Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 423
Filtrar
1.
PeerJ ; 12: e16843, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436016

RESUMO

The soldier caste is one of the most distinguished castes inside the termite colony. The mechanism of soldier caste differentiation has mainly been studied at the transcriptional level, but the function of microRNAs (miRNAs) in soldier caste differentiation is seldom studied. In this study, the workers of Coptotermes formosanus Shiraki were treated with methoprene, a juvenile hormone analog which can induce workers to transform into soldiers. The miRNomes of the methoprene-treated workers and the controls were sequenced. Then, the differentially expressed miRNAs (DEmiRs) were corrected with the differentially expressed genes DEGs to construct the DEmiR-DEG regulatory network. Afterwards, the DEmiR-regulated DEGs were subjected to GO enrichment and KEGG enrichment analysis. A total of 1,324 miRNAs were identified, among which 116 miRNAs were screened as DEmiRs between the methoprene-treated group and the control group. A total of 4,433 DEmiR-DEG pairs were obtained. No GO term was recognized as significant in the cellular component, molecular function, or biological process categories. The KEGG enrichment analysis of the DEmiR-regulated DEGs showed that the ribosome biogenesis in eukaryotes and circadian rhythm-fly pathways were enriched. This study demonstrates that DEmiRs and DEGs form a complex network regulating soldier caste differentiation in termites.


Assuntos
Isópteros , MicroRNAs , Animais , Isópteros/genética , Metoprene , Ritmo Circadiano , Grupos Controle , MicroRNAs/genética
2.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38491951

RESUMO

The mitogenome sequence data have been widely used in inferring the phylogeny of insects. In this study, we determined the complete mitogenome for Macrotermes sp. (Termitidae, Macrotermitinae) using next-generation sequencing. Macrotermes sp. possesses a typical insect mitogenome, displaying an identical gene order and gene content to other existing termite mitogenomes. We present the first prediction of the secondary structure of ribosomal RNA genes in termites. The rRNA secondary structures of Macrotermes sp. exhibit similarities to closely related insects and also feature distinctive characteristics in their helical structures. Together with 321 published mitogenomes of termites as ingroups and 8 cockroach mitogenomes as outgroups, we compiled the most comprehensive mitogenome sequence matrix for Termitoidae to date. Phylogenetic analyses were conducted using datasets employing different data coding strategies and various inference methods. Robust relationships were recovered at the family or subfamily level, demonstrating the utility of comprehensive mitogenome sampling in resolving termite phylogenies. The results supported the monophyly of Termitoidae, and consistent relationships within this group were observed across different analyses. Mastotermitidae was consistently recovered as the sister group to all other termite families. The families Hodotermitidae, Stolotermitidae, and Archotermopsidae formed the second diverging clade, followed by the Kalotermitidae. The Neoisoptera was consistently supported with strong node support, with Stylotermitidae being sister to the remaining families. Rhinotermitidae was found to be non-monophyletic, and Serritermitidae nested within the basal clades of Rhinotermitidae and was sister to Psammotermitinae. Overall, our phylogenetic results are largely consistent with earlier mitogenome studies.


Assuntos
Baratas , Genoma Mitocondrial , Isópteros , Humanos , Animais , Filogenia , Isópteros/genética , Baratas/genética , Insetos/genética
3.
PLoS One ; 19(3): e0299900, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427681

RESUMO

Eusocial insects such as termites, ants, bees, and wasps exhibit a reproductive division of labor. The developmental regulation of reproductive organ (ovaries and testes) is crucial for distinguishing between reproductive and sterile castes. The development of reproductive organ in insects is regulated by sex-determination pathways. The sex determination gene Doublesex (Dsx), encoding transcription factors, plays an important role in this pathway. Therefore, clarifying the function of Dsx in the developmental regulation of sexual traits is important to understand the social evolution of eusocial insects. However, no studies have reported the function of Dsx in hemimetabolous eusocial group termites. In this study, we searched for binding sites and candidate target genes of Dsx in species with available genome information as the first step in clarifying the function of Dsx in termites. First, we focused on the Reticulitermes speratus genome and identified 101 candidate target genes of Dsx. Using a similar method, we obtained 112, 39, and 76 candidate Dsx target genes in Reticulitermes lucifugus, Coptotermes formosanus, and Macrotermes natalensis, respectively. Second, we compared the candidate Dsx target genes between species and identified 37 common genes between R. speratus and R. lucifugus. These included several genes probably involved in spermatogenesis and longevity. However, only a few common target genes were identified between R. speratus and the other two species. Finally, Dsx dsRNA injection resulted in the differential expression of several target genes, including piwi-like protein and B-box type zinc finger protein ncl-1 in R. speratus. These results provide valuable resource data for future functional analyses of Dsx in termites.


Assuntos
Formigas , Isópteros , Masculino , Animais , Isópteros/genética , Isópteros/metabolismo , Processos de Determinação Sexual/genética
4.
Heredity (Edinb) ; 132(5): 257-266, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38509263

RESUMO

Hybridization between invasive pest species may lead to significant genetic and economic impacts that require close monitoring. The two most invasive and destructive termite species worldwide, Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann), have the potential for hybridization in the field. A three-year field survey conducted during the dispersal flight season of Coptotermes in Taiwan identified alates with atypical morphology, which were confirmed as hybrids of the two Coptotermes species using microsatellite and mitochondrial analyses. Out of 27,601 alates collected over three years, 4.4% were confirmed as hybrid alates, and some advanced hybrids (>F1 generations) were identified. The hybrid alates had a dispersal flight season that overlapped with the two parental species 13 out of 15 times. Most of the hybrid alates were females, implying that mating opportunities beyond F1 may primarily be possible through female hybrids. However, the incipient colony growth results from all potential mating combinations suggest that only backcross colonies with hybrid males could sometimes lead to brood development. The observed asymmetrical viability and fertility of hybrid alates may critically reduce the probability of advanced-hybrid colonies being established in the field.


Assuntos
Fluxo Gênico , Hibridização Genética , Isópteros , Repetições de Microssatélites , Animais , Isópteros/genética , Isópteros/fisiologia , Feminino , Masculino , Repetições de Microssatélites/genética , Taiwan , Espécies Introduzidas , DNA Mitocondrial/genética
5.
Int J Biol Macromol ; 262(Pt 1): 129639, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331075

RESUMO

Olfaction is critical for survival because it allows animals to look for food and detect pheromonal cues. Neuropeptides modulate olfaction and behaviors in insects. While how the neuroregulation of olfactory recognition affects foraging behavior in termites is still unclear. Here, we analyzed the change after silencing the olfactory co-receptor gene (Orco) and the neuropeptide Y gene (NPY), and then investigated the impact of olfactory recognition on foraging behavior in Odontotermes formosanus under different predation pressures. The knockdown of Orco resulted in the reduced Orco protein expression in antennae and the decreased EAG response to trail pheromones. In addition, NPY silencing led to the damaged ability of olfactory response through downregulating Orco expression. Both dsOrco- and dsNPY-injected worker termites showed significantly reduced walking activity and foraging success. Additionally, we found that 0.1 pg/cm trail pheromone and nestmate soldiers could provide social buffering to relieve the adverse effect of predator ants on foraging behavior in worker termites with the normal ability of olfactory recognition. Our orthogonal experiments further verified that Orco/NPY genes are essential in manipulating termite olfactory recognition during foraging under different predation pressures, suggesting that the neuroregulation of olfactory recognition plays a crucial role in regulating termite foraging behavior.


Assuntos
Isópteros , Receptores Odorantes , Animais , Olfato , Isópteros/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Feromônios
6.
Arthropod Struct Dev ; 78: 101326, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38176178

RESUMO

In lower termites, which exhibit a high degree of compound eye degradation or absence, antennae play a pivotal role in information acquisition. This comprehensive study investigates the olfactory system of Reticulitermes aculabialis, spanning five developmental stages and three castes. Initially, we characterize the structures and distribution of antennal sensilla across different developmental stages. Results demonstrate variations in sensilla types and distributions among stages, aligning with caste-specific division of labor and suggesting their involvement in environmental sensitivity detection, signal differentiation, and nestmate recognition. Subsequently, we explore the impact of antennal excision on olfactory gene expression in various caste categories through transcriptomics, homology analysis, and expression profiling. Findings reveal that olfactory genes expression is influenced by antennal excision, with outcomes varying according to caste and the extent of excision. Finally, utilizing fluorescence in situ hybridization, we precisely localize the expression sites of olfactory genes within the antennae. This research reveals the intricate and adaptable nature of the termite olfactory system, highlighting its significance in adapting to diverse ecological roles and demands of social living.


Assuntos
Isópteros , Animais , Isópteros/genética , Hibridização in Situ Fluorescente , Olfato , Sensilas , Perfilação da Expressão Gênica
7.
Insect Mol Biol ; 33(1): 55-68, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37750189

RESUMO

Desaturase enzymes play an essential role in the biosynthesis of unsaturated fatty acids (UFAs). In this study, we identified seven "first desaturase" subfamily genes (Cfor-desatA1, Cfor-desatA2-a, Cfor-desatA2-b, Cfor-desatB-a, Cfor-desatB-b, Cfor-desatD and Cfor-desatE) from the Formosan subterranean termite Coptotermes formosanus. These desaturases were highly expressed in the cuticle and fat body of C. formosanus. Inhibition of either the Cfor-desatA2-a or Cfor-desatA2-b gene resulted in a significant decrease in the contents of fatty acids (C16:0, C18:0, C18:1 and C18:2) in worker castes. Moreover, we observed that inhibition of most of desaturase genes identified in this study had a negative impact on the survival rate and desiccation tolerance of workers. Interestingly, when normal soldiers were reared together with dsCfor-desatA2-b-treated workers, they exhibited higher mortality, suggesting that desaturase had an impact on trophallaxis among C. formosanus castes. Our findings shed light on the novel roles of desaturase family genes in the eusocial termite C. formosanus.


Assuntos
Isópteros , Animais , Isópteros/genética , Dessecação , Ácidos Graxos , Ácidos Graxos Dessaturases/genética
8.
Curr Opin Insect Sci ; 61: 101136, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37922983

RESUMO

The genomes of eusocial insects allow the production and regulation of highly distinct phenotypes, largely independent of genotype. Although rare, eusociality has evolved convergently in at least three insect orders (Hymenoptera, Blattodea and Coleoptera). Despite such disparate origins, eusocial phenotypes show remarkable similarity, exhibiting long-lived reproductives and short-lived sterile workers and soldiers. In this article, we review current knowledge on genomic signatures of eusocial evolution. We confirm that especially an increased regulatory complexity and the adaptive evolution of chemical communication are common to several origins of eusociality. Furthermore, colony life itself can shape genomes of divergent taxa in a similar manner. Future research should be geared towards generating more high-quality genomic resources, especially in hitherto understudied clades, such as ambrosia beetles and termites. The application of more sophisticated tools such as machine learning techniques may allow the detection of more subtle convergent genomic footprints of eusociality.


Assuntos
Himenópteros , Isópteros , Animais , Comportamento Social , Himenópteros/genética , Genômica , Genoma , Isópteros/genética
9.
J Insect Sci ; 23(6)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38059374

RESUMO

The recombinant genotypes that can be produced when closely related species mate improve the genetic diversity of the population. Among closely related species, the link between interspecific reproduction behaviors and genetic diversity has barely been studied. Reticulitermes chinensis and R. flaviceps, which live close to each other, were used as research subjects in our study to find out how preferring conspecifics affects reproductive behavior between species. We discovered that neither R. chinensis nor R. flaviceps displayed preference behavior for conspecifics. Males of R. chinensis and R. flaviceps chased and groomed not only intraspecific females but also interspecific females. In a brief period of time, 2 mating behaviors, intra- and interspecific mating, were also observed. There were no significant differences in the duration of each behavior (tandem, grooming, and mating) between interspecies and intraspecies partners. Moreover, genetic analysis showed both interspecific mating and intraspecific mating can produce living offspring when the 2 types of mating occur in a colony. Our findings showed that there was no obvious intraspecific preference between the 2 species of termite Reticulitermes when it came to tandem, grooming, and mating, which not only makes it easier for interspecific hybridization to occur but also sheds light on the genetic diversity.


Assuntos
Isópteros , Masculino , Feminino , Animais , Isópteros/genética , Reprodução , Simpatria , Hibridização Genética , Variação Genética
10.
PLoS One ; 18(11): e0293813, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37956140

RESUMO

New colonies of Formosan subterranean termites are founded by monogamous pairs. During swarming season, alates (winged reproductives) leave their parental colony. After swarming, they drop to the ground, shed their wings, and male and female dealates find suitable nesting sites where they mate and become kings and queens of new colonies. The first generation of offspring is entirely dependent on the nutritional resources of the founder pair consisting of the fat and protein reserves of the dealates and their microbiota, which include the cellulose-digesting protozoa and diverse bacteria. Since termite kings and queens can live for decades, mate for life and colony success is linked to those initial resources, we hypothesized that gut microbiota of founders affect pair formation. To test this hypothesis, we collected pairs found in nest chambers and single male and female dealates from four swarm populations. The association of three factors (pairing status, sex of the dealates and population) with dealate weights, total protozoa, and protozoa Pseudotrichonympha grassii numbers in dealate hindguts was determined. In addition, Illumina 16S rRNA gene sequencing and the QIIME2 pipeline were used to determine the impact of those three factors on gut bacteria diversity of dealates. Here we report that pairing status was significantly affected by weight and total protozoa numbers, but not by P. grassii numbers and bacteria diversity. Weight and total protozoa numbers were higher in paired compared to single dealates. Males contained significantly higher P. grassii numbers and bacteria richness and marginally higher phylogenetic diversity despite having lower weights than females. In conclusion, this study showed that dealates with high body weight and protozoa numbers are more likely to pair and become colony founders, probably because of competitive advantage. The combined nutritional resources provided by body weight and protozoa symbionts of the parents are important for successful colony foundation and development.


Assuntos
Isópteros , Animais , Masculino , Feminino , Isópteros/genética , RNA Ribossômico 16S/genética , Filogenia , Bactérias/genética , Peso Corporal
11.
J Insect Sci ; 23(6)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952215

RESUMO

With recent evidence of hybridization events in the field, the phenotypic traits of F1 hybrid colonies of 2 destructive subterranean termite species, Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann) remain to be investigated. In this study, laboratory colonies of 2 conspecific pairings and 2 heterospecific pairings (hybrid F = ♀C. formosanus × ♂C. gestroi, hybrid G = ♀C. gestroi × ♂C. formosanus) were examined in Florida, USA, and in Taiwan. Colony nest architecture for both hybrids displayed disorganized carton materials compared to the defined trabecular carton of both parental species. Soldier head measurements were not a reliable approach for diagnostic purposes, as soldier morphometric traits widely overlapped across all mating combinations, except for hybrid F soldiers displaying abnormally long mandibles. Hybrid F soldiers' mandibles also remained parallel when at rest. However, 4 qualitative morphological differences in soldiers were determined for diagnostic purposes. First, the fontanelle in both hybrids is horizontally ellipsoid whereas subcircular in C. gestroi and trianguliform in C. formosanus. Second, sclerotized striations along the postmental sulcus are present in C. gestroi, absent in C. formosanus, and intermediate in both hybrid soldier types. Third, each lateral margin of the fontanelle is flanked by 2 setae in C. formosanus and both hybrids, while a single seta resides on each side of the fontanelle in C. gestroi. Finally, C. gestroi and hybrid soldiers' heads are characterized by a bulging vertex that is lacking in C. formosanus. Therefore, a combination of these 4 characteristics now allows for soldier identification of hybrid Coptotermes.


Assuntos
Baratas , Isópteros , Animais , Isópteros/genética , Hibridização Genética , Fenótipo , Florida
12.
PLoS One ; 18(11): e0293096, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37917766

RESUMO

Altruistic caste, including worker and soldier (derived from worker), plays a critical role in the ecological success of social insects. The proportion of soldiers, soldier sex ratios, and the number of workers vary significantly between species, and also within species, depending on colony developmental stage and environmental factors. However, it is unknown whether there are sex-linked effects from parents on controlling the caste fate or not. Here, we compared soldier sex ratios, soldier proportions, and population size among a four mating types of Reticulitermes amamianus (Ra) and R. speratus (Rs) (male × female, mRa × fRa, mRa × fRs, mRs × fRa, mRs × fRs) and demonstrate that the soldier sex ratio and worker population size of hybrid colonies skew to colonies of king's species, while the soldier proportion skew to queen's species. The survival rate of offspring resulting from interspecies hybridization was significantly higher for mRa × fRs than for mRs × fRa. The results of this study demonstrate the asymmetric influence of kings and queens on caste determination and colony growth, which can contribute to our better understanding of parental influence on the colony dynamics of social insects.


Assuntos
Isópteros , Animais , Masculino , Feminino , Isópteros/genética , Razão de Masculinidade , Reprodução , Densidade Demográfica
13.
J Econ Entomol ; 116(6): 2027-2034, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37804537

RESUMO

Reticulitermes speratus (Kolbe) is economically important pest in East Asia including Korea, Japan, and China where they infest wooden structures in urban areas. Previously, it has been reported that R. speratus consists of 5 subspecies, R. speratus kyushuensis Morimoto, R. speratus speratus Kolbe, R. speratus leptolabralis Morimoto, R. speratus okinawanus Morimoto, R. speratus yaeyamanus Morimoto, while only R. speratus kyushuensis was recorded in Korea in the past. However, it remains elusive if different subspecies of R. speratus other than R. speratus kyushuensis are present in Korea. In this study, we report the first record of R. speratus speratus from Korea, which was verified using soldier morphology and molecular characteristics obtained from a mitochondrial gene. R. speratus speratus Kolbe, 1885 (Blattodea: Rhinotermitidae) are found in several provinces, mainly southern regions in Korea, whereas R. speratus kyushuensis are distributed throughout the country. Our morphological comparison showed that R. speratus speratus can be distinguishable from R. speratus kyushuensis by the ratio of the posterior postmentum width to length. In the molecular comparison, R. speratus speratus revealed genetic differences of 3.06% (range 2.60-4.10%) from R. speratus kyushuensis using cytochrome oxidase subunit II gene sequences.


Assuntos
Baratas , Isópteros , Animais , Japão , China , República da Coreia , Isópteros/genética
14.
J Econ Entomol ; 116(6): 2135-2145, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797286

RESUMO

Subterranean termites in the genus Reticulitermes Holmgren 1913 are among the most economically important wood-destroying pests in the western United States. Yet, there remains uncertainty regarding the taxonomy and biology of the species in this genus. The 2 species described as having distributions in this region are the western subterranean termite, Reticulitermes hesperus Banks, and the arid land subterranean termite, Reticulitermes tibialis Banks. Taxonomic studies utilizing cuticular hydrocarbon (CHC) profiles, agonistic behavior, flight phenology, and mitochondrial DNA (mtDNA) suggested that R. hesperus is a species complex comprised of 2 or more sympatric, yet reproductively isolated species. To further delineate these taxa, we examined multiple genes from samples of Reticulitermes collected in the western United States. Alates collected after recent spring and fall mating flights, as well as previously collected workers, were subjected to CHC phenotyping and DNA sequence analyses that targeted mitochondrial cytochrome oxidase subunit II (COII), mitochondrial 16S rRNA, and nuclear Internal Transcribed Spacer 1 and 2 (ITS1 and 2). Phylogenetic analyses conducted also included published sequences of other putative western Reticulitermes species. Results suggest that at least 5 species of Reticulitermes may be present in California and that Reticulitermes in Arizona consistently group into multiple clades, including samples previously identified as R. tibialis in a sister clade. These analyses further support the species status of qualitatively different CHC phenotypes and that alates swarming in spring vs. fall are reproductively isolated species.


Assuntos
Baratas , Isópteros , Animais , Filogenia , Isópteros/genética , RNA Ribossômico 16S/genética , Baratas/genética , Hidrocarbonetos , DNA Mitocondrial/genética , California
15.
Gene ; 877: 147569, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37330022

RESUMO

In recent years, the use of microbes to control termites has attracted increasing attention. It was found that pathogenic bacteria, nematodes, and fungi effectively control termites under laboratory conditions. However, their effects have not been replicated in the field, and one reason for this is the complex immune defense mechanisms of termites, which are mainly regulated by immune genes. Therefore, altering the expression of immune genes may have a positive influence on the biocontrol efficacy of termites. Coptotermes formosanus Shiraki is one of the most economically important termite pests worldwide. Currently, the large-scale identification of immune genes in C. formosanus is primarily based on cDNA library or transcriptome data rather than at the genomic level. In this study, we identified the immune genes of C. formosanus according to genome-wide analysis. In addition, our transcriptome analysis showed that immune genes were significantly downregulated when C. formosanus was exposed to the fungus Metarhizium anisopliae or nematodes. Finally, we found that injecting dsRNA to inhibit three immune genes (CfPGRP-SC1, CfSCRB3, and CfHemocytin), which recognize infectious microbes, significantly increased the lethal effect of M. anisopliae on termites. These immune genes show great potential for C. formosanus management based on RNAi. These results also increase the number of known immune genes in C. formosanus which will provide a more comprehensive insight into the molecular basis of immunity in termites.


Assuntos
Isópteros , Metarhizium , Animais , Isópteros/genética , Isópteros/microbiologia , Metarhizium/genética , Perfilação da Expressão Gênica
16.
Exp Gerontol ; 178: 112228, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37271408

RESUMO

Studies have identified that mating induces a series of physiological changes in animals. In this period, males tending to invest more energy, immune peptides, and other substances to reduce the cost of living for females. This results in lower survival rates in later life than females. Meanwhile, both males and females shorten lifespans due to reproduction. However, the reasons why termites' queens and kings are both extremely long-lived and highly fecund are unclear. Therefore, this study aimed to examine the effects of mating on the expression of immune and DNA repair genes for lifespan extension in termite queens and kings. Here, we reported that mated queens show relatively higher expression of immune genes (phenoloxidase, denfensin, termicin, transferrin), antioxidant genes (CAT, SOD), detoxification genes (GST, CYP450) than virgin queens in the Reticulitermes chinensis. In addition, mated kings also highly expressed these genes, except for termicin, transferrin, GST, and CYP450. After mating, both queens and kings significantly upregulated the expression of DNA repair genes (MLH1, BRCA1, XRCC3, RAD54-like). Mismatch repair genes (MMR) MSH2, MSH4, MSH6 were considerably increased in mated queens, while MSH4, MSH5, MSH6 were upregulated in mated kings. Our results suggest that mating increases the expression of immune and DNA repair genes in the termite queens and kings, and thus possibly improving their survival during reproductive span due to the omnipresent pathogens.


Assuntos
Isópteros , Animais , Feminino , Masculino , Isópteros/genética , Isópteros/metabolismo , Reprodução/genética , Fertilidade , Reparo do DNA , Transferrinas/genética , Transferrinas/metabolismo
17.
Biosci Biotechnol Biochem ; 87(9): 1077-1091, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37328422

RESUMO

Chitinolytic bacteria were isolated from guts and shells of the termite Microcerotermes sp. Among the nineteen morphologically different chitinolytic isolates, three isolates with highest extracellular chitinase production ratio (≥2.26) were selected. Based on molecular identification of 16S rRNA gene sequences and biochemical characterizations using API test kits and MALDI-TOF MS, these isolates were closely related to Bacillus thuringiensis (Mc_E02) and Paenibacillus species (Mc_E07 and Mc_G06). Isolate Mc_E02 exhibited the highest chitinase-specific activity (2.45 U/mg protein) at 96 h of cultivation, and the enzyme activity was optimized at pH 7.0 and 45 °C. The isolate showed highest and broad-spectrum inhibitory effect against three phytopathogenic fungi (Curvularia lunata, Colletotrichum capsici, and Fusarium oxysporum). Its 36-kDa chitinase exhibited the biomass reduction and mycelium inhibition against all fungi, with highest effects to Curvularia lunata. This research provides novel information about termite chitinolytic bacteria and their effective chitinase, with potential use as biocontrol tool.


Assuntos
Bacillus thuringiensis , Quitinases , Isópteros , Animais , Antifúngicos/farmacologia , Isópteros/genética , Isópteros/metabolismo , RNA Ribossômico 16S/genética , Fungos/metabolismo , Bacillus thuringiensis/metabolismo , Quitinases/metabolismo , Doenças das Plantas/microbiologia
18.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37373456

RESUMO

Termites live in colonies, and their members belong to different castes that each have their specific role within the termite society. In well-established colonies of higher termites, the only food the founding female, the queen, receives is saliva from workers; such queens can live for many years and produce up to 10,000 eggs per day. In higher termites, worker saliva must thus constitute a complete diet and therein resembles royal jelly produced by the hypopharyngeal glands of honeybee workers that serves as food for their queens; indeed, it might as well be called termite royal jelly. However, whereas the composition of honeybee royal jelly is well established, that of worker termite saliva in higher termites remains largely unknown. In lower termites, cellulose-digesting enzymes constitute the major proteins in worker saliva, but these enzymes are absent in higher termites. Others identified a partial protein sequence of the major saliva protein of a higher termite and identified it as a homolog of a cockroach allergen. Publicly available genome and transcriptome sequences from termites make it possible to study this protein in more detail. The gene coding the termite ortholog was duplicated, and the new paralog was preferentially expressed in the salivary gland. The amino acid sequence of the original allergen lacks the essential amino acids methionine, cysteine and tryptophan, but the salivary paralog incorporated these amino acids, thus allowing it to become more nutritionally balanced. The gene is found in both lower and higher termites, but it is in the latter that the salivary paralog gene got reamplified, facilitating an even higher expression of the allergen. This protein is not expressed in soldiers, and, like the major royal jelly proteins in honeybees, it is expressed in young but not old workers.


Assuntos
Baratas , Isópteros , Feminino , Abelhas , Animais , Isópteros/genética , Sequência de Aminoácidos , Alérgenos/genética
19.
BMC Genomics ; 24(1): 244, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147612

RESUMO

BACKGROUND: In many organisms increased reproductive effort is associated with a shortened life span. This trade-off is reflected in conserved molecular pathways that link nutrient-sensing with fecundity and longevity. Social insect queens apparently defy the fecundity / longevity trade-off as they are both, extremely long-lived and highly fecund. Here, we have examined the effects of a protein-enriched diet on these life-history traits and on tissue-specific gene expression in a termite species of low social complexity. RESULTS: On a colony level, we did not observe reduced lifespan and increased fecundity, effects typically seen in solitary model organisms, after protein enrichment. Instead, on the individual level mortality was reduced in queens that consumed more of the protein-enriched diet - and partially also in workers - while fecundity seemed unaffected. Our transcriptome analyses supported our life-history results. Consistent with life span extension, the expression of IIS (insulin/insulin-like growth factor 1 signalling) components was reduced in fat bodies after protein enrichment. Interestingly, however, genes involved in reproductive physiology (e.g., vitellogenin) were largely unaffected in fat body and head transcriptomes. CONCLUSION: These results suggest that IIS is decoupled from downstream fecundity-associated pathways, which can contribute to the remoulding of the fecundity/longevity trade-off in termites as compared to solitary insects.


Assuntos
Isópteros , Longevidade , Animais , Longevidade/fisiologia , Fertilidade , Reprodução/fisiologia , Insetos , Isópteros/genética , Dieta
20.
PeerJ ; 11: e15259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37128206

RESUMO

Background: Insulin-like growth factor (IGF) and other insulin-like peptides (ilps) are important hormones regulating growth and development in animals. Whereas most animals have a single female and male adult phenotype, in some insect species the same genome may lead to different final forms. Perhaps the best known example is the honeybee where females can either develop into queens or workers. More extreme forms of such polyphenism occur in termites, where queens, kings, workers and soldiers coexist. Both juvenile hormone and insulin-like peptides are known to regulate growth and reproduction as well as polyphenism. In termites the role of juvenile hormone in reproduction and the induction of the soldier caste is well known, but the role of IGF and other ilps in these processes remains largely unknown. Here the various termite ilps are identified and hypotheses regarding their functions suggested. Methods: Genome assemblies and transcriptome short read archives (SRAs) were used to identify insulin-like peptides and neuropeptides in termites and to determine their expression in different species, tissues and castes. Results and Discussion: Termites have seven different ilps, i.e. gonadulin, IGF and an ortholog of Drosophila insulin-like peptide 7 (dilp7), which are commonly present in insects, and four smaller peptides, that have collectively been called short IGF-related peptides (sirps) and individually atirpin, birpin, cirpin and brovirpin. Gonadulin is lost from the higher termites which have however amplified the brovirpin gene, of which they often have two or three paralogs. Based on differential expression of these genes it seems likely that IGF is a growth hormone and atirpin an autocrine tissue factor that is released when a tissue faces metabolic stress. Birpin seems to be responsible for growth and in the absence of juvenile hormone this may lead to reproductive adults or, when juvenile hormone is present, to soldiers. Brovirpin is expressed both by the brain and the ovary and likely stimulates vitellogenesis, while the function of cirpin is less clear.


Assuntos
Isópteros , Neuropeptídeos , Somatomedinas , Feminino , Masculino , Animais , Abelhas , Isópteros/genética , Insulina/metabolismo , Somatomedinas/metabolismo , Insetos/metabolismo , Neuropeptídeos/metabolismo , Reprodução , Insulina Regular Humana/metabolismo , Hormônios Juvenis/metabolismo , Drosophila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...