Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.507
Filtrar
1.
Geobiology ; 22(3): e12600, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725144

RESUMO

Microbial sulfate reduction is central to the global carbon cycle and the redox evolution of Earth's surface. Tracking the activity of sulfate reducing microorganisms over space and time relies on a nuanced understanding of stable sulfur isotope fractionation in the context of the biochemical machinery of the metabolism. Here, we link the magnitude of stable sulfur isotopic fractionation to proteomic and metabolite profiles under different cellular energetic regimes. When energy availability is limited, cell-specific sulfate respiration rates and net sulfur isotope fractionation inversely covary. Beyond net S isotope fractionation values, we also quantified shifts in protein expression, abundances and isotopic composition of intracellular S metabolites, and lipid structures and lipid/water H isotope fractionation values. These coupled approaches reveal which protein abundances shift directly as a function of energy flux, those that vary minimally, and those that may vary independent of energy flux and likely do not contribute to shifts in S-isotope fractionation. By coupling the bulk S-isotope observations with quantitative proteomics, we provide novel constraints for metabolic isotope models. Together, these results lay the foundation for more predictive metabolic fractionation models, alongside interpretations of environmental sulfur and sulfate reducer lipid-H isotope data.


Assuntos
Desulfovibrio vulgaris , Proteômica , Isótopos de Enxofre , Isótopos de Enxofre/análise , Isótopos de Enxofre/metabolismo , Desulfovibrio vulgaris/metabolismo , Proteoma/metabolismo , Proteoma/análise , Metabolismo Energético , Metaboloma , Proteínas de Bactérias/metabolismo , Oxirredução , Sulfatos/metabolismo
2.
Rapid Commun Mass Spectrom ; 38(13): e9758, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700127

RESUMO

RATIONALE: Carbon, nitrogen and sulphur stable isotopes in feathers grown by seabirds while breeding reflect the local isoscape and diet in the vicinity of the colony, so may make it possible to discriminate individual birds from different colonies. METHODS: Black-legged kittiwake Rissa tridactyla inner primary feathers from two colonies about 350 km apart in the North Sea were used to test whether δ13C, δ15N and δ34S differed between individuals from the two colonies. Feather tips cut from breeding birds caught at nests were compared with tips of moulted feathers (grown 1 year earlier) found on the ground. RESULTS: Isotopic compositions showed no overlap between the two colonies in δ13C, δ15N or δ34S in tips of newly-grown feathers sampled from breeding adult kittiwakes. There was some overlap in δ13C, δ15N and δ34S from moulted feathers, but discriminant analysis allowed >90% of individuals to be assigned to their colony. In five of six comparisons, mean isotopic compositions were the same in new and moulted feathers but not for δ34S at one of the two colonies. CONCLUSIONS: This study has demonstrated for the first time that stable isotopes in inner primary feathers of kittiwakes can allow accurate identification of the breeding colony of individual birds from two different colonies within the North Sea. Further research is required to determine if this method can be applied with greater spatial resolution and to a larger number of colonies.


Assuntos
Isótopos de Carbono , Charadriiformes , Plumas , Isótopos de Nitrogênio , Isótopos de Enxofre , Animais , Plumas/química , Isótopos de Enxofre/análise , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Charadriiformes/fisiologia , Charadriiformes/metabolismo , Espectrometria de Massas/métodos
3.
Geobiology ; 22(2): e12595, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596869

