Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.469
Filtrar
1.
Environ Sci Pollut Res Int ; 31(34): 47022-47038, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38985423

RESUMO

Urban horticulture poses a sustainable form of food production, fosters community engagement and mitigates the impacts of climate change on cities. Yet, it can also be tied to health challenges related to soil contamination. This work builds on a previous study conducted on eleven urban gardens in the city of Vienna, Austria. Following the findings of elevated Pb levels in some soil and plant samples within that project, the present study investigates the elemental composition of soil and plants from two affected gardens 1 year after compost amendment. Inductively coupled plasma mass spectrometry (ICP-MS) analysis of skin, pulp and seeds of tomato fruits revealed minor variations in elemental composition which are unlikely to have an impact on food safety. In turn, a tendency of contaminant accumulation in root tips and leaves of radishes was found. Washing of lettuce led to a significant reduction in the contents of potentially toxic elements such as Be, Al, V, Ni, Ga and Tl, underscoring the significance of washing garden products before consumption. Furthermore, compost amendments led to promising results, with reduced Zn, Cd and Pb levels in radish bulbs. Pb isotope ratios in soil and spinach leaf samples taken in the previous study were assessed by multi-collector (MC-) ICP-MS to trace Pb uptake from soils into food. A direct linkage between the Pb isotopic signatures in soil and those in spinach leaves was observed, underscoring their effectiveness as tracers of Pb sources in the environment.


Assuntos
Compostagem , Poluentes do Solo , Solo , Verduras , Poluentes do Solo/análise , Solo/química , Verduras/química , Jardins , Áustria , Monitoramento Ambiental , Cidades , Isótopos/análise
2.
Anal Chem ; 96(31): 12602-12615, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39037184

RESUMO

The aim of deconvolution of top-down mass spectra is to recognize monoisotopic peaks from the experimental envelopes in raw mass spectra. So accurate assessment of similarity between theoretical and experimental envelopes is a critical step in mass spectra data deconvolution. Existing evaluation methods primarily rely on intensity differences and m/z similarity, potentially lacking a comprehensive assessment. To overcome this constraint and facilitate a comprehensive and refined assessment of the similarity between theoretical and experimental envelopes, there exists an imperative to systematically explore and identify increasingly efficacious features for assessing this correspondence. We present enhanced feature representation for isotopic envelope evaluation (FREE) that derives diverse feature representations, encapsulating fundamental physical attributes of envelopes, including peak intensity and envelope shape. We trained FREE and evaluated its performance on both the ovarian tumor (OT) (human OT cells) data set and zebrafish (ZF) (brain in mature female ZF) data set. Specifically, comparing the state-of-art method, FREE demonstrates higher performance in multiple evaluation metrics across both the OT and ZF data sets, with a particular emphasis on precision, and it demonstrates accurate predictions of a greater number of positive envelopes among the top-ranked envelopes based on their scores. Moreover, within a cross-species data set of ZF, FREE identified a higher number of proteoform-spectrum matches (PrSMs), increasing the count from 50,795 to 52,927 compared to EnvCNN, the amalgamation of FREE with TopFD also exhibits a commendable capacity to discern 117,883 fragment ions, thus surpassing the 97,554 fragment ions identified through the application of EnvCNN in conjunction with TopFD. To further validate the performance of FREE, we have tested 10 a cross-species top-down proteomes containing 36 subdata set from ProteomeXchange. The results reveal that, after deconvolution with TopFD + FREE, TopPIC identifies more PrSMs across these 10 data sets in both the first and second rounds of experiments. These findings underscore the robustness and generalization capabilities of the FREE approach in diverse proteomes.


