A1*28 7/7 homozygous genotype had no significant impact on SN-38 clearance. Model evaluation was satisfactory for both irinotecan and SN-38. The incidence of diarrhea (grade ≥3) at first event was significantly higher with increasing average concentrations of total irinotecan and SN-38; there was no significant association between an increased risk of neutropenia AEs (grade ≥3) at first event and average SN-38 concentrations. In summary, the PKs of total irinotecan and SN-38 after administration of liposomal irinotecan were well-described by the model. The UGT1A1*28 status had no significant impact on the PKs of liposomal irinotecan.


Assuntos
Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Irinotecano/farmacocinética , Irinotecano/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Carcinoma Ductal Pancreático/patologia , Diarreia/induzido quimicamente , Feminino , Genótipo , Glucuronosiltransferase/genética , Humanos , Irinotecano/administração & dosagem , Irinotecano/efeitos adversos , Lipossomos/química , Modelos Logísticos , Masculino , Taxa de Depuração Metabólica , Modelos Biológicos , Metástase Neoplásica , Neutropenia/induzido quimicamente , Neoplasias Pancreáticas/patologia
8.
Drug Deliv ; 28(1): 2205-2217, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34662257

RESUMO

Therapeutic efficacies of orally administrated hydrophobic chemodrugs are decreased by poor water solubilities and reduced oral bioavailabilities by P-glycoprotein (P-gp) and CYP450. In this study, CPT11 alone or combined with dual-function inhibitors (baicalein (BA) silymarin (SM), glycyrrhizic acid (GA), and glycyrrhetinic acid (GLA)) of P-gp and CYP450 loaded in a lecithin-based self-nanoemulsifying nanoemulsion preconcentrate (LBSNENP) to improve the solubility and inhibit the elimination by P-gp and CYP450. Results revealed that the LBSNENP composed of Capryol 90, lecithin/Tween 80/Cremophor EL, and propylene glycol at a weight ratio of 18:58:24 (designated PC90C10P0) was optimally selected. Encapsulating CPT11 with PEO-7000K in PC90C10P10/30 further enhanced the resultant hydrogel to be gastro-retainable and to release CPT11 in a sustained manner. Pharmacokinetic study of CPT11-loaded PC90C10P0 administered orally revealed an absolute bioavailability (FAB, vs. intravenous CPT11) of 7.8 ± 1.01% and a relative bioavailability (FRB1, vs. oral solution of CPT11) of 70.7 ± 8.6% with a longer half-life (T1/2) and mean residence time (MRT). Among the dual-function inhibitors, SM was shown to be the most influential in increasing the oral bioavailability of CPT11. SM also increased the plasma concentration of the SN-38 active metabolite, which formed from the enhanced plasma concentration of CPT11. It is concluded that treatment with CPT11 loaded in PC90C10P0 with or without solubilization with SM could expose tumors to higher plasma concentrations of both CPT11 and SN-38 leading to enhancement of tumor growth inhibition with no signs of adverse effects.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Irinotecano/farmacologia , Nanopartículas/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Emulsões/química , Flavanonas/farmacologia , Ácido Glicirretínico/farmacologia , Ácido Glicirrízico/farmacologia , Meia-Vida , Irinotecano/administração & dosagem , Irinotecano/farmacocinética , Camundongos , Neoplasias Pancreáticas , Coelhos , Distribuição Aleatória , Silimarina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Pharmacogenomics ; 22(15): 963-972, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34528449

RESUMO

Aim: Despite the high disease burden of human immunodeficiency virus (HIV) infection and colorectal cancer (CRC) in South Africa (SA), treatment-relevant pharmacogenetic variants are understudied. Materials & methods: Using publicly available genotype and gene expression data, a bioinformatic pipeline was developed to identify liver expression quantitative trait loci (eQTLs). Results: A novel cis-eQTL, rs28967009, was identified for UGT1A1, which is predicted to upregulate UGT1A1 expression thereby potentially affecting the metabolism of dolutegravir and irinotecan, which are extensively prescribed in SA for HIV and colorectal cancer treatment, respectively. Conclusion: As increased UGT1A1 expression could affect the clinical outcome of dolutegravir and irinotecan treatment by increasing drug clearance, patients with the rs28967009A variant may require increased drug doses to reach therapeutic levels or should be prescribed alternative drugs.