RESUMO

On the anoxic Archean Earth, prior to the onset of oxidative weathering, electron acceptors were relatively scarce, perhaps limiting microbial productivity. An important metabolite may have been sulfate produced during the photolysis of volcanogenic SO2 gas. Multiple sulfur isotope data can be used to track this sulfur source, and indeed this record indicates SO2 photolysis dating back to at least 3.7 Ga, that is, as far back as proposed evidence of life on Earth. However, measurements of multiple sulfur isotopes in some key strata from that time can be challenging due to low sulfur concentrations. Some studies have overcome this challenge with NanoSIMS or optimized gas-source mass spectrometry techniques, but those instruments are not readily accessible. Here, we applied an aqua regia leaching protocol to extract small amounts of sulfur from whole rocks for analyses of multiple sulfur isotopes by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Measurements of standards and replicates demonstrate good precision and accuracy. We applied this technique to meta-sedimentary rocks with putative biosignatures from the Eoarchean Isua Supracrustal Belt (ISB, >3.7 Ga) and found positive ∆33S (1.40-1.80‰) in four meta-turbidites and negative ∆33S (-0.80‰ and -0.66‰) in two meta-carbonates. Two meta-basalts do not display significant mass-independent fractionation (MIF, -0.01‰ and 0.16‰). In situ Re-Os dating on a molybdenite vein hosted in the meta-turbidites identifies an early ca. 3.7 Ga hydrothermal phase, and in situ Rb-Sr dating of micas in the meta-carbonates suggests metamorphism affected the rocks at ca. 2.2 and 1.7 Ga. We discuss alteration mechanisms and conclude that there is most likely a primary MIF-bearing phase in these meta-sediments. Our new method is therefore a useful addition to the geochemical toolbox, and it confirms that organisms at that time, if present, may indeed have been fed by volcanic nutrients.


Assuntos
Carbonatos , Isótopos de Enxofre/análise
4.
Chemosphere ; 355: 141816, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556184

RESUMO

Over the last few decades, measurements of light stable isotope ratios have been increasingly used to answer questions across physiology, biology, ecology, and archaeology. The vast majority analyse carbon (δ13C) and nitrogen (δ15N) stable isotopes as the 'default' isotopes, omitting sulfur (δ34S) due to time, cost, or perceived lack of benefits and instrumentation capabilities. Using just carbon and nitrogen isotopic ratios can produce results that are inconclusive, uncertain, or in the worst cases, even misleading, especially for scientists that are new to the use and interpretation of stable isotope data. Using sulfur isotope values more regularly has the potential to mitigate these issues, especially given recent advancements that have lowered measurement barriers. Here we provide a review documenting case studies with real-world data, re-analysing different biological topics (i.e. niche, physiology, diet, movement and bioarchaeology) with and without sulfur isotopes to highlight the various strengths of this stable isotope for various applications. We also include a preliminary meta-analysis of the trophic discrimination factor (TDF) for sulfur isotopes, which suggest small (mean -0.4 ± 1.7 ‰ SD) but taxa-dependent mean trophic discrimination. Each case study demonstrates how the exclusion of sulfur comes at the detriment of the results, often leading to very different outputs, or missing valuable discoveries entirely. Given that studies relying on carbon and nitrogen stable isotopes currently underpin most of our understanding of various ecological processes, this has concerning implications. Collectively, these examples strongly suggest that researchers planning to use carbon and nitrogen stable isotopes for their research should incorporate sulfur where possible, and that the new 'default' isotope systems for aquatic science should now be carbon, nitrogen, and sulfur.


Assuntos
Carbono , Nitrogênio , Isótopos de Carbono , Isótopos de Nitrogênio , Isótopos de Enxofre
5.
Rapid Commun Mass Spectrom ; 38(2): e9674, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38124168

RESUMO

RATIONALE: Metabolism and diet quality play an important role in determining delay mechanisms between an animal ingesting an element and depositing the associated isotope signal in tissue. While many isotope mixing models assume instantaneous reflection of diet in an animal- tissue, this is rarely the case. Here we use data from wildebeest to measure the lag time between ingestion of 34 S and its detection in tail hair. METHODS: We use time-lagged regression analysis of δ34 S data from GPS-collared blue wildebeest from the Serengeti ecosystem in combination with δ34 S isoscape data to estimate the lag time between an animal ingesting and depositing 34 S in tail hair. RESULTS: The best fitting regression model of δ34 S in tail hair and an individual- position on the δ34 S isoscape is generated assuming an average time delay of 78 days between ingestion and detection in tail hair. This suggests that sulfur may undergo multiple metabolic transitions before being deposited in tissue. CONCLUSION: Our findings help to unravel the underlying complexities associated with sulfur metabolism and are broadly consistent with results from other species. These findings will help to inform research aiming to apply the variation of δ34 S in inert biological material for geolocation or understanding dietary changes, especially for fast moving migratory ungulates such as wildebeest.