Assuntos
Espectrometria de Massas , Peixe-Zebra , Animais , Humanos , Espectrometria de Massas/métodos , Feminino , Neoplasias Ovarianas/patologia , Isótopos/análise
3.
J Hazard Mater ; 477: 135321, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39068886

RESUMO

Rice consumption is a major pathway for human cadmium (Cd) exposure. Understanding Cd behavior in the soil-rice system, especially under field conditions, is pivotal for controlling Cd accumulation. This study analyzed Cd concentrations and isotope compositions (δ114/110Cd) in rice plants and surface soil sampled at different times, along with urinary Cd of residents from typical Cd-contaminated paddy fields in Youxian, Hunan, China. Soil water-soluble Cd concentrations varied across sampling times, with δ114/110Cdwater lighter under drained than flooded conditions, suggesting supplementation of water-soluble Cd by isotopically lighter Cd pools, increasing Cd phytoavailability. Both water-soluble Cd and atmospheric deposition contributed to rice Cd accumulation. Water-soluble Cd's contribution increased from 28-52% under flooded to 58-87% under drained conditions due to increased soil Cd phytoavailability. Atmospheric deposition's contribution (12-72%) increased with potential atmospheric deposition flux among sampling areas. The enrichment of heavy Cd isotopes occurred from root-stem-grain to prevent rice Cd accumulation. The different extent of enrichment of heavy isotopes in urine indicated different Cd exposure sources. These findings provide valuable insights into the speciation and phytoavailability changes of Cd in the soil-rice system and highlight the potential application of Cd isotopic fingerprinting in understanding the environmental fate of Cd.


Assuntos
Cádmio , Oryza , Poluentes do Solo , Oryza/metabolismo , Oryza/química , Cádmio/análise , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , China , Solo/química , Humanos , Isótopos , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Monitoramento Ambiental , Fracionamento Químico
4.
Environ Sci Technol ; 58(28): 12674-12684, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38965983

RESUMO

Although natural attenuation is an economic remediation strategy for uranium (U) contamination, the role of organic molecules in driving U natural attenuation in postmining aquifers is not well-understood. Groundwaters were sampled to investigate the chemical, isotopic, and dissolved organic matter (DOM) compositions and their relationships to U natural attenuation from production wells and postmining wells in a typical U deposit (the Qianjiadian U deposit) mined by neutral in situ leaching. Results showed that Fe(II) concentrations and δ34SSO4 and δ18OSO4 values increased, but U concentrations decreased significantly from production wells to postmining wells, indicating that Fe(III) reduction and sulfate reduction were the predominant processes contributing to U natural attenuation. Microbial humic-like and protein-like components mediated the reduction of Fe(III) and sulfate, respectively. Organic molecules with H/C > 1.5 were conducive to microbe-mediated reduction of Fe(III) and sulfate and facilitated the natural attenuation of dissolved U. The average U attenuation rate was -1.07 mg/L/yr, with which the U-contaminated groundwater would be naturally attenuated in approximately 11.2 years. The study highlights the specific organic molecules regulating the natural attenuation of groundwater U via the reduction of Fe(III) and sulfate.


Assuntos
Água Subterrânea , Mineração , Urânio , Poluentes Radioativos da Água , Água Subterrânea/química , Poluentes Radioativos da Água/análise , Compostos Orgânicos , Isótopos , Biodegradação Ambiental , Sulfatos
5.
J Environ Sci (China) ; 146: 298-303, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969458

RESUMO

Antibiotics, their transformation products, and the translocation of antibiotic-resistant genes in the environment pose significant health risks to humans, animals, and ecosystems, aligning with the One Health concept. Constructed wetlands hold substantial yet underutilized potential for treating wastewater from agricultural, domestic sewage, or contaminated effluents from wastewater treatment plants, with the goal of eliminating antibiotics. However, the comprehensive understanding of the distribution, persistence, and dissipation processes of antibiotics within constructed wetlands remains largely unexplored. In this context, we provide an overview of the current application of stable isotope analysis at natural abundance to antibiotics. We explore the opportunities of an advanced multiple stable isotope approach, where isotope concepts could be effectively applied to examine the fate of antibiotics in wetlands. The development of a conceptual framework to study antibiotics in wetlands using multi-element stable isotopes introduces a new paradigm, offering enhanced insights into the identification and quantification of natural attenuation of antibiotics within wetland systems. This perspective has the potential to inspire the general public, governmental bodies, and the broader research community, fostering an emphasis on the utilization of stable isotope analysis for studying antibiotics and other emerging micropollutants in wetland systems.