Assuntos
Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/uso terapêutico , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Glucuronosiltransferase/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Antineoplásicos Fitogênicos , Biologia Computacional , Genótipo , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Irinotecano/farmacocinética , Irinotecano/uso terapêutico , Fígado/enzimologia , Oxazinas/farmacocinética , Oxazinas/uso terapêutico , Piperazinas/farmacocinética , Piperazinas/uso terapêutico , Piridonas/farmacocinética , Piridonas/uso terapêutico , Controle de Qualidade , África do Sul , Resultado do Tratamento , Regulação para Cima
10.
Mol Pharm ; 18(10): 3862-3870, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34470216

RESUMO

In this work, dimeric artesunate-phosphatidylcholine conjugate (dARTPC)-based liposomes encapsulated with irinotecan (Ir) were developed for anticancer combination therapy. First, dARTPC featured with unique amphipathic properties formed liposomes by classical thin-film methods. After that, Ir was encapsulated into dARTPC-based liposomes (Ir/dARTPC-LP) by the triethylammonium sucrose octasulfate gradient method. Physicochemical characterization indicated that Ir/dARTPC-LP had a mean size of around 140 nm and a negative ζ potential of approximately -30 mV. Most noticeably, liposomes displayed an encapsulation efficiency of greater than 98% with a controllable drug loading of 4-22%. The in vitro release of dihydroartemisinin (DHA) and Ir from Ir/dARTPC-LP was investigated by dialysis in different media. It was found that effective release of both DHA (65.42%) and Ir (77.28%) in a weakly acidic medium (pH 5.0) after 48 h was achieved in comparison to very slow release under a neutral environment (DHA 9.90% and Ir 8.72%), indicating the controllable release of both drugs. Confocal laser scanning microscopy confirmed the improved cellular internalization of Ir/dARTPC-LP. The cytotoxicity of Ir/dARTPC-LP was evaluated in the MCF-7, A549, and HepG2 cell lines. The results showed that Ir/dARTPC-LP had significant synergistic efficacy in the loss of cell growth. In vivo anticancer evaluation was performed using a 4T1 xenograft tumor model. Ir/dARTPC-LP had a high tumor inhibition rate of 62.7% without significant toxicity in comparison with the injection of Ir solution. Taken together, dARTPC encapsulated with Ir has great potential for anticancer combination therapy.


Assuntos
Artesunato/administração & dosagem , Sistemas de Liberação de Medicamentos , Irinotecano/administração & dosagem , Lipossomos/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose/efeitos dos fármacos , Artesunato/farmacocinética , Artesunato/uso terapêutico , Linhagem Celular Tumoral , Combinação de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Feminino , Irinotecano/farmacocinética , Irinotecano/uso terapêutico , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Neoplasias Experimentais/tratamento farmacológico , Fosfatidilcolinas
11.
Commun Biol ; 4(1): 1001, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429505

RESUMO

Microphysiological in vitro systems are platforms for preclinical evaluation of drug effects and significant advances have been made in recent years. However, existing microfluidic devices are not yet able to deliver compounds to cell models in a way that reproduces the real physiological drug exposure. Here, we introduce a novel tumour-on-chip microfluidic system that mimics the pharmacokinetic profile of compounds on 3D tumour spheroids to evaluate their response to the treatments. We used this platform to test the response of SW620 colorectal cancer spheroids to irinotecan (SN38) alone and in combination with the ATM inhibitor AZD0156, using concentrations mimicking mouse plasma exposure profiles of both agents. We explored spheroid volume and viability as a measure of cancer cells response and changes in mechanistically relevant pharmacodynamic biomarkers (γH2AX, cleaved-caspase 3 and Ki67). We demonstrate here that our microfluidic tumour-on-chip platform can successfully predict the efficacy from in vivo studies and therefore represents an innovative tool to guide drug dose and schedules for optimal efficacy and pharmacodynamic assessment, while reducing the need for animal studies.