Assuntos
Antílopes , Isótopos de Enxofre , Animais , Antílopes/metabolismo , Dieta/veterinária , Ingestão de Alimentos , Cabelo/química , Enxofre , Isótopos de Enxofre/análise
6.
Environ Sci Technol ; 57(49): 20647-20656, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033251

RESUMO

The mechanism of sulfate formation during winter haze events in North China remains largely elusive. In this study, the multiple sulfur isotopic composition of sulfate in different grain-size aerosol fractions collected seasonally from sampling sites in rural, suburban, urban, industrial, and coastal areas of North China are used to constrain the mechanism of SO2 oxidation at different levels of air pollution. The Δ33S values of sulfate in aerosols show an obvious seasonal variation, except for those samples collected in the rural area. The positive Δ33S signatures (0‰ < Δ33S < 0.439‰) observed on clean days are mainly influenced by tropospheric SO2 oxidation and stratospheric SO2 photolysis. The negative Δ33S signatures (-0.236‰ < Δ33S < ∼0‰) observed during winter haze events (PM2.5 > 200 µg/m3) are mainly attributed to SO2 oxidation by H2O2 and transition metal ion catalysis (TMI) in the troposphere. These results reveal that both the H2O2 and TMI pathways play critical roles in sulfate formation during haze events in North China. Additionally, these new data provide evidence that the tropospheric oxidation of SO2 can produce significant negative Δ33S values in sulfate aerosols.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Sulfatos , Peróxido de Hidrogênio , Isótopos de Enxofre/análise , China , Óxidos de Enxofre , Estações do Ano , Aerossóis/análise , Monitoramento Ambiental , Material Particulado/análise
7.
Environ Sci Pollut Res Int ; 30(32): 78198-78215, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37266785

RESUMO

Acid mine drainage (AMD) is considered one of the serious environmental issues in the mining area. Understanding the key processes and pathways of hydrogeochemical evolution is critical for the effective control of AMD pollution. Hydrogeochemical analysis along with environmental isotope tracing was utilized to provide information regarding the hydrogeochemical process of groundwater pollution by using the multi-aquifer of abandoned Dashu pyrite in Southwest China as an example. Using the deuterium excess parameter d of groundwater and the results of 2H, 18O, and T analysis, the water-rock interaction intensity was determined. The distribution characteristics of d-T revealed that the groundwater primarily originated from the Quaternary reservoir platform groundwater and that there was a close hydraulic connection among the aquifers. The results of ion analysis and sulfur isotope tracing indicated that the sulfur in groundwater was primarily derived from gypsum dissolution, whereas the sulfur in mine water was primarily derived from pyrite oxidation. The results of the hydrogeochemical inversion indicated that mining activities altered the water level and flow conditions, promoted water-rock interactions, altered the hydrogeochemical process, and caused aquifer and mine water cross-contamination. The findings provide theoretical guidance for identifying the pollution sources and critical hydrogeochemical processes that affect groundwater in depleted mining areas of multi-aquifers and also provide technical support for developing water source control and prevention techniques.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Isótopos/análise , Isótopos de Enxofre/análise , Água/análise , China
8.
Sci Rep ; 13(1): 7988, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198206

RESUMO

The latest discovery of sulfurous natural gas marked a breakthrough in the Cenozoic natural gas exploration in the southwestern margin of Qaidam Basin. The 16S rRNA analyses were performed on the crude oil samples from H2S-rich reservoirs in the Yuejin, Shizigou and Huatugou profiles, to understand the sulfurous gas origin, which was also integrated with carbon and hydrogen isotopes of alkane and sulfur isotopes of H2S collected from the Yingxiongling Area. Results show that the microorganisms in samples can survive in the hypersaline reservoirs, and can be classified into multiple phyla, including Proteobacteria, Planctomycetes, Firmicutes, Bacteroidetes, and Haloanaerobiaeota. Methanogens are abundant in all of the three profiles, while sulfate-reducing bacteria are abundant in Yuejin and Huatugou profiles, contributing to the methane and H2S components in the natural gas. The carbon, hydrogen and sulfur isotopes of sulfurous natural gas in the Yingxiongling Area show that the natural gas is a mixture of coal-type gas and oil-type gas, which was primarily derived from thermal degradation, and natural gas from the Yuejin and Huatugou profiles also originated from biodegradation. The isotopic analysis agrees well with the 16S rRNA results, i.e., H2S-rich natural gas from the Cenozoic reservoirs in the southwest margin of the Qaidam Basin was primarily of thermal genesis, with microbial genesis of secondary importance.