Assuntos
Antibacterianos , Monitoramento Ambiental , Poluentes Químicos da Água , Áreas Alagadas , Antibacterianos/análise , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Isótopos/análise
6.
Isotopes Environ Health Stud ; 60(3): 331-363, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864149

RESUMO

Comparing and combining stable isotope datasets from different laboratories and different years is essential for many research areas, such as isotope hydrology, greenhouse gas observations, food studies, isotope forensics, palaeo-reconstructions, etc. Data compatibility (i.e. the ability to combine data) is related to the data quality. The prerequisite for data comparability is data normalization to a common stable isotope scale (often referred to as calibration) based on reliable reference materials (RMs) with accurately assigned values and uncertainties. Still, that does not guarantee the data compatibility (mutual agreement). Albeit metrological concepts related to data compatibility and measurement uncertainty have been developed and applied to analytical chemistry in general, these concepts have not yet been fully applied to stable isotope research. This can affect daily calibrations, analytical data and, therefore, data compatibility. In addition, IRMS users often prepare different laboratory standards themselves. Thereafter, users should then understand the contemporary concepts used for assigning RM value and uncertainty, as well as the limitations and potential problems associated with RMs. The history of RMs, preparation reports and also some problems in the past provide lessons to be learned. These include the δ13C drift of LSVEC (the second anchor on the δ13C scale before 2017), revisions to the value assignment principles, the introduction of replacements for LSVEC, related disputes and the potential underestimation of uncertainties for secondary RMs. The review describes metrological concepts related to isotopic scales, RMs and calibration hierarchies and data compatibility. The main RMs and their uncertainties are reviewed through the lens of metrology concepts. Additional focus is given to the VPDB scale for δ13C and issues of scale discontinuity, which can significantly reduce data compatibility in δ13C. The given examples of value and uncertainty assignment for RMs should be viewed as an example of value and uncertainty calculation in daily practice.


Assuntos
Padrões de Referência , Isótopos de Carbono/análise , Calibragem , Incerteza , Isótopos/análise , Espectrometria de Massas/métodos
7.
J Environ Manage ; 365: 121381, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917546

RESUMO

Present and future climatic trends are expected to markedly alter water fluxes and stores in the hydrologic cycle. In addition, water demand continues to grow due to increased human use and a growing population. Sustainably managing water resources requires a thorough understanding of water storage and flow in natural, agricultural, and urban ecosystems. Measurements of stable isotopes of water (hydrogen and oxygen) in the water cycle (atmosphere, soils, plants, surface water, and groundwater) can provide information on the transport pathways, sourcing, dynamics, ages, and storage pools of water that is difficult to obtain with other techniques. However, the potential of these techniques for practical questions has not been fully exploited yet. Here, we outline the benefits and limitations of potential applications of stable isotope methods useful to water managers, farmers, and other stakeholders. We also describe several case studies demonstrating how stable isotopes of water can support water management decision-making. Finally, we propose a workflow that guides users through a sequence of decisions required to apply stable isotope methods to examples of water management issues. We call for ongoing dialogue and a stronger connection between water management stakeholders and water stable isotope practitioners to identify the most pressing issues and develop best-practice guidelines to apply these techniques.


Assuntos
Agricultura , Ecossistema , Florestas , Agricultura/métodos , Recursos Hídricos , Isótopos/análise , Água Subterrânea/química , Conservação dos Recursos Hídricos/métodos
8.
Water Res ; 261: 121995, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38936237