Assuntos
Antineoplásicos/farmacocinética , Irinotecano/farmacocinética , Piridinas/farmacocinética , Quinolinas/farmacocinética , Linhagem Celular Tumoral , Humanos , Técnicas Analíticas Microfluídicas , Esferoides Celulares
12.
ACS Appl Mater Interfaces ; 13(26): 30359-30372, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34142813

RESUMO

One of the recent advances in nanotechnology within the medical field is the development of a nanoformulation of anticancer drugs or photosensitizers. Cancer cell-specific drug delivery and upregulation of the endogenous level of reactive oxygen species (ROS) are important in precision anticancer treatment. Within our article, we report a new therapeutic nanoformulation of cancer cell targeting using endogenous ROS self-generation without an external initiator and a switch-on drug release (ROS-induced cascade nanoparticle degradation and anticancer drug generation). We found a substantial cellular ROS generation by treating an isothiocyanate-containing chemical and functionalizing it onto the surface of porous silicon nanoparticles (pSiNPs) that are biodegradable and ROS-responsive nanocarriers. Simultaneously, we loaded an ROS-responsive prodrug (JS-11) that could be converted to the original anticancer drug, SN-38, and conducted further surface functionalization with a cancer-targeting peptide, CGKRK. We demonstrated the feasibility as a cancer-targeting and self-activating therapeutic nanoparticle in a pancreatic cancer xenograft mouse model, and it showed a superior therapeutic efficacy through ROS-induced therapy and drug-induced cell death. The work presented is a new concept of a nanotherapeutic and provides a more feasible clinical translational pathway.


Assuntos
Antineoplásicos/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Feminino , Humanos , Irinotecano/farmacocinética , Irinotecano/uso terapêutico , Isotiocianatos/química , Isotiocianatos/farmacocinética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Fármacos Fotossensibilizantes/farmacocinética , Medicina de Precisão , Pró-Fármacos/farmacocinética , Pró-Fármacos/uso terapêutico , Silanos/química , Silanos/farmacocinética , Silício/química , Silício/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Drug Metab Dispos ; 49(8): 683-693, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074730

RESUMO

The anticancer drug irinotecan shows serious dose-limiting gastrointestinal toxicity regardless of intravenous dosing. Although enzymes and transporters involved in irinotecan disposition are known, quantitative contributions of these mechanisms in complex in vivo disposition of irinotecan are poorly understood. We explained intestinal disposition and toxicity of irinotecan by integrating 1) in vitro metabolism and transport data of irinotecan and its metabolites, 2) ex vivo gut microbial activation of the toxic metabolite SN-38, and 3) the tissue protein abundance data of enzymes and transporters relevant to irinotecan and its metabolites. Integration of in vitro kinetics data with the tissue enzyme and transporter abundance predicted that carboxylesterase (CES)-mediated hydrolysis of irinotecan is the rate-limiting process in the liver, where the toxic metabolite formed is rapidly deactivated by glucuronidation. In contrast, the poor SN-38 glucuronidation rate as compared with its efficient formation by CES2 in the enterocytes is the key mechanism of the intestinal accumulation of the toxic metabolite. The biliary efflux and organic anion transporting polypeptide-2B1-mediated enterocyte uptake can also synergize buildup of SN-38 in the enterocytes, whereas intestinal P-glycoprotein likely facilitates SN-38 detoxification in the enterocytes. The higher SN-38 concentration in the intestine can be further nourished by ß-d-glucuronidases. Understanding the quantitative significance of the key metabolism and transport processes of irinotecan and its metabolites can be leveraged to alleviate its intestinal side effects. Further, the proteomics-informed quantitative approach to determine intracellular disposition can be extended to determine susceptibility of cancer cells over normal cells for precision irinotecan therapy. SIGNIFICANCE STATEMENT: This work provides a deeper insight into the quantitative relevance of irinotecan hydrolysis (activation), conjugation (deactivation), and deconjugation (reactivation) by human or gut microbial enzymes or transporters. The results of this study explain the characteristic intestinal exposure and toxicity of irinotecan. The quantitative tissue-specific in vitro to in vivo extrapolation approach presented in this study can be extended to cancer cells.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Eliminação Hepatobiliar , Inativação Metabólica/efeitos dos fármacos , Irinotecano , Transportadores de Ânions Orgânicos/metabolismo , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Carboxilesterase/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Glucuronidase/metabolismo , Eliminação Hepatobiliar/efeitos dos fármacos , Eliminação Hepatobiliar/fisiologia , Humanos , Irinotecano/análogos & derivados , Irinotecano/farmacocinética , Irinotecano/toxicidade , Fígado/enzimologia , Inibidores da Topoisomerase I/farmacocinética , Inibidores da Topoisomerase I/toxicidade
14.
Cancer Chemother Pharmacol ; 88(3): 543-553, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34117512