Assuntos
Microbiota , Campos de Petróleo e Gás , Bactérias , Gás Natural/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Microbiota/genética , China , Hidrogênio/metabolismo , Isótopos de Enxofre , Carbono/metabolismo
9.
Sci Total Environ ; 889: 163764, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207761

RESUMO

Microbial sulfate reduction (MSR), which transforms sulfate into sulfide through the consumption of organic matter, is an integral part of sulfur and carbon cycling. Yet, the knowledge on MSR magnitudes is limited and mostly restricted to snap-shot conditions in specific surface water bodies. Potential impacts of MSR have consequently been unaccounted for, e.g., in regional or global weathering budgets. Here, we synthesize results from previous studies on sulfur isotope dynamics in stream water samples and apply a sulfur isotopic fractionation and mixing scheme combined with Monte Carlo simulations to derive MSR in entire hydrological catchments. This allowed comparison of magnitudes both within and between five study areas located between southern Sweden and the Kola Peninsula, Russia. Our results showed that the freshwater MSR ranged from 0 to 79 % (interquartile range of 19 percentage units) locally within the catchments, with average values from 2 to 28 % between the catchments, displaying a non-negligible catchment-average value of 13 %. The combined abundance or deficiency of several landscape elements (e.g., the areal percentage of forest and lakes/wetlands) were found to indicate relatively well whether or not catchment-scale MSR would be high. A regression analysis showed specifically that average slope was the individual element that best reflected the MSR magnitude, both at sub-catchment scale and between the different study areas. However, the regression results of individual parameters were generally weak. The MSR-values additionally showed differences between seasons, in particular in wetland/lake dominated catchments. Here MSR was high during the spring flood, which is consistent with the mobilization of water that under low-flow winter periods have developed the needed anoxic conditions for sulfate-reducing microorganisms. This study presents for the first time compelling evidence from multiple catchments of wide-spread MSR at levels slightly above 10 %, implying that the terrestrial pyrite oxidation may be underestimated in global weathering budgets.


Assuntos
Água Doce , Enxofre , Isótopos de Enxofre/análise , Sulfatos/metabolismo , Água
10.
Anal Chim Acta ; 1240: 340744, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36641153

RESUMO

Sulfur isotope ratios are often used as biogeochemical tracers to gain understanding of abiotic and biological processes involved in the sulfur cycle in both modern and ancient environments. There is however a lack of matrix-matched well-characterized isotopic reference materials that are essential for controlling the accuracy and precision. This study therefore focused on expanding and complementing the currently available sulfur isotope ratio data by providing the bulk sulfur isotopic composition, as determined using multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS), for a comprehensive set of commercially and/or readily available biological and geological reference materials. A total 7 isotopic reference materials and 41 elemental reference materials were studied. These reference materials include standards of terrestrial and marine animal origin, terrestrial plant origin, human origin, and geological origin. Different sample preparation protocols, including digestion and subsequent chromatographic isolation of S, were evaluated and the optimum approach selected for each matrix type. For achieving enhanced robustness, the sample preparation and sulfur isotope ratio measurements were done at two different laboratories for selected reference materials, while at one of the laboratories the measurements were additionally performed using two different MC-ICP-MS instruments. Determined δ34SVCDT and δ33SVCDT values compared well between the different laboratories, as well as between the different generation MC-ICP-MS instruments, and for standards that were previously characterized, our data are similar to literature values. The δ34SVCDT ranges determined for the different categories of the reference materials - terrestrial animal origin: +2 to +9‰, marine animal origin: +15 to +20‰, human origin: +6 to +10‰, terrestrial plant origin: -20 to +7‰, and geological origin: -12 to +21‰ - fit the expected values based on previous studies of similar types of matrices well. No significant mass-independent fractionation is observed when considering the expanded uncertainties for Δ33SV-CDT.