RESUMO

Anthropogenic activities pose significant challenges to the accumulation of coastal nitrogen (N). Accurate identification of nitrate (NO3-) sources is thus essential for mitigating excessive N in many marginal seas. We investigated the dual isotopes of NO3- in the central Yellow Sea to elucidate the sources and cycling processes of NO3-. The results revealed significant spatial variability in NO3- concentrations among the Yellow Sea Surface Water (YSSW), Changjiang Diluted Water (CDW), Yellow Sea Cold Water Mass (YSCWM), and Taiwan Warm Current Water (TWCW). Stratification played a crucial role in restricting vertical nutrient transport, leading to distinct nutrient sources and concentrations in different water masses. The dual NO3- isotopic signature indicated that atmospheric deposition was the primary source of surface NO3-, contributing approximately 30 % to the NO3- in the YSSW. In the NO3--rich CDW, the heavier δ15N-NO3- and δ18O-NO3- suggested incomplete NO3- assimilation. Organic matter mineralization and water stratification played crucial roles in the accumulation of nutrients within the YSCWM and TWCW. Notably, regenerated NO3- accounted for approximately half of the NO3- stored in the YSCWM. A synthesis of NO3- dual isotope data across the coastal China seas revealed significant spatial and seasonal variations in the N source. The study emphasized the dynamics of coastal NO3- supply, which are shaped by the complex interconnections among marine, terrestrial, and atmospheric processes. Our approach is a feasible method for exploring the origins of N amidst the escalating pressures of anthropogenic nutrient pollution in coastal waters.


Assuntos
Monitoramento Ambiental , Nitratos , Água do Mar , Nitratos/análise , Água do Mar/química , Monitoramento Ambiental/métodos , China , Isótopos de Nitrogênio/análise , Poluentes Químicos da Água/análise , Oceanos e Mares , Isótopos
9.
Environ Geochem Health ; 46(7): 230, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849623

RESUMO

Soil in urban and industrial areas is one of the main sinks of pollutants. It is well known that there is a strong link between metal(loid)s bioaccessibility by inhalation pathway and human health. The critical size fraction is < 10 µm (inhalable fraction) since these particles can approach to the tracheobronchial region. Here, soil samples (< 10 µm) from a highly urbanized area and an industrialized city were characterized by combining magnetic measurements, bioaccessibility of metal(loids) and Pb isotope analyses. Thermomagnetic analysis indicated that the main magnetic mineral is impure magnetite. In vitro inhalation analysis showed that Cd, Mn, Pb and Zn were the elements with the highest bioaccessibility rates (%) for both settings. Anthropogenic sources that are responsible for Pb accumulation in < 10 µm fraction are traffic emissions for the highly urbanized environment, and Pb related to steel emissions and coal combustion in cement plant for the industrial setting. We did not establish differences in the Pb isotope composition between pseudo-total and bioaccessible Pb. The health risk assessment via the inhalation pathway showed limited non-carcinogenic risks for adults and children. The calculated risks based on pseudo-total and lung bioaccessible concentrations were identical for the two areas of contrasting anthropogenic pressures. Carcinogenic risks were under the threshold levels (CR < 10-4), with Ni being the dominant contributor to risk. This research contributes valuable insights into the lung bioaccessibility of metal(loids) in urban and industrial soils, incorporating advanced analytical techniques and health risk assessments for a comprehensive understanding.


Assuntos
Chumbo , Poluentes do Solo , Medição de Risco , Humanos , Poluentes do Solo/análise , Chumbo/análise , Exposição por Inalação/análise , Monitoramento Ambiental/métodos , Isótopos/análise , Disponibilidade Biológica , Tamanho da Partícula , Indústrias , Metais Pesados/análise , Criança , Adulto , Urbanização , Solo/química , Cidades
10.
Adv Mater ; 36(33): e2406081, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38886842

RESUMO

Recent advances in the use of stable isotopes necessitate novel synthesis techniques for isotope separation and enrichment that are scalable and offer high throughput. Stable-isotope-enriched nanostructures can offer unique advantages as nanomedicines, safe tracers, and labels and are critical for applications in various industrial processes, metabolic research, and medicine. So far, there exists no method to synthesize miniature isotope-enriched materials at the nanoscale. In this study, an ultrafast Laser-induced isotope enrichment at nanoscale (LIIEN) is put forward to synthesize isotope-enriched nanostructures, eliminating the need for large equipment and expenses, thereby demonstrating a lab-scale isotope enrichment process. A significant isotope enrichment for Carbon nanostructures is observed. The isotope enrichment can be attributed to the redistribution of isotope ions in the plasma plume explained by the plasma centrifuge model. The LIIEN synthesized structures exhibit excellent Surface-Enhanced Raman Scattering (SERS) signal enhancement and reproducibility, making them potential candidates for SERS-based biomolecule sensing. This technique is an efficient method to fabricate nanosized isotope-enriched structures of characteristic properties by carefully tuning laser parameters at ambient conditions.