RESUMO

PURPOSE: SN-38, a pharmacologically active metabolite of irinotecan, is taken up into hepatocytes by organic anion transporting polypeptide (OATP) 1B1. The effects of functional OATP1B1 521T>C on the pharmacokinetics of SN-38 remain controversial. Here, we prospectively examined the effects of OATP1B1 function on the area under the plasma total or unbound concentration-time curve (tAUC or uAUC) of SN-38 by assessing OATP1B1 521T>C and the plasma levels of endogenous OATP1B1 substrates, coproporphyrin (CP)-I and III, in cancer patients treated with irinotecan. METHODS: We enrolled cancer patients who were treated with an irinotecan-containing regimen and did not have severe renal failure. The total and unbound concentrations of SN-38 in the plasma were measured by high-performance liquid chromatography. AUC values were calculated and normalized to the actual irinotecan dose (AUC/dose). The OATP1B1 521T>C was analyzed by direct sequencing. Concentrations of the endogenous substrates in plasma before irinotecan treatment (baseline) were determined by liquid chromatography with tandem mass spectrometry. RESULTS: Twenty-two patients with a median estimated glomerular filtration rate of 74.8 mL/min (range 32.6-99.6) were examined. Both tAUC/dose and uAUC/dose were associated with the grade of neutropenia; however, they were not associated with OATP1B1 521T>C or baseline CP-I and III levels. It is worth noting that these baseline concentrations were significantly higher in patients with OATP1B1 521C, supporting functional changes in OATP1B1. CONCLUSION: The contribution of OATP1B1 activity to inter-patient variability in the systemic exposure to SN-38 is likely minimal in patients without severe renal failure.


Assuntos
Irinotecano/administração & dosagem , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Neoplasias/tratamento farmacológico , Insuficiência Renal/fisiopatologia , Idoso , Área Sob a Curva , Cromatografia Líquida , Relação Dose-Resposta a Droga , Feminino , Taxa de Filtração Glomerular , Humanos , Irinotecano/efeitos adversos , Irinotecano/farmacocinética , Masculino , Pessoa de Meia-Idade , Neoplasias/patologia , Estudos Prospectivos , Índice de Gravidade de Doença , Espectrometria de Massas em Tandem , Inibidores da Topoisomerase I/administração & dosagem , Inibidores da Topoisomerase I/efeitos adversos , Inibidores da Topoisomerase I/farmacocinética
15.
Cancer Chemother Pharmacol ; 88(3): 403-414, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34031756

RESUMO

PURPOSE: This phase I trial was performed to determine the maximum-tolerated dose (MTD), dose-limiting toxicities (DLTs), preliminary efficacy, and pharmacokinetics (PK) of LY01610, a novel liposome-encapsulated irinotecan, in patients with advanced esophageal squamous cell carcinoma (ESCC). METHODS: This trial was conducted in two stages. In the dose-escalation stage, patients with advanced ESCC refractory or intolerant to previous chemotherapy received escalating doses of LY01610. A recommended dose based on patient tolerance was then expanded in the second stage. LY01610 was administered intravenously every 2 weeks, except that the first cycle in dose escalation was 3 weeks to allow observation of DLTs. RESULTS: Twenty-four patients were enrolled across 4 dose levels (30, 60, 90 and 120 mg/m2). The DLTs included vomiting and febrile neutropenia, and the MTD was 90 mg/m2. The most common grade 3/4 adverse events were leukopenia in six patients (25.0%), anemia in six patients (25.0%) and neutropenia in five patients (20.8%). One patient achieved complete response, and four had partial response, including one patient receiving LY01610 at the starting dose of 30 mg/m2. Compared with conventional irinotecan, the PK profile of LY01610 was characterized by increased and prolonged exposure of total irinotecan and the active metabolite SN-38 in plasma. CONCLUSION: LY01610 demonstrated manageable toxicity and promising anti-tumor activity in patients with advanced ESCC. Future clinical development of LY01610 as single agent or in combination with other anti-cancer agents in treating ESCC patients is warranted. TRIAL REGISTRATION: NCT04088604 at ClinicalTrials.gov.


Assuntos
Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Irinotecano/administração & dosagem , Inibidores da Topoisomerase I/administração & dosagem , Adulto , Relação Dose-Resposta a Droga , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Humanos , Irinotecano/efeitos adversos , Irinotecano/farmacocinética , Lipossomos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Neutropenia/induzido quimicamente , Inibidores da Topoisomerase I/efeitos adversos , Inibidores da Topoisomerase I/farmacocinética
16.
J Pharm Pharmacol ; 73(2): 178-184, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33793796

RESUMO

OBJECTIVES: Irinotecan is a widely intravenously used drug for the treatment of certain types of solid tumours. The oral administration of irinotecan has recently been recognized as being a more effective method for the treatment than intravenous administration. However, the limited oral bioavailability of irinotecan poses a problem for its oral delivery. In this study, we report on an investigation of the mechanism responsible for the limited oral absorption of irinotecan using rats as models. METHODS: The intestinal absorption of irinotecan in the absence and presence of several compounds was examined using intestinal loop method. The pharmacokinetics of irinotecan was investigated when verapamil, an inhibitor of the P-glycoprotein (P-gp) and cytochrome P450 3A (CYP3A) was pre-administered. KEY FINDINGS: The intestinal absorption of irinotecan was enhanced in the presence of verapamil, indicating that efflux by intestinal P-gp contributes to its limited oral absorption. Indeed, the oral bioavailability of irinotecan was increased when verapamil was orally pre-administered. This increased oral bioavailability was accompanied by a slight but significant decrease in the formation of a metabolite produced by the action of CYP3A. CONCLUSION: The findings presented herein suggest that intestinal efflux by P-gp is mainly and intestinal metabolism by CYP3A is partially responsible for the limited oral absorption of irinotecan.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Citocromo P-450 CYP3A/metabolismo , Irinotecano/farmacocinética , Inibidores da Topoisomerase I/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Absorção Intestinal , Irinotecano/administração & dosagem , Masculino , Ratos , Ratos Wistar , Inibidores da Topoisomerase I/administração & dosagem , Verapamil/farmacologia
17.
Cancer Chemother Pharmacol ; 88(2): 247-258, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33912999

RESUMO

PURPOSE: The aim of the present study was to characterize the pharmacokinetics of irinotecan and its four main metabolites (SN-38, SN-38G, APC and NPC) in metastatic colorectal cancer patients treated with FOLFIRI and FOLFIRINOX regimens and to quantify and explain the inter-individual pharmacokinetic variability in this context. METHODS: A multicenter study including 109 metastatic colorectal cancer patients treated with FOLFIRI or FOLFIRINOX regimen, associated or not with a monoclonal antibody, was conducted. Concentrations of irinotecan and its four main metabolites were measured in 506 blood samples during the first cycle of treatment. Collected data were analyzed using the population approach. First, fixed and random effects models were selected using statistical and graphical methods; second, the impact of covariates on pharmacokinetic parameters was evaluated to explain the inter-individual variability in pharmacokinetic parameters. RESULTS: A seven-compartment model best described the pharmacokinetics of irinotecan and its four main metabolites. First-order rates were assigned to distribution, elimination, and metabolism processes, except for the transformation of irinotecan to NPC which was nonlinear. Addition of a direct conversion of NPC into SN-38 significantly improved the model. Co-administration of oxaliplatin significantly modified the distribution of SN-38. CONCLUSION: To our knowledge, the present model is the first to allow a simultaneous description of irinotecan pharmacokinetics and of its four main metabolites. Moreover, a direct conversion of NPC into SN-38 had never been described before in a population pharmacokinetic model of irinotecan. The model will be useful to develop pharmacokinetic-pharmacodynamic models relating SN-38 concentrations to efficacy and digestive toxicities. CLINICAL TRIALS REGISTRATION NUMBER: ClinicalTrials.gov identifier: NCT00559676.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Camptotecina/análogos & derivados , Irinotecano/farmacocinética , Inibidores da Topoisomerase I/farmacocinética , Camptotecina/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Feminino , Fluoruracila/uso terapêutico , Humanos , Irinotecano/uso terapêutico , Leucovorina/uso terapêutico , Masculino , Oxaliplatina/uso terapêutico , Inibidores da Topoisomerase I/uso terapêutico
18.
Cancer Chemother Pharmacol ; 88(1): 39-52, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33755789

RESUMO

PURPOSE: Irinotecan (IR) displays significant PK/PD variability. This study evaluated functional hepatic imaging (HNI) and extensive pharmacogenomics (PGs) to explore associations with IR PK and PD (toxicity and response). METHODS: Eligible patients (pts) suitable for Irinotecan-based therapy. At baseline: (i) PGs: blood analyzed by the Affymetrix-DMET™-Plus-Array (1936 variants: 1931 single nucleotide polymorphisms [SNPs] and 5 copy number variants in 225 genes, including 47 phase I, 80 phase II enzymes, and membrane transporters) and Sanger sequencing (variants in HNF1A, Topo-1, XRCC1, PARP1, TDP, CDC45L, NKFB1, and MTHFR), (ii) HNI: pts given IV 250 MBq-99mTc-IDA, data derived for hepatic extraction/excretion parameters (CLHNI, T1/2-HNI, 1hRET, HEF, Td1/2). In cycle 1, blood was taken for IR analysis and PK parameters were derived by non-compartmental methods. Associations were evaluated between HNI and PGs, with IR PK, toxicity, objective response rate (ORR) and progression-free survival (PFS). RESULTS: N = 31 pts. The two most significant associations between PK and PD with gene variants or HNI parameters (P < 0.05) included: (1) PK: SN38-Metabolic Ratio with CLHNI, 1hRET, (2) Grade 3+ diarrhea with SLC22A2 (rs 316019), GSTM5 (rs 1296954), (3) Grade 3+ neutropenia with CLHNI, 1hRET, SLC22A2 (rs 316019), CYP4F2 (rs2074900) (4) ORR with ALDH2 (rs 886205), MTHFR (rs 1801133). (5) PFS with T1/2-HNI, XDH (rs 207440), and ABCB11 (rs 4148777). CONCLUSIONS: Exploratory associations were observed between Irinotecan PK/PD with hepatic functional imaging and extensive pharmacogenomics. Further work is required to confirm and validate these findings in a larger cohort of patients. AUSTRALIAN NEW ZEALAND CLINICAL TRIALS REGISTRY (ANZCTR) NUMBER: ACTRN12610000897066, Date registered: 21/10/2010.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Irinotecano/farmacocinética , Irinotecano/uso terapêutico , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Austrália , Neoplasias Colorretais/genética , Feminino , Genótipo , Humanos , Fígado/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Farmacogenética/métodos , Polimorfismo de Nucleotídeo Único/genética , Intervalo Livre de Progressão
19.
Pharm Res ; 38(4): 593-605, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33733372

RESUMO

PURPOSE: Pharmacometric models provide useful tools to aid the rational design of clinical trials. This study evaluates study design-, drug-, and patient-related features as well as analysis methods for their influence on the power to demonstrate a benefit of pharmacogenomics (PGx)-based dosing regarding myelotoxicity. METHODS: Two pharmacokinetic and one myelosuppression model were assembled to predict concentrations of irinotecan and its metabolite SN-38 given different UGT1A1 genotypes (poor metabolizers: CLSN-38: -36%) and neutropenia following conventional versus PGx-based dosing (350 versus 245 mg/m2 (-30%)). Study power was assessed given diverse scenarios (n = 50-400 patients/arm, parallel/crossover, varying magnitude of CLSN-38, exposure-response relationship, inter-individual variability) and using model-based data analysis versus conventional statistical testing. RESULTS: The magnitude of CLSN-38 reduction in poor metabolizers and the myelosuppressive potency of SN-38 markedly influenced the power to show a difference in grade 4 neutropenia (<0.5·109 cells/L) after PGx-based versus standard dosing. To achieve >80% power with traditional statistical analysis (χ2/McNemar's test, α = 0.05), 220/100 patients per treatment arm/sequence (parallel/crossover study) were required. The model-based analysis resulted in considerably smaller total sample sizes (n = 100/15 given parallel/crossover design) to obtain the same statistical power. CONCLUSIONS: The presented findings may help to avoid unfeasible trials and to rationalize the design of pharmacogenetic studies.


Assuntos
Glucuronosiltransferase/genética , Irinotecano/efeitos adversos , Neutropenia/prevenção & controle , Projetos de Pesquisa , Variação Biológica da População/genética , Medula Óssea/efeitos dos fármacos , Medula Óssea/crescimento & desenvolvimento , Ensaios Clínicos como Assunto , Estudos Cross-Over , Relação Dose-Resposta a Droga , Estudos de Viabilidade , Glucuronosiltransferase/metabolismo , Humanos , Irinotecano/administração & dosagem , Irinotecano/farmacocinética , Modelos Biológicos , Neutropenia/induzido quimicamente , Neutropenia/genética , Variantes Farmacogenômicos
20.
Eur J Drug Metab Pharmacokinet ; 46(2): 317-324, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33619631

RESUMO

BACKGROUND AND OBJECTIVES: Irinotecan (CPT-11) is metabolized to an active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38) by carboxylesterase (CES). SN-38 is then converted to the inactive metabolite SN-38 glucuronide (SN-38G) by glucuronosyltransferase 1A1 (UGT1A1). Genetic polymorphisms in UGT1A1 have been associated with altered SN-38 pharmacokinetics, which increase the risk of toxicity in patients. CPT-11 is also converted to 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino]carbonyloxycamptothecin (APC) and 7-ethyl-10-(4-amino-1-piperidino) carbonyloxycamptothecin (NPC) by cytochrome P450 3A (CYP3A), and this route also affects the plasma concentration of SN-38. We evaluated the activities of UGT1A1, CYP3A, and CES and the factors affecting the pharmacokinetics of plasma SN-38 in patients with UGT1A1 gene polymorphisms. METHODS: Three male patients aged 56, 65, and 49 years were recruited for the analysis. All patients had pancreatic cancer, received FOLFIRINOX, and had UGT1A1*6/*6 (patients 1 and 3) or *6/*28 (patient 2) genetic polymorphisms. The rate constants for evaluating the enzyme activity were determined from the measured plasma concentration of CPT-11 and its metabolites using a two-compartment model by WinNonlin. RESULTS: The area under the plasma concentration-time curve (AUC) of SN-38 was patient 1 > patient 2 > patient 3. The rate constants obtained from the model analysis indicated the respective enzyme activities of UGT1A1 (k57), CYP3A (k13 + k19), and CES (k15). The order of values for UGT1A1 activity was patient 2 > patient 3 > patient 1. Since UGT1A1 activity was low in patient 1 with a high AUC of SN-38, it can be said that the increase in plasma concentration was due to a decrease in UGT1A1 activity. Conversely, the order of values for CYP3A and CES activities was patient 3 > patient 1 > patient 2 and patient 2 > patient 1 > patient 3, respectively. Patient 3 had the lowest AUC of SN-38, caused by a lower level of CES activity and increased CYP3A activity. CONCLUSION: In this study, we indicated that the plasma AUC of SN-38 and AUC ratio of SN-38G/SN-38 may depend on changes in the activities of CYP3A, CES, and UGT1A1. Using pharmacokinetic analysis, it is possible to directly evaluate enzyme activity and consider what kind of enzyme variation causes the increase in the AUC of SN-38.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Glucuronosiltransferase/genética , Irinotecano/farmacocinética , Neoplasias Pancreáticas/tratamento farmacológico , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Área Sob a Curva , Camptotecina/análogos & derivados , Camptotecina/farmacocinética , Carboxilesterase/metabolismo , Citocromo P-450 CYP3A/metabolismo , Fluoruracila/administração & dosagem , Fluoruracila/farmacocinética , Glucuronídeos/farmacocinética , Glucuronosiltransferase/metabolismo , Humanos , Irinotecano/administração & dosagem , Leucovorina/administração & dosagem , Leucovorina/farmacocinética , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Oxaliplatina/administração & dosagem , Oxaliplatina/farmacocinética , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...