Assuntos
Enxofre , Animais , Humanos , Espectrometria de Massas/métodos , Isótopos de Enxofre/análise , Análise Espectral
11.
Environ Sci Technol ; 57(2): 1167-1176, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36599128

RESUMO

Microplastics are readily accumulated in coastal sediments, where active sulfur (S) cycling takes place. However, the effects of microplastics on S cycling in coastal sediments and their underlying mechanisms remain poorly understood. In this study, the transformation patterns of different S species in mangrove sediments amended with different microplastics and their associated microbial communities were investigated using stable isotopic analysis and metagenomic sequencing. Biodegradable poly(lactic acid) (PLA) microplastics treatment increased sulfate (SO42-) reduction to yield more acid-volatile S and elementary S, which were subsequently transformed to chromium-reducible S (CRS). The S isotope fractionation between SO42- and CRS in PLA treatment increased by 9.1‰ from days 0 to 20, which was greater than 6.8‰ in the control. In contrast, recalcitrant petroleum-based poly(ethylene terephthalate) (PET) and polyvinyl chloride (PVC) microplastics had less impact on the sulfate reduction, resulting in 7.6 and 7.7‰ of S isotope fractionation between SO42- and CRS from days 0 to 20, respectively. The pronounced S isotope fractionation in PLA treatment was associated with increased relative abundance of Desulfovibrio-related sulfate-reducing bacteria, which contributed a large proportion of the microbial genes responsible for dissimilatory sulfate reduction. Overall, these findings provide insights into the potential impacts of microplastics exposure on the biogeochemical S cycle in coastal sediments.


Assuntos
Microplásticos , Plásticos , Isótopos de Enxofre/análise , Enxofre , Isótopos/análise , Poliésteres , Sulfatos/análise , Sedimentos Geológicos/análise
12.
J Anim Ecol ; 92(7): 1320-1331, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36411970

RESUMO

Climatic conditions affect animals but range-wide impacts at the population level remain largely unknown, especially in migratory species. However, studying climate-population relationships is still challenging in small migrants due to a lack of efficient and cost-effective geographic tracking method. Spatial distribution patterns of environmental stable isotopes (so called 'isoscapes') generally overcome these limitations but none of the currently available isoscapes provide a substantial longitudinal gradient in species-rich sub-Saharan Africa. In this region, sulphur (δ34 S) has not been sufficiently explored on a larger scale. We developed a δ34 S isoscape to trace animal origins in sub-Saharan Africa by coupling known-origin samples from tracked migratory birds with continental remotely sensed environmental data building on environment-δ34 S relationships using a flexible machine learning technique. Furthermore, we link population-specific nonbreeding grounds with interannual climatic variation that might translate to breeding population trends. The predicted δ34 S isotopic map featured east-west and coast-to-inland isotopic gradients and was applied to predict nonbreeding grounds of three breeding populations of Eurasian Reed Warblers Acrocephalus scirpaceus with two distinct migratory phenotypes. Breeding populations as well as migratory phenotypes exhibited large-scale segregation within the African nonbreeding range. These regions also differed substantially in the interannual climatic variation, with higher interannual variability in the eastern part of the range during 2001-2012. Over the same period, the eastern European breeding population seemed to have experienced a more steep decline in population size. The link between migratory patterns and large-scale climatic variability appears important to better understand population trajectories in many declining migratory animals. We believe animal tracing using sulphur isotopes will facilitate these efforts and offers manifold ecological and forensic applications in the biodiversity hotspot of sub-Saharan Africa.


Assuntos
Aves Canoras , Animais , Isótopos de Enxofre , Migração Animal , África , Densidade Demográfica , Estações do Ano
13.
Geobiology ; 21(2): 153-167, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36571166

RESUMO

This study presents multiple sulphur isotope (32 S, 33 S, 34 S, 36 S) data on pyrites from silicified volcano-sedimentary rocks of the Paleoarchean Onverwacht Group of the Barberton greenstone belt, South Africa. These rocks include seafloor cherts and felsic conglomerates that were deposited in shallow marine environments preserving a record of atmospheric and biogeochemical conditions on the early Earth. A strong variation in mass independent sulphur isotope fractionation (MIF-S) anomalies is found in the cherts, with Δ33 S ranging between -0.26‰ and 3.42‰. We explore possible depositional and preservational factors that could explain some of this variation seen in MIF-S. Evidence for microbial activity is recorded by the c. 3.45 Ga Hooggenoeg Formation Chert (HC4) preserving a contribution of microbial sulphate reduction (-Δ33 S and -δ34 S), and a c. 3.33 Ga Kromberg Formation Chert (KC5) recording a possible contribution of microbial elemental sulphur disproportionation (+Δ33 S and -δ34 S). Pyrites from a rhyo-dacitic conglomerate of the Noisy Formation do not plot along a previously proposed global Felsic Volcanic Array, and this excludes short-lived pulses of intense felsic volcanic gas emissions as the dominant control on Archean MIF-S. Rather, we suggest that the MIF-S signals measured reflect dilution during marine deposition, early diagenetic modification, and mixing with volcanic/hydrothermal S sources. Given the expanded stratigraphic interval (3.47-3.22 Ga) now sampled from across the Barberton Supergroup, we conclude that large MIF-S exceeding >4‰ is atypical of Paleoarchean near-surface environments on the Kaapvaal Craton.


Assuntos
Sedimentos Geológicos , Enxofre , África do Sul , Isótopos de Enxofre/análise
14.
PLoS One ; 17(12): e0279583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36574368

RESUMO

To better comprehend the dietary practices of past populations in the Eastern Baltic region we have created temporally and geographically restricted baselines for the time period of 200-1800 CE. In this multi-isotopic analysis, we report new δ13C, δ15N and δ34S values for 251 faunal bone collagen samples from various archaeological contexts in Estonia representing the most comprehensive set of Iron Age, Medieval and Early Modern Period faunal stable isotope values to date. The results map out the local carbon and nitrogen baselines and define isotopic ranges of local terrestrial, avian and aquatic fauna. We also demonstrate the potential application of sulfur stable isotope analysis in archaeological research. The results demonstrate a clear distinction between δ13C and δ34S values of marine and terrestrial species, however, freshwater fish display notable overlaps with both marine and terrestrial ranges for both δ13C and δ34S values. Herbivores show variation in δ34S values when grouped by region, explained by differences in the local biotopes. This study is the first attempt to connect the Eastern Baltic isotopic baselines and provides more detailed temporal and geographical references to study the local ecologies and interpret the human data.


Assuntos
Carbono , Cadeia Alimentar , Animais , Humanos , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Estônia , Carbono/análise , Isótopos de Enxofre/análise , Dieta/história
15.
Huan Jing Ke Xue ; 43(11): 5084-5095, 2022 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-36437080

RESUMO

Mining activities change the groundwater level and flow conditions through pumping and drainage, which enhances the interaction between groundwater and aquifer rocks; mine drainage is discharged into the surface water system, which affects the whole karst water hydrogeochemical process. Based on hydrogeochemistry and the δ34S isotope, the hydrogeochemical processes, characteristics, and main controlling factors for waste water, karst groundwater, and surface water in a typical Carlin gold mining area and its surrounding areas were revealed. The results showed that:chemical compositions of groundwater and surface water unaffected by gold mining activities were mainly controlled by the weathering of limestone and dolomitic limestone; Ca2+, Mg2+, and HCO3- were main ions; and the water chemical types were Ca-HCO3. The mine wastewater and its downstream receiving water were affected by the dissolution of carbonate and silicate minerals, and cation exchange also played a role; the main ions were Ca2+, Mg2+, Na+, and SO42-, and the hydrochemical type gradually evolved from Ca-HCO3 to Ca-SO4. SO42- was the characteristic component in various water bodies affected by mining, and the concentration of SO42- gradually decreased from top to bottom in the well. The values of δ34S for unaffected groundwater and surface water were positive, and SO42- was mainly derived from realgar oxidation. Conversely, mine wastewater and downstream water were negative, SO42- was mainly influenced by the mixing action of realgar oxidation and meteoric precipitation, and pyrite also contributed to a certain extent. At the same time, NO3- came from agricultural fertilizer and rural domestic sewage discharge directly. Principal component analysis (PCA) further demonstrated:sulfide mineral oxidation and mining activities were the main controlling factors for the water chemical composition of mine wastewater and downstream water, whereas unaffected groundwater and surface water were mainly influenced by water-rock (carbonate rock) interactions. Agricultural fertilizer and rural sewage discharge also had a certain influence. Therefore, the study area should strengthen the interception of surface water, control-block-management of sulfide oxidation, rural domestic sewage treatment, and agricultural fertilizer.


Assuntos
Ouro , Águas Residuárias , Esgotos , Fertilizantes , Isótopos de Enxofre , Carbonato de Cálcio , Mineração , Sulfetos
16.
Proc Natl Acad Sci U S A ; 119(41): e2209152119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36201540

RESUMO

Marine dissolved organic matter (DOM) is a major reservoir that links global carbon, nitrogen, and phosphorus. DOM is also important for marine sulfur biogeochemistry as the largest water column reservoir of organic sulfur. Dissolved organic sulfur (DOS) can originate from phytoplankton-derived biomolecules in the surface ocean or from abiotically "sulfurized" organic matter diffusing from sulfidic sediments. These sources differ in 34S/32S isotope ratios (δ34S values), with phytoplankton-produced DOS tracking marine sulfate (21‰) and sulfurized DOS mirroring sedimentary porewater sulfide (∼0 to -10‰). We measured the δ34S values of solid-phase extracted (SPE) DOM from marine water columns and porewater from sulfidic sediments. Marine DOMSPE δ34S values ranged from 14.9‰ to 19.9‰ and C:S ratios from 153 to 303, with lower δ34S values corresponding to higher C:S ratios. Marine DOMSPE samples showed consistent trends with depth: δ34S values decreased, C:S ratios increased, and δ13C values were constant. Porewater DOMSPE was 34S-depleted (∼-0.6‰) and sulfur-rich (C:S ∼37) compared with water column samples. We interpret these trends as reflecting at most 20% (and on average ∼8%) contribution of abiotic sulfurized sources to marine DOSSPE and conclude that sulfurized porewater is not a main component of oceanic DOS and DOM. We hypothesize that heterogeneity in δ34S values and C:S ratios reflects the combination of sulfurized porewater inputs and preferential microbial scavenging of sulfur relative to carbon without isotope fractionation. Our findings strengthen links between oceanic sulfur and carbon cycling, supporting a realization that organic sulfur, not just sulfate, is important to marine biogeochemistry.


Assuntos
Matéria Orgânica Dissolvida , Enxofre , Carbono , Nitrogênio/análise , Fósforo , Fitoplâncton , Sulfatos/análise , Sulfetos , Isótopos de Enxofre , Água
17.
PLoS One ; 17(10): e0275902, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36288264

RESUMO

Unidentified human remains have historically been investigated nationally by law enforcement authorities. However, this approach is outdated in a globalized world with rapid transportation means, where humans easily move long distances across borders. Cross-border cooperation in solving cold-cases is rare due to political, administrative or technical challenges. It is fundamental to develop new tools to provide rapid and cost-effective leads for international cooperation. In this work, we demonstrate that isotopic measurements are effective screening tools to help identify cold-cases with potential international ramifications. We first complete existing databases of hydrogen and sulfur isotopes in human hair from residents across North America by compiling or analyzing hair from Canada, the United States (US) and Mexico. Using these databases, we develop maps predicting isotope variations in human hair across North America. We demonstrate that both δ2H and δ34S values of human hair are highly predictable and display strong spatial patterns. Multi-isotope analysis combined with dual δ2H and δ34S geographic probability maps provide evidence for international travel in two case studies. In the first, we demonstrate that multi-isotope analysis in bulk hair of deceased border crossers found in the US, close to the Mexico-US border, help trace their last place of residence or travel back to specific regions of Mexico. These findings were validated by the subsequent identification of these individuals through the Pima County Office of the Medical Examiner in Tucson, Arizona. In the second case study, we demonstrate that sequential multi-isotope analysis along the hair strands of an unidentified individual found in Canada provides detailed insights into the international mobility of this individual during the last year of life. In both cases, isotope data provide strong leads towards international travel.


Assuntos
Isótopos , Iodeto de Potássio , Humanos , Estados Unidos , Isótopos/análise , Isótopos de Enxofre/análise , Cabelo/química , Hidrogênio/análise
18.
Sci Rep ; 12(1): 17370, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253491

RESUMO

Despite the extensive use of sulphur isotope ratios (δ34S) for understanding ancient biogeochemical cycles, many studies focus on specific time-points of interest, such as the end-Permian mass extinction (EPME). We have generated an 80 million-year Permian-Triassic δ34Sevap curve from the Staithes S-20 borehole, Yorkshire, England. The Staithes δ34Sevap record replicates the major features of the global curve, while confirming a new excursion at the Olenekian/Anisian boundary at ~ 247 million years ago. We incorporate the resultant δ34Sevap curve into a sulphur isotope box model. Our modelling approach reveals three significant pyrite burial events (i.e. PBEs) in the Triassic. In particular, it predicts a significant biogeochemical response across the EPME, resulting in a substantial increase in pyrite burial, possibly driven by Siberian Traps volcanism. Our model suggests that after ~ 10 million years pyrite burial achieves relative long-term stability until the latest Triassic.


Assuntos
Extinção Biológica , Fósseis , Sepultamento , Ferro , Sulfetos , Isótopos de Enxofre
19.
Artigo em Inglês | MEDLINE | ID: mdl-36078683

RESUMO

After the implementation of the Coal Replacing Project (CRP) in the northern parts of China in 2017, its effect on PM2.5 composition is still unclear. In the study, water-soluble ionic components (WSICs) and stable sulfur isotope ratios (δ34S) of SO42- in PM2.5 collected during the domestic heating period before and after the implementation of CRP in Tianjin were analyzed. Results showed that the average concentrations of both PM2.5 and WSICs have dropped dramatically after the CRP, especially for the SO42- (by approximately 57-60%). After the CRP, the range of δ34Ssulfate was significantly narrowed to 4.1-7.5‱ in January 2018 and 1.4-6.1‱ in January 2019, which suggested that the sulfur source was becoming simple. It was interesting that the δ34Ssulfate value in the pollution period before the CRP was higher than that in the clean period, whereas it showed the opposite tendency after the CRP, which implied that the contribution of sea salt was high during the pollution period before the CRP. The MIXSIAR model calculated that the contributions of the transition-metal ion (TMI) oxidation and NO2 oxidation pathways in the three sampling stages were higher than those of the OH radical oxidation and H2O2/O3 oxidation pathways, indicating that the formation pathway of sulfate was mainly dominated by heterogeneous oxidation. Before the CRP, the NO2 oxidation pathway was the dominant sulfate oxidation pathway during a haze episode, and the TMI oxidation pathway dominated the formation of sulfates after the CRP.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Carvão Mineral , Peróxido de Hidrogênio , Dióxido de Nitrogênio , Material Particulado/análise , Estações do Ano , Sulfatos/análise , Enxofre , Isótopos de Enxofre/análise , Óxidos de Enxofre
20.
Environ Pollut ; 313: 120063, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36049577

RESUMO

Pyrite oxidation and sedimentary sulfate dissolution are the primary components of riverine sulfate (SO42-) and are predominant in global SO42- flux into the ocean. However, the proportions of anthropogenic SO42- inputs have been unclear, and their tempo-spatial variations due to human activities have been unknown. Thus, field work was conducted in a spatially heterogeneous human-affected area of the Yihe River Basin (YRB) during a wet year (2010) and drought years (2017/2018). Dual sulfate isotopes (δ34S-SO42- and δ18O-SO42-) and Bayesian isotope mixing models were used to calculate the variable anthropogenic SO42- inputs and elucidate their temporal impacts on riverine SO42- flux. The results of the mixing models indicated acid mine drainage (AMD) contributions increased from 56.1% to 83.1% of upstream sulfate and slightly decreased from 46.3% to 44.0% of midstream sulfate in 2010 and 2017/2018, respectively, in the Yihe River Basin. The higher upstream contribution was due to extensive metal-sulfide-bearing mine drainage. Sewage-derived SO42- and fertilizer-derived SO42- inputs in the lower reaches had dramatically altered SO42- concentrations and δ34S-SO42- and δ18O-SO42- values. Due to climate change, the water flow discharge decreased by about 70% between 2010 and 2017/2018, but the riverine sulfate flux was reduced by only about 58%. The non-proportional increases in anthropogenic sulfate inputs led to decreases in the flow-weighted average values of δ34S-SO42- and δ18O-SO42- from 10.3‰ to 9.9‰ and from 6.1‰ to 4.4‰, respectively. These outcomes confirm that anthropogenic SO42- inputs from acid mine drainage (AMD) have increased, but sewage effluents SO42- inputs have decreased.


Assuntos
Sulfatos , Poluentes Químicos da Água , Teorema de Bayes , China , Monitoramento Ambiental/métodos , Fertilizantes , Humanos , Isótopos , Esgotos , Sulfatos/análise , Sulfetos , Isótopos de Enxofre/análise , Óxidos de Enxofre , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...