Assuntos
Lasers , Nanoestruturas , Análise Espectral Raman , Nanoestruturas/química , Análise Espectral Raman/métodos , Isótopos/química , Isótopos de Carbono/química
11.
Environ Pollut ; 357: 124413, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38908671

RESUMO

Allchar (North Macedonia) mining area is known for anomalous background Tl concentrations. In this study, we combine accurate detection of Tl stable isotope ratios with data on mineralogy/speciation and chemical extraction of Tl in Tl-contaminated Technosol profiles. We demonstrate that Tl in the studied soils varies significantly in both concentration (500 mg/kg-18 g/kg) and isotopic composition (-1.6 and +3.2 of ε205Tl, a ∼0.5‰ spread), which is due to changes in the phase chemistry and/or mineralogy of Tl. Moreover, the observed 205Tl/203Tl ratios do not reflect the extent to which individual soils undergo Tl isotopic fractionation during mineral weathering and soil formation. Clearly, they reflect the initial isotopic signal(s) of the primary ore or ore minerals, and thus, the general history or type of their genesis. As the Tl carriers, various types of Tl-Me-arsenates, mixtures of jarosite and dorallcharite and minor Mn-oxides predominated. We revealed intense adsorption of Tl by the identified Mn-oxides (≤6.7 at.%). It is hypothesized that these phases are of key importance in the fractionation of Tl isotopes, meaning at this type of secondary oxide-soil solution interface. However, model studies involving primary/secondary components (sulfides, sulfates, oxides and arsenates) are required to understand the mechanisms that may lead to post-depositional Tl isotopic redistribution in soils, as well as Tl isotope systematics in mining wastes in general.


Assuntos
Monitoramento Ambiental , Mineração , Poluentes do Solo , Solo , Tálio , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Tálio/química , Solo/química , República da Macedônia do Norte , Isótopos/análise
12.
PLoS One ; 19(6): e0301900, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38935686

RESUMO

Analysis of stable isotopes in consumers is used commonly to study their ecological and/or environmental niche. There is, however, considerable debate regarding how isotopic values relate to diet and how other sources of variation confound this link, which can undermine the utility. From the analysis of a simple, but general, model of isotopic incorporation in consumer organisms, we examine the relationship between isotopic variance among individuals, and diet variability within a consumer population. We show that variance in consumer isotope values is directly proportional to variation in diet (through Simpson indices), to the number of isotopically distinct food sources in the diet, and to the baseline variation within and among the isotope values of the food sources. Additionally, when considering temporal diet variation within a consumer we identify the interplay between diet turnover rates and tissue turnover rates that controls the sensitivity of stable isotopes to detect diet variation. Our work demonstrates that variation in the stable isotope values of consumers reflect variation in their diet. This relationship, however, can be confounded with other factors to the extent that they may mask the signal coming from diet. We show how simple quantitative corrections can recover a direct 1:1 correlation in some situations, and in others we can adjust our interpretation in light of the new understanding arising from our models. Our framework provides guidance for the design and analysis of empirical studies where the goal is to infer niche width from stable isotope data.


Assuntos
Dieta , Animais , Isótopos de Carbono/análise , Isótopos/análise
13.
Anal Chim Acta ; 1315: 342812, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879212

RESUMO

BACKGROUND: Potassium isotopic analysis is increasingly performed in both geological and biological contexts as a result of the introduction of MC-ICP-MS instrumentation either equipped with a collision/reaction cell or having the capability of working at "extra-high" mass resolution in order to deal with spectral interference caused by argon hydride (ArH+) ions. Potassium plays an important role in the central nervous system, and its isotopic analysis could provide an enhanced insight into the corresponding processes, but K isotopic analysis of cerebrospinal fluid is challenging due to the small volume, a few microliter only, typically available. This work aimed at developing a method for determining the K isotopic signature of serum and cerebrospinal fluid at a final K concentration of 25 ng mL-1 using Faraday cup amplifiers equipped with a 1013 Ω resistor. RESULTS: Potassium isotope ratios obtained for reference materials measured at a final K concentration of 25 ng mL-1 were in excellent agreement with the corresponding reference values and the internal and external precision for the δ41K value was 0.11 ‰ (2SE, N = 50) and 0.10 ‰ (2SD, N = 6), respectively. The robustness against the presence of matrix elements and the concentration mismatch between sample and standard observed at higher K concentrations is preserved at low K concentration. Finally, K isotopic analysis of serum and cerebrospinal fluid (3-12 µL of sample) of healthy mice of both sexes was performed, revealing a trend towards an isotopically lighter signature for serum and cerebrospinal fluid from female individuals, however being significant for serum only. SIGNIFICANCE: This work provides a robust method for high-precision K isotopic analysis at a concentration of 25 ng mL-1. By monitoring both K isotopes, 39K and 41K, with Faraday cups connected to amplifiers with 1013 Ω resistors, accurate K isotope ratio results are obtained with a two-fold improvement in internal and external precision compared to those obtained with the set-up with traditional 1011 Ω resistors. The difference in the K isotope ratio in CSF and serum between the sexes, is possibly indicating an influence of the sex or hormones on the fractionation effects accompanying cellular uptake/release.


Assuntos
Espectrometria de Massas , Potássio , Animais , Potássio/sangue , Potássio/líquido cefalorraquidiano , Feminino , Masculino , Camundongos , Isótopos , Humanos
14.
Environ Sci Technol ; 58(26): 11411-11420, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38887934

RESUMO

Antimony (Sb) isotopic fractionation is frequently used as a proxy for biogeochemical processes in nature. However, to date, little is known about Sb isotope fractionation in biologically driven reactions. In this study, Pseudomonas sp. J1 was selected for Sb isotope fractionation experiments with varying initial Sb concentration gradients (50-200 µM) at pH 7.2 and 30 °C. Compared to the initial Sb(III) reservoir (δ123Sb = 0.03 ± 0.01 ∼ 0.06 ± 0.01‰), lighter isotopes were preferentially oxidized to Sb(V). Relatively constant isotope enrichment factors (ε) of -0.62 ± 0.06 and -0.58 ± 0.02‰ were observed for the initial Sb concentrations ranging between 50 and 200 µM during the first 22 days. Therefore, the Sb concentration has a limited influence on Sb isotope fractionation during Sb(III) oxidation that can be described by a kinetically dominated Rayleigh fractionation model. Due to the decrease in the Sb-oxidation rate by Pseudomonas sp. J1, observed for the initial Sb concentration of 200 µM, Sb isotope fractionation shifted toward isotopic equilibrium after 22 days, with slightly heavy Sb(V) after 68 days. These findings provide the prospect of using Sb isotopes as an environmental tracer in the Sb biogeochemical cycle.


Assuntos
Antimônio , Isótopos , Oxirredução , Pseudomonas , Antimônio/metabolismo , Pseudomonas/metabolismo , Cinética , Fracionamento Químico
15.
J Hazard Mater ; 475: 134833, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880043

RESUMO

Lead (Pb) pollution in sediments remains a major concern for ecosystem quality due to the robust interaction at the sediment/water interface, particularly in shallow lakes. However, understanding the mechanism behind seasonal fluctuations in Pb mobility in these sediments is lacking. Here, the seasonal variability of Pb concentration and isotopic ratio were investigated in the uppermost sediments of a shallow eutrophic drinking lake located in southeast China. Results reveal a sharp increase in labile Pb concentration during autumn-winter period, reaching ∼ 3-fold higher levels than during the spring-summer seasons. Despite these fluctuations, there was a notable overlap in the Pb isotopic signatures within the labile fraction across four seasons, suggesting that anthropogenic sources are not responsible for the elevated labile Pb concentration in autumn-winter seasons. Instead, the abnormally elevated labile Pb concentration during autumn-winter was probably related to reduction dissolution of Fe/Mn oxides, while declined labile Pb concentration during spring-summer may be attributed to adsorption/precipitation of Fe/Mn oxides. These large seasonal changes imply the importance of considering seasonal effects when conducting sediment sampling. We further propose a solution that using Pb isotopic signatures within the labile fraction instead of the bulk sediment can better reflect the information of anthropogenic Pb sources.


Assuntos
Água Potável , Monitoramento Ambiental , Sedimentos Geológicos , Chumbo , Estações do Ano , Poluentes Químicos da Água , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Chumbo/análise , Poluentes Químicos da Água/análise , Água Potável/química , Água Potável/análise , Monitoramento Ambiental/métodos , Isótopos/análise , China , Lagos/química , Eutrofização
16.
PLoS One ; 19(6): e0293717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38829878

RESUMO

We present Isotòpia, an open-access database compiling over 36,000 stable isotope measurements (δ13C, δ15N, δ18O, δ34S, 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, 207Pb/206Pb, and 208Pb/206Pb) on human, animal, and plant bioarchaeological remains dating to Classical Antiquity (approximately 800 BCE - 500 CE). These were recovered from different European regions, particularly from the Mediterranean. Isotòpia provides a comprehensive characterisation of the isotopic data, encompassing various historical, archaeological, biological, and environmental variables. Isotòpia is a resource for meta-analytical research of past human activities and paleoenvironments. The database highlights data gaps in isotopic classical archaeology, such as the limited number of isotopic measurements available for plants and animals, limited number of studies on spatial mobility, and spatial heterogeneity of isotopic research. As such, we emphasise the necessity to address and fill these gaps in order to unlock the reuse potential of this database.


Assuntos
Arqueologia , Bases de Dados Factuais , Isótopos , Plantas , Humanos , Animais , Isótopos/análise , Plantas/química , História Antiga
17.
Ying Yong Sheng Tai Xue Bao ; 35(4): 970-984, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884232

RESUMO

Nitrate pollution in groundwater has become a global concern. One of the most important issues in controlling the nitrate pollution of groundwater is to identify the pollution source quickly and accurately. In this review, we firstly summarized the isotopic background values of potential sources of nitrate pollution in groundwater in 17 provinces (cities, autonomous regions) and 29 study areas in China, which could provide the fundamental database for subsequent research. Secondly, we reviewed the research progress of nitrate isotopes combined with multiple tracers for tracing nitrate in groundwater, and discussed their applicable conditions, advantages, and disadvantages. We found that halides and microorganisms combined with nitrate isotopes could accurately trace the pollution sources of domestic sewage, excrement and agricultural activities. The combination of Δ17O and nitrate isotopes could effectively distinguish the source of atmospheric deposition of nitrate in groundwater. The combination of groundwater age and nitrate isotopes could further determine the time scale of nitrate pollution. In addition, we summarized the application cases and compared the characteristics of mass balance mixing model, IsoSource model, Bayesian isotope mixing model, and EMMTE model for quantitative identification of nitrate pollution in groundwater. For the complexity and concealment of groundwater pollution sources, the coupling of nitrate isotopes with other chemical and biological tracing methods, as well as the application of nitrate isotope quantitative models, are effective tools for reliably identifying groundwater nitrate sources and transformation processes.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Nitratos , Poluentes Químicos da Água , Água Subterrânea/análise , Água Subterrânea/química , Nitratos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , China , Isótopos de Oxigênio/análise , Isótopos/análise
18.
Ying Yong Sheng Tai Xue Bao ; 35(4): 951-960, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884230

RESUMO

Precipitation in the plum rain period accounts for 40%-50% of annual precipitation in the monsoon region. To clarify the temporal variability of the isotopic composition of precipitation during the plum rain period from event to interannual time scale and identify the influencing factors, we analyzed the isotopic composition of precipitation and its influencing factors in Nanjing from 2015 to 2022. By using the Hybrid Single-particle Lagran-gian Integrated Trajectory (HYSPLIT) model with specific humidity analysis, we investigated the water vapor source and influencing factors. The results showed that 1) the isotopic abundance of atmospheric precipitation was depleted in the summer and enriched in winter. dx was lower in summer and higher in winter. The isotopic abundance of precipitation from the plum rain was depleted compared to mean value of the whole-year. 2) There was no significant correlation between δ2H and δ18O of the plum rain (precipitation) with local meteorological factors. However, dx was lower in light rain, reflecting the effect of sub-cloud evaporation. The average dx was higher during plum rain period in years with more total plum rain precipitation. 3) The low-latitude South China Sea and the western Pacific Ocean source area provided water vapor for the plum rain. The shift of moisture source region led to abrupt changes in precipitation isotopes. Our results could provide data support for studies on precipitation isotopes in the monsoon region, as well as a reference point for further understanding the precipitation mechanism of the plum rain and stu-dying the seasonal variability of atmospheric circulation in the East Asian monsoon region.


Assuntos
Chuva , Estações do Ano , Chuva/química , China , Isótopos de Oxigênio/análise , Monitoramento Ambiental/métodos , Deutério/análise , Isótopos/análise , Prunus domestica/química , Prunus domestica/crescimento & desenvolvimento
19.
Chemosphere ; 361: 142567, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851512

RESUMO

To determine contamination sources and pathways, the use of multiple isotopes, including metal isotopes, can increase the reliability of environmental forensic techniques. This study differentiated contamination sources in groundwater of a mine area and elucidated geochemical processes using Cu, Zn, S-O, and O-H isotopes. Sulfate reduction and sulfide precipitation were elucidated using concentrations of dissolved sulfides, δ34SSO4, δ18OSO4, and δ66Zn. The overlying contaminated soil was possibly responsible for the contamination of groundwater at <5 mbgl, which was suggested by low δ65Cu values (0.419-1.120‰) reflecting those of soil (0.279-1.115‰). The existence of dissolved Cu as Cu(I) may prevent the increase in δ65Cu during leaching of contaminated soil in the sulfate-reducing environment. In contrast, the groundwater at >5 mbgl seemed to be highly affected by the contamination plume from the adit water, which was suggested by high SO42- concentrations (407-447 mg L-1) and δ65Cu (0.252-2.275‰) and δ66Zn (-0.105‰-0.362‰) values at a multilevel sampler approaching those of the adit seepages. Additionally, the O-H isotopic ratios were distinguished between <5 mbgl and >5 mbgl. Using δ65Cu and δ66Zn to support the determination of groundwater contamination sources may be encouraged, particularly where the isotopic signatures are distinct for each source.


Assuntos
Cobre , Monitoramento Ambiental , Água Subterrânea , Mineração , Poluentes Químicos da Água , Zinco , Água Subterrânea/química , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Cobre/análise , Zinco/análise , Solo/química , Isótopos/análise , Isótopos de Zinco/análise , Isótopos de Oxigênio/análise , Poluentes do Solo/análise
20.
Bull Environ Contam Toxicol ; 112(5): 69, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722440

RESUMO

The rapid development of livestock and poultry industry in China has caused serious environment pollution problems. To understand the heavy metals accumulation and identify their sources, 7 heavy metals contents and lead isotope ratios were determined in 24 soil samples from vegetable fields irrigated with swine wastewater in Dongxiang County, Jiangxi Province, China. The results showed that the concentration of Cr, Ni, Cu, Zn, As, Cd and Pb in the swine wastewater irrigated vegetable soils varied from 38.5 to 86.4, 7.57 to 30.6, 20.0 to 57.1, 37.5 to 174, 9.18 to 53.1, 0.043 to 0.274 and 12.8 to 37.1 mg/kg, respectively. The soils were moderately to heavily polluted by As, moderately polluted by Cr, Ni, Cu, Zn and Cd, and unpolluted to moderately polluted by Pb. Sampling soils were classified as moderately polluted according to the Nemerow comprehensive pollution index. Lead isotope and Principal Component Analysis (PCA) analysis indicated that swine wastewater irrigation and atmospheric deposition were the primary sources of the heavy metals.


Assuntos
Monitoramento Ambiental , Chumbo , Metais Pesados , Poluentes do Solo , Verduras , Águas Residuárias , Poluentes do Solo/análise , Animais , Metais Pesados/análise , China , Águas Residuárias/química , Suínos , Verduras/química , Chumbo/análise , Irrigação Agrícola , Solo/química , Isótopos